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Novel Materials for Unattended Sensing to 
Support Future Treaties

D.P. Adams 2013

Primary Objective (from BAA): “Identify microscale or nanoscale structures and 

phenomena in materials that can provide passive or active indicators of interference with 

unattended monitoring or sensing to support compliance with treaties.”

OUR APPROACH: Research how short (ns) and ultra-short (fs, ps) pulsed 

laser light interacts with surfaces to create complex features and patterns 

for use as passive indicators of interference/tamper
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Ex. Color patterns fabricated
across metallurgical seals
(welds, braze, solder)



1 mm

Color markings consist of different archivable 
features.

Macroscale color patterns can also be used as maps to 
guide interrogation of small color features

Fabricated Pattern on SS304L

Speckle

10 m

Microscopy/Microcolorimetry

• Tailored characteristics include:

- pre-designed color features, patterns
- periodic scan lines of specific direction, hatch

• Intrinsic nano-scale color features are:
- isolated precipitates in large area pattern, 
- often a unique color
- randomly positioned / sized

Spectrophotometry
Chromaticity



• Tailored characteristics of ripples include

- wavevector (set by laser polarization)

• Random / intrinsic characteristics include
- location and size of rippled areas (via asperities)
- ripple periodicity (via surface plasmons)
- ripple amplitude (varies with distance from source)

4

Periodic surface morphology is also under 
investigation for use as a unique identifier.

D.P. Adams 2013
Rapid, non-destructive methods for interrogation include diffraction, microscopy.

Periodic ripple pattern on 
stainless steel 304L

5 m

1.2 J/cm2, 150fs,
780 nm in air

Shifted periodicity (from 780 to 740 nm)
attributed to plasmon polaritonsE field

AFM



Rapid laser marking processes are desired for 
fabricating a variety of different features.

Our approach: rastered, pulsed laser spot (ns or fs)

• Color markings: Metal reacts with air to form coating

• Ripple markings:  Pulsed laser roughens surface

• Variety of materials form color layers when using
a 1064 nm, ns-pulsed fiber laser 

• Large variety of materials develop ripple patterns
when irradiated by a 800 nm, fs-pulsed laser

- Silicon, Stainless Steel, Ti.

D.P. Adams 2013

Titanium (CP2 grade)
- Stainless steel 304L:                  R ( = 0o) = 0.73

- Dual phase steel (50% ferrite):  R ( = 0o) = 0.72

- Titanium CP2 grade:                  R ( = 0o) = 0.57

- Titanium alloy Ti6Al4V:               R ( = 0o) = 0.37

- KovarTM (FeNiCo):                      R ( = 0o) = 0.63

- GeoroTM (Au88Ge12):                R ( = 0o) = 0.74

1 cm

Stainless Steel 304L



Technical Objectives of Current Year

Research of

• Mechanical properties of laser-defined color oxide layers
- Toughness 
- Coefficient of friction

• Heat affected zones resulting from scanned, ns laser irradiation
- Thermal modeling of pulsed heat input

- Multiple substrates

• Complex markings that combine periodic ripples, colors
- All-in-one process involving ns irradiation
- Two step process involving ns and fs irradiation

• Stability of laser-fabricated markings

- Normal aging (room temperature, multiple years)

- Accelerated thermal aging (elevated temperature, short time)

D.P. Adams 2013

Hypothesis

An additional Year 3 task involved publishing results from Year 2.
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In FY13, the mechanical properties of laser-

grown oxides were evaluated to gauge long

term use.

D.P. Adams 2013

No evidence for interfacial fracture is consistent with a large interfacial toughness. 

Nanoscratch Tests

200 m

110 mN

150 mN

200 mN

NanoindentationTests

Scratch Rate: 0.5mm/s; Load Rate: 10mN/s

Tip: Blunted Berkovich (diamond pyramidal) 
Direction: Vertically Down (Edge Forward)

2m 2m

• Micrographs from nanoscratch testing 
show no evidence for spalling or interfacial 
fracture.

• Micrographs from nanoindentation show
circumferential cracking at the plastic
zone radius but no evidence of spalling.

• Oxides tested included those made on Ti 
and stainless steel.



Colored oxides made on stainless steel and Ti

exhibit large interfacial toughness and 

coefficient of friction.

• coefficient of friction, Cf

Substrate  Cf

SS 304L 0.15-2.0     
Ti (CP2)         0.05-0.09

• fracture toughness, K

Substrate Kox (MPa √m
SS 304L 2.05-3.2  
Ti (CP2)          1.77-2.67
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Laser-defined oxides 
on stainless 304L

Laser-defined oxides 
on titanium (CP 2 grade)

Substrate Eox (GPa) Hox (GPa)  
SS 304L 137-208         9.5-12.3
Ti (CP2) 199-251       15.1-16.4

• Modulus hardness

What does this mean?

1.)  All oxide layers on steel and Ti are adhered well

2.)  Oxide layers have good wear resistance (between  

that of a hard metal and alumina (gauged from H/E    

ratio*) ref. W. Yi-Ling et al., Wear 1988)



Thermal modeling has been used to predict

Heat Affected Zones (HAZs) for scanned 

pulsed laser irradiation.

40 m

D.P. Adams 2013

• Thermal model treats a scanned, 
pulsed, Gaussian-shaped laser beam
incident on a polished surface.

• Models account for 

- substrate reflectivity (or film %R)
- temperature dependent phys. props. (, Cp)
- radiation loss boundary conditions, = 0.4
- beam characteristics (Pavg, , etc.)

• Simulations used the Sandia Red Sky
supercomputer and implemented Sierra 
Mechanics FEM code (grid size 0.1 m)

• Target materials modeled include 
SS304L,Ti, two phase steel,Ti w/ thin ox

Models of our laser color marking processes demonstrate there is minimal 
temperature increase at 500 m depth.



5.0 m

Model predictions of HAZs were validated

by electron microscopy.

Results with Stainless SteelResults with Ti
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• Models predict depths to T = 915oC ( transus) 

• Probed by SEM, inspecting for ’ martensite

• Models predict melt depths (Tmelt = 1427oC)

• Probed by SEM, observation of melt
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Models of scanned laser irradiation show

other key elements of design.

• Thermal models predict that melting
reaches steady-state (uniform depth)
after beam travels approx. 60-100 m 
from edge of feature.    

• Infer minimum feature size is ~ 500 m 
(this assumes formation of a uniform 
colored center that is 5x width of 
boundary color)

Model
Predictions:
Irradiation of 
SS304L

Experiments
showing
Cr-denuded 
depths ~ 
melt depths



Combination of color and periodic ripples 
should establish more complex markings 
that are virtually impossible to duplicate.

Example macroscale color pattern depicted on 
right wherein each square ‘macro-pixel’ has

•a tailored color 
•a tailored scan line direction, hatch

Random features includes 

•isolated color precipitates
•periodic ripple patterns formed at 

random sites, covering irregular-sized areas

D.P. Adams 2013

In Year 3, hybrid processes were studied including single 
step nanosecond pulsed irradiation and two step 
nano/femtosecond irradiation



Scanned, nanosecond-pulsed laser irradiation 
has been used to simultaneously generate
color features and localized ripples.

Example macroscale color pattern depicted on 
right wherein each square ‘macro-pixel’ has

•a tailored color 
•a tailored scan line direction, hatch

Are combined color features and ripples too 
complicated for rapid interrogation / analysis in 
the field?



Optical properties of color layers have not 
changed significantly over two years
(normal aging).

D.P. Adams 2013

Also, there are no detectable changes in 

colored, micro-precipitates after 2 years.

• 200 samples tested by aging at 75oF, 
40% relative humidity, lighted room

• Tested samples were various oxide
coatings made on SS304L, Ti

• No detectable change in chromaticity
(within uncertainty)

• No detectable change in spectral   
reflectance (within uncertainty)

CIE 1931
color space
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Initial
After 2 years



Accelerated aging at high temperature reveals
high decomposition temperatures (~250oC) for 
colored oxides.

D.P. Adams 2013

• No detectable change in chromaticity (x,y) 
below 200oC for multiple hours.

• No detectable change in spectral reflectance 
below 200oC for multiple hours.

• We turn to XRD for phase identification 
associated with transformation

Dwell Time at Temp = 1 hr

Deviation

Dwell Time at Temp = 1 hr

Ex. Oxides made on Ti6Al4V were 
aged at high temperature 

Laser scan speeds
60 mm/s
80 mm/s
110 mm/s

130 mm/s
150 mm/s
170 mm/s



Eleven Presentations in past year 
(21 total for project)

Invited: D. Hirschfeld ASM-ASME Local Chapter Symp. (Albuquerque, 11/14/12).

Contributed: S. Lawrence Int. Conf. on Metal. Coatings and Thin Films (San Diego, 5/1/13).

Contributed: R.D. Murphy 2013 Conf. Lasers and ElectroOptics, CLEO (San Jose, 6/10/13).

Contributed: R.D. Murphy 2013 Conf. on Lasers and  ElectroOptics, (San Jose, 6/10/13).

Contributed: R.D. Murphy. Materials Research Soc. Fall Meeting (Boston, 11/29/12).

Contributed: S. Lawrence et al. TMS Annual Meeting (San Antonio, 3/5/13).

Contributed: S. Lawrence et al. Corrosion 2013 (Orlando, 6/10/13).

Contributed: S. Lawrence SSGF 2013 Annual Mtg (Santa Fe, 6/26/13).

Contributed: R.D. Murphy et al. AVS NM Chapter Symposium (Albuquerque, 5/22/13).

Contributed: S. Lawrence et al. Materials Research Soc. Fall Meeting (Boston, 111/27/12).

Contributed: D. Saiz. AVS NM Chapter Symposium (Albuquerque, 5/22/13). 0�
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Predicting structure-property 
relationships and validating these 
predictions



Three publications and one award in past year
(6 total for project) and one dissertation

Peer-reviewed Publications (3)

Applied Physics Letters, “Pump-Probe Imaging of Laser Induced Periodic Surface  
Structures after Ultrafast Irradiation of Si”, Manuscript # XXYY - Full DTRA support

Surfaces & Coatings Technology, “Nanosecond Pulsed Laser Irradiation of 
Titanium: Oxide Growth and Effects on Underlying Metal”, Manuscript # XXYY -
Full DTRA support

Surfaces & Coatings Technology, “The Mechanical and Electromechanical  
Behaviors of Oxide Coatings Grown on Stainless Steel by Nanosecond 
Pulsed Laser Irradiation ”, Manuscript #S-13-02083  Full DTRA  support

Award (1) 

Best Student Poster Award:   R.D. Murphy with “Formation of Laser Induced 
Periodic Structures”, AVS-NM Chapter Symp., May 22, 2013 - Full DTRA support

Dissertation (1) 

R.D. Murphy, Applied Physics PhD, Univ. of Michigan Partial DTRA support

D.P. Adams 2013

Ripple formation on Si due to light
scattered from a gold mesa
and model explaining effect

E field



18

Summary

 Pulsed-laser color marking of oxidation of metals and alloys

• Complex, macro-scale color patterns can be tailored

• Large palette of readily-identifiable colors (R, x, y)

• Site-specific, micro-scale color precipitates form within larger patterns

• Detailed optical properties (n,k) measured; colors can now be predicted

• Oxide coatings adhere well, are hard and exhibit good wear resistance

• Oxide coatings are stable over time and for moderate temperatures 

• Detailed structure-property relationships identified for oxides on Ti, SS304L

 Nano-scale ripples are a second form of archivable markings.

• Ripple patterns form with small distribution of wavelengths 

• Wavevectors tailored by incident polarization

• Site-specific ripple formation at local protrusions during scanned laser processing

• Origin of ripple patterns identified (interference of scattered light with impinging light)

• Ripple periodicity affected by surface plasmon polaritons

• Time scales for surface ripple formation (~ 50 ps) demonstrated by ultrafast pump-probe microscopy
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Proposed Year 4 tasks would build on 
prior year’s research.

D.P. Adams 2013

• Modeling formation of laser-induced periodic structures 
Sub-task 2.4   Investigate role of surface plasmon polaritons, 

effects of fluence, site specificity
Sub-task 2.5   Model light solid interactions using EM solver 

(Lumerical) multi-source scattering, interference

• The stability of laser-defined markings
Sub-task 6.4  Corrosion testing, 

implements salt fog and salt spray tests

• Methods for rapid feature interrogation 
Sub-task 7.1  Investigate light-based methods including

diffraction, methods that implement long
sampling distances including speckle

Predicting enhanced optical 
absorption near asperities

Our initial test: markings  on 
SS304L, salt water (after 1 mo.)



BACKUP SLIDES
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University Collaborations
in 2013

• Sub-contract extended with Univ. of Michigan 

• Ryan Murphy (Applied Physics grad. student)
Graduated with PhD : 2/2013 (100% commitment)
Now a post doc at Sandia working with this team

• Basic research of surface roughness evolution
during pulsed laser irradiation involving ultrafast 
pump-probe microscopy

• Sub-contract extended with Purdue Univ.

• Samantha Lawrence (Materials Science & Engineering
Expected PhD date: 2014,  25% time commitment

• Research of the mechanical properties of laser-fabricated
metal oxides (includes study of hardness, adhesion,
phase, variations through thickness)

All students and professors
are US citizens

D.P. Adams 2012

http://www.mme.wsu.edu/people/faculty/info/bahr/large.jpg


Technical Objectives for FY11
have been completed

• Research pixel-by-pixel control of laser color features using 10-200 ns light

• Research effects of pulse frequency on color layer formation

• Investigate microstructure, composition, optical properties of color layers

• Research hardness and modulus of color layers (nanoindentation)

• Implement a thermal modeling code to simulate the effects of laser irradiation 
(fixed position, varies pulse duration, rate, energy per pulse, wavelength)

• Qualify ultrafast pump-probe instrument (Univ. of Michigan)

• Research temporal evolution of laser-induced periodic surface structures

D.P. Adams 2013
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Color information can be archived in 
several forms.

Visual photograph / micrograph

Reflectance Spectra
(obtained from 

individual pixels)

5.6 W Ti

6.7 W Ti

CIE1931
Color space

Chromaticity (x,y)
(obtained from 

individual pixels)

Substrate: Ti

D.P. Adams 2012
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Oxide thickness, in part, determines color.

• Scanning electron microscopy shows
oxide layers are ~ 10 - 500 nm.

• Thickness generally increases with fluence
or decreasing scan speed (at fixed Pavg).

Example: Oxides on Stainless Steel 304L 

•For tox > ¼  of visible light, attenuation and 
interference.

• For tox < ¼  of visible light, attenuation.

D.P. Adams 2012



25D.P. Adams 2012

Oxides formed on SS 304L include 

• Fe3O4 , MnCr2O4

Oxides formed on Ti include

• TiO (wustite)

• Ti6O (oxygen intercalation into hex. Ti)
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TiO Ti6O

Laser scan:
160 mm/s

Laser scan:
130 mm/s

Optical constants (n,k ) also determine color, 
and these are affected by phase. 
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The phase and structure of the substrate is also modified by laser heating.
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Optical constants (n,k) also determine color, 
and these are affected by composition. 

Example: Oxides formed on SS 304L are 
comprised of:

• Compositional gradients through film thickness

• Cr, Mn, Fe, O and trace Ni, Mo
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The composition of the substrate is modified

due to laser heating.
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The mechanical properties of laser-defined 

oxides have been evaluated.

Oxides defined on SS 304L and Ti have been

evaluated using nanoindentation / scratch

• modulus and hardness
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on stainless 304L
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Substrate     Eox (GPa)   Hox (GPa)  

SS 304L 137-208         9.5-12.3
Ti (CP2) 199-251       15.1-16.4

• fracture toughness

Substrate     Kox (MPa √m)

SS 304L 2.05-3.2  
Ti (CP2)          1.77-2.67

• coefficient of friction

Substrate             Cf  

SS 304L 0.15-2.0     
Ti (CP2)         0.05-0.09



Technical Objectives for FY12
have been completed

Research includes

• the physical and chemical properties of laser color layers 

• micro-color centers forming at selective sites within macro-scale patterns

• the toughness of laser-fabricated color layers

• heat-affected zones via thermal modeling

• feasibility of picosecond and single nanosecond laser coloring of metals

• the temporal evolution of laser-induced periodic structures

• the origin of laser-induced surface ripples

• site-selective formation of periodic surface topography

D.P. Adams 2013
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In year 2, ultra-fast pump-probe microscopy 
was used to determine the timescales 

associated with ripple formation.

D.P. Adams 2012

• Pump-probe microscope was built, qualified 
in Y1.

• Experiments involve Si targets

• Long  (1-2 m) Laser Induced Periodic 
Structures (LIPS) form ~ 50 picoseconds 
after absorption of the pump pulse.

0.34 J/cm2
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Beamsplitter

Probe 
Delay Line

Objective

BBO 
Crystal

10 μm 10 μm
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(a)
0 ps

(d)

(b)
11 ps
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53 ps

Crater created with first pulse 
creates light-scattering morphology

Onset of surface
Melting (with 2nd pulse)

Ripple formation ~ 50 ps Similar morphology
after cooldown 
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Ex. CP2 grade Ti patterned by 102 ns, 225kHz 
laser light

Color symbols are  consistent 
with appearance to eye
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Response of unbiased 
Cary 5000 Spectrophotometer

Corrected according to the luminosity
function of the human eye
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The accumulated fluence largely determines 
the laser-defined colors. 

D.P. Adams 2013

• Color is similar for a given energy input 
(J/mm2) – independent  of laser scan rate.

• Colors form over a large range of scan 
rates and for different average powers.

• The color order of gold, orange, red, purple,  
blue with increasing fluence is the same 
independent of Pavg.

Colors shown in plot
consistent with surface

appearance !!
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