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Extreme Environments of Nuclear Reactors

Irradiation & Thermal Effects
*  Fission Gas Generation

* Damage / Plasticity

e Impurity Fission Bi-Products
*  Diffusion

e Creep
*  Chemical attack between
cladding and fuel
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Coupling microstructure and concentration
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e U-Pu-Zr metallic alloy
 Exp. Breeder Reactor II

e Temperature-induced phase
changes
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Burnup (GWD/t)

Value of improving nuclear fuels

PWR

80
L]
.| Enrichment
40 1 —BWR
PHWR
30 RBMK
——AGR
20 | / ——Magnox
J— — WWER
10 1
1970 1975 1980 1985 1990 1995 2000 2005

Year

IAEA 515t Conference, 2007.

Materials Models

* Improved
— Performance
— Fuels cycles
— Waste / Recycling



Required Materials Model

* Material
— Microstructure
— Phase
— Composition
— Temperature
— Void

* Framework
— Efficient
— Scalable



Modeling techniques for microstructure evolution

Finite Element Potts Monte Carlo Phase Field

Analysis

Gaston, et al. Nucl. Eng. & Des. 2009. Phase field models. Wikipedia 2011.



Finite Element Models

 Material
— Continuum
* Physical evolution

— Governed by constitutive-based
materials models

e Solution
— Solve system of equations —
implicit/explicit
e Examples
— OOF — NIST
— MOOSE - INL/FSU




Potts Monte Carlo Model

e Material

— Individual particles form an
ensemble

* Physical evolution

— Governed by statistical mechanics
of state energetics

* Solution FoE

— Monte Carlo methods N |
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Material
— Phases fields

Physical evolution

— Cahn-Hilliard
— Ginzburg-Landau
Solution

— Implicit/explicit solution of
PDEs

Examples
— CH-muSE/CA-muSE

Phase Field Model
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Finite Element
Analysis

Gaston, et al. Nucl. Eng. & Des. 2009.

Geometrically / Physically
Versatile

Constitutive development,
Solution of PDEs
Rule-based

Potts Monte Carlo

Statistical microstructures,
Computationally efficient

On-lattice,
Discrete valued

Advantages / Disadvantages of modeling techniques

Phase Field
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Phase field models. Wikipedia 2011.

Continuum fields,
Thermodynamic model

On-lattice,
Model development

Computationally intensive
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Combined approach of modeling techniques

Phase-Field Potts Monte Carlo
eDeterministic Continuum Model eStatistical-Mechanical Model
eSmoothly varying fields eDiscrete Particles
eDiffuse Interfaces eSharp Interfaces

Combined Model

ePotts: Grain evolution
ePF: Concentration evolution

eBalance resolution / efficiency ¢

Chen. Annu Rev. Mat. Res. 2002. Holm. et al. JOM. 2001
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Details of the Combined Model

Combined Model Energetics Potts Evolution

N n
Ehyb=Z{Ev(q,»,c)+%ZJ(q,»,qj)j+IKC(VC)ZdV AE A|lA|lA]|B
= = exp| — for AE >0
P= P[ kBTj AlA|B|B
_ 2 2 2 2 1 for AE<0 AlA]lB|B
E =y (C—Cl) +(C2—C) +al(C—C3) qa+a2(C4—C) qp <
clclc|c
07 Phase-Field Evolution
06
05+ a a
. © (w2 vic
° 0.4 ot oC
w
§ 03}

o
o
T

011

0 0.2 0.4 0.6 0.8 1
Composition, C

12



Coupled Potts — Phase Field Simulations

2-Phase 2-Component System
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Model evolution
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Diffusion & Effective Diffusivity

Concentration Evolution
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Single-phase grain growth
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Dual-phase grain growth
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Concentration tracks phase boundaries

Grain ID Phase Concentration
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Oudinet. et. al. J. Nucl. Mat. 2008.
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MIMAS Evolution
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4 Potts — Phase Field )
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2-Phase Nuclear Fuel
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