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Extreme Environments of Nuclear Reactors
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Irradiation & Thermal Effects
• Fission Gas Generation
• Damage / Plasticity
• Impurity Fission Bi-Products
• Diffusion
• Creep
• Chemical attack between 

cladding and fuel

Nabielek, et al. Nucl. Eng. & Des. 1990.



Coupling microstructure and concentration

• U-Pu-Zr metallic alloy

• Exp. Breeder Reactor II

• Temperature-induced phase 
changes

3
Kim, et al. J. Nucl. Mat. 2004.



Value of improving nuclear fuels

Materials Models

• Improved 

– Performance

– Fuels cycles

– Waste / Recycling

4

IAEA 51st Conference, 2007.

Enrichment



Required Materials Model

• Material

– Microstructure

– Phase

– Composition

– Temperature

– Void

• Framework

– Efficient

– Scalable
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Modeling techniques for microstructure evolution
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Gaston, et al. Nucl. Eng. & Des. 2009. Phase field models. Wikipedia 2011.

Finite Element 
Analysis

Potts Monte Carlo Phase Field



Finite Element Models

• Material
– Continuum

• Physical evolution
– Governed by constitutive-based 

materials models

• Solution
– Solve system of equations –

implicit/explicit

• Examples
– OOF – NIST

– MOOSE – INL/FSU
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Potts Monte Carlo Model
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• Material
– Individual particles form an 

ensemble

• Physical evolution
– Governed by statistical mechanics 

of state energetics

• Solution
– Monte Carlo methods

• Examples
– SPPARKS – SNL 

– MMSP – CMU



Phase Field Model
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Phase field models. Wikipedia 2011.
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• Material
– Phases fields

• Physical evolution
– Cahn-Hilliard

– Ginzburg-Landau

• Solution
– Implicit/explicit solution of 

PDEs

• Examples
– CH-muSE/CA-muSE



Advantages / Disadvantages of modeling techniques
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Gaston, et al. Nucl. Eng. & Des. 2009. Phase field models. Wikipedia 2011.

Finite Element 
Analysis

Potts Monte Carlo Phase Field

+
Geometrically / Physically 

Versatile
Statistical microstructures,
Computationally efficient

Continuum fields,
Thermodynamic model

–
Constitutive development, 

Solution of PDEs
Rule-based

On-lattice,
Discrete valued

On-lattice,
Model development

Computationally intensive



Combined approach of modeling techniques
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Phase-Field

•Deterministic Continuum Model

•Smoothly varying fields

•Diffuse Interfaces

Combined Model

•Potts: Grain evolution

•PF: Concentration evolution

•Balance resolution / efficiency

Potts Monte Carlo

•Statistical-Mechanical Model

•Discrete Particles

•Sharp Interfaces

Chen. Annu Rev. Mat. Res. 2002.
Holm. et al. JOM. 2001.
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Details of the Combined Model
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Combined Model Energetics Potts Evolution

Phase-Field Evolution



Coupled Potts – Phase Field Simulations
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2-Phase 2-Component System



Model evolution
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Microstructure

Composition



Diffusion & Effective Diffusivity
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Fickian Diffusion
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Single-phase grain growth
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Dual-phase grain growth
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Concentration tracks phase boundaries
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MIcronized MASterblend (MIMAS) Fuel

• PuO2 – UO2
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Oudinet. et. al. J. Nucl. Mat. 2008.

Thermodynamic data courtesy of 
TM Besmann, ORNL



MIMAS Evolution
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Future Nuclear Fuels Research

21

Void & Thermal EffectsPotts – Phase Field

2-Phase Nuclear Fuel

Walker. et al. J. Nucl. Mat. 2006.
Oudinet. et. al. J. Nucl. Mat. 2008.

Nabielek, et al. Nucl. Eng. & Des. 1990.


