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Polyurethane (PMDI): Model Development

e PMDI is used as an encapsulant for electronic components, to
mitigate against shock and vibration

* We would like to develop a computational model to help us
understand foam expansion for manufacturing applications.

* Exothermic reactions lead to competing physics: heat decreases
viscosity initially but expands bubbles and increases reaction rates
leading to higher viscosity.

Two key reactions: Isocyanate reaction with polyols and water
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PU has a short pot-life: models
can help reduce defects and
improve filling process

Foaming reaction yields
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Various follow up reactions: Isocyanate reaction with amine, urea and urethane
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— Compare curing pMDI-4 foam with noncuring model foam system (epoxy carrier with similar viscosity)
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Can We Separate the Effects of Curing and Foaming?

e Use IR to monitor polyol-isocyanate urethane reactions in both wet and dry polyurethane
- “Wet” vs. “dry” slightly different rates of cure
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e Micro-attenuated total reflection (ATR)
infrared spectroscopy (IR)
measurements
Urethane ester linkage (1218cm) and

eserinkage carbonyl (1700 cm™ range) are great

1 indicators of cure kinetics.
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* No IR peak indicates foaming reaction, so measure the volume generated
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Curing system foams faster: extra heat (reaction synergism)
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1) PMDI-4 mix; 37.5:62.5 R:T; 0.071% LV33 in R-Comp
foam rise ggd exothermic polyol cure together
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ll) 37.5:62.5 161:PMDI-T; 0.92% 12.1:1 H2O: 33l V . ; .
0.071% L33, true water reaction (noncuring) Foaming slows in

0o curing system at
about 15 min (30C)

* Foaming slows in
noncuring system at
about 140 min (30C)
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Measure P, V, T in Simple Geometry to Quantify
Foaming Reaction in Curing System

We can only measure after injection, but reaction is occurring during
mixing and injection, but bubbles are being destroyed in these

Transparent plastic
processes, too. Vertical Foam cover
. . . Mold
Pressure continues to rise after foam has stopped expanding. 095 Dx 05" .
Implies CO, reaction progressing after foam viscosity restricts Ao
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The foam cannot be preheated, so during the foam rise the Moid placed
temperature is not steady. emooratre
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Polymerization Continues After Foaming Complete

Structural PMDI-10 Foam, Oven T=50°C

Comparing to IR, we see that polymerizing
reaction is slower than foaming reaction
Model by decoupling reactions assuming
isocyanate is in excess during foaming

Track two extent of reactions with time
Assume heat of reaction primarily from
polymerization

Extent of foaming reaction gives foam density
with time
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& is the extent of polymerization reaction
d_é: — kOeAE/RT (1_ §)q

dt
dg
S, = AH
rxn rxnp dt

a is the extent of reaction generating CO,

Olif: 1k(1_ma)|v| where k=AeXptE /RT)
l-a)" + M = A exp(E,/RT)

max

Neo, (1) = nlcr;: +a(t)neo,

Neo, MWCO2 / Pco,
Neo, MWeo, / Pco, TV

o(t) =

liquid

Proam = (p002 ~ Pliquid )¢(t) + Pliquid




Fit IR Data to Get Polymerization Reaction Rate
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Fit Foam Rise Data to Get Gas Generation Reaction Rate
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Model Requires Foam Properties

Process model requires solving balance equations for momentum, energy, mass
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e Differential scanning calorimetry (DSC) gives lumped heat of reaction
 Thermal properties are functions of the temperature and the gas fraction (extent of foaming

reaction)
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Viscosity of Foam is Complex

* Foam rheology evolves as gas fraction
and polymerization increase

* Dry formulation gives an approximation
of the curing continuous phase

rheology _2\°
Newe =10 (—é 9&}

Se
* Knowing density evolution from

separate foam rise experiments we
relate the gas fraction and the foam
viscosity

* Mooney prediction (for ¢,,, < 0.5)
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foam rheology as function of distinct
phenomenological characteristic times.



Free Surface Validation Study
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e Model tracks density change
for foaming in full system

eBut validation data show
that model foams too fast
and then too slow with this
simplification

Time=5s Time=76s Time=125s Time=175s Time=284s

eCurrent work:
- Improve density model
- Add a function to tie
volume change generation
v to gelation



Density Gradients Occur in Polyurethane Foams

X-ray CT of PMDI-4 part shows density gradients

Modeling extent of reaction for CO,
generation can give trends to help
understand foam density variations
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Experimental CT gives density
gradients in artifact mold (CT
courtesy of Kyle Thompson, SNL)




Experiments on Evolving Density and Microstructure

e Nuclear Magnetic Resonance (NMR) imaging
e NMR signal includes density and isocyanate content,
both of which decrease with time
 We separate effects by using tracer particles that

indicate density
 Confocal microscopy

e Bubble size and shape evolution with time can be
determined but only fairly near a surface
e Better than optical imaging for the small bubble sizes ir

polyurethane ( about 100 um) b= o s 03
» Diffusing wave spectroscopy (DWS) NMR signal (red) from tracers corresponds well to
* Average bubble size through a thickness can be

determined

Fluorescent confocal image of foam
doped with Nile Red. Multiple
optical “slices” give 3D information
with good time resolution.

Average NMR Density Scaled to Match Sliced Foam

averaged density of surrounding block determined
from weighing post test. NMR can be used during
the foam rise, unlike post test destructive analysis.
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Conclusions

e Current model is adequate for production calculations
oDetermining metering, initial placement, voids, gate, and vent location
Olnvestigate encapsulation of new geometries of interest

e Advanced foam kinetic model complete
OPolymerization and rheokinetics are accurate

o New foam kinetic model implemented (Rekha Rao’s talk on Tuesday)
ONew results — comparison to experiment underway

e Current work:

Olmprove density model with knowledge of microstructure
OAdd a function to tie volume change generation to gelation
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