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}' Tribology is a Systems Property

hear Accommodation

Wear Surface

Fluids
Additives

Major Theme
Fundamental Understanding of the Evolution of
Friction-induced grain structure in single crystals metals
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ctron Backscatter Diffraction (EBSD) in the SEM
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ctron Backscatter Diffraction (EBSD) in the SEM
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5.
SEM image with pixels for EBSD
Step size dictated by microstructure 6.
and level of detail needed.
Minimum step size < 20nm! ;

Scan area of interest
pixel by pixel.

Collect EBSD pattern

Located 4 — 7 lines on
pattern — Hough
transform

Calculate angles
between bands

Compare with known
unit cells (short list)

Index pattern
Calculate orientation

Move to next pixel

Modern systems can do this up to 50 times per second!




Typical FIB Configurations

Conventional Technigues
elon Milling (Dimpling)
*Electropolishing
sUltramicrotomy

}

() ()6

Not site specific

Sliding Direction

v

Dual-beam system from FEI. Both a FIB column and a
SEM column are present on one sample chamber.
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ystallographic configurations for friction testing
on single crystal Ni
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‘ Rotary Friction Test Module

Rotary Stage

Rotary Stage for Single Crystal Alignment Environmental chamber
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}Qriction is dependent on crystallographic

orientations
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COF

riction data on two crystallographic directions
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}%M imaging (FSE) and EBSD of wear scars in

plan-view

SEM image of forward scattered electrons (FSE).
Note visibility of {111} slip traces. (Image not
corrected for 70° tilt.)

EBSD IPF map with respect to the
sliding direction. Note dark region
due to high plastic deformation in

m

wear scar

— Sandia
” b @ National _
Larger tilts produce higher quality EBSD patterns Laboratories
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Depth of deformation is related to crystallography

Maps showing the orientation changes relative to undeformed regions on (100) crystal surface. Brighter color

represents larger orientation change. The magnitude of orientation change was about 6° total in for the friction
track in the <100> direction and about 13 © for the track in <110> direction.

Slip system orientations show intersecting slip systems for <100> wear (ABC plane in AB direction, and DEF
in DE), but not for <110> (ABC in AB and ABD in AB), suggesting more hardening for <100>. Color maps of

resolved shear stress from analyses of plastic deformation show the strong asymmetry induced by sliding
(as opposed to static) contact.
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%‘ Depth of deformation is related to crystallography
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A E
- Strong dislocation
Interactions- high
work hardening
[100]

Weak dislocation
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D , work hardening
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Very weak dislocation
Interactions- low
work hardening —
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}_ EBSD: Crystallographic maps
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ationship between crystallography and sliding-
Induced deformation
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% Schematic illustration of grain rotation. 1
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} Schematic illustration of grain rotation. 2
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}‘ Contact Mechanics and Crystal Plasticity
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Plastic Strain and Subgrain Formation (Model)

18
16
14
12
10

= M = v oo

T '|' T T T T I T T T T

— {100}<100>
— {100}<110>
— {110}<100>
{(110}<110>
(110}<211>

— {111}<110> i
— {111}<211> i
L L L 1 I ] ] L L |. 1 1 ] L I L 1 1 1
0 500 1000 1500 2000
Cycles
P=IN  u=08

1. A. Godfrey and D.A. Hughes, “
Induced Dislocation Boundaries,”

O E T T T T T _1100)<100>

— {100}<110>

| — {110}<100>

= 10 {110}<110>

e (110}<211>

5 0 — {111}<110>

e 10 : — {111}<211>

5 C .
a T
£ 10F
'5'0 C
3 :
A 2|

10°F =

]0—3- 1 [ L 1 I 1 1 [ L |. 1 1 1 [ I L 1 1 1 |

0 500 1000 1500 2000
Cycles
0.724
dons & —im WM (for Aly'

Scaling of the Spacing of Deformation
Acta Mater. 48 (2000) 1897.

Sandia
National _
Laboratories

(™)



Model: Qualitative Validation

Increasing
Plastic Strain

Experimental

Measurements Model
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EBSD inverse pole figure maps of wear scars
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% Grain Boundary Sliding Model
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g
M normal loads (1N) produced unique

substructures with interesting friction behavior
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Brigh-field TEM Image Dark-field TE Image
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Part Il:

i’,&pplication to Nanocrystalline Thin Films
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Nanocrystalline Ni Film: Strain Rate Effects

oad and sliding speed dictate subsurface strain rate

Slope (strain rate) increases
as load and sliding speed
increase.

Strain (a.u.)

Time (a.u.)
Schematic of the strain history

Bright-field TEM image experienced by

the material below the worn Cs%ndia
National
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%nocrystalline Ni: Strain Rate Effects on Friction

Friction Coefficient
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mission Electron Microscopy of Subsurfaces:
Low Friction Case ‘

BF-TEM DF-TEM

Sample preparation: FIB microscopy with low KeV cleaning
Low magnification micrographs @ Sandia

National _
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Ni-3C-Al #1 051202D Track 19, 10g, 20rpm, 600cycles



& Higher Magnification Micrograph ‘

Ni-3C-A1l #1 051202D Track 19, 10g, 20rpm, 600cycles
g, £Urp y s\Zone 1+

Zone 1l
Ultra Nanocrystalline

Zone 2

Grain Growth +
Texture

Zone 3 A

«‘\(

Bulk

/

@ ﬁan_dla |
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Comparison of Subsurfaces: High Friction (Red)
and Low friction (Green)

‘ 20rpm

————— 50 nm

No Zone 1 Zone 1 Present

Annular DF STEM Images @ ool
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}" Concluding Remarks

» Friction-induced deformation is related to crystallography

* Friction-induced deformation can generate nanostructures with unique friction
characteristics

« Grain boundary sliding appears to be a viable deformation mechanism, and
perhaps a route to mitigate metallic friction

« But the critical issues are: (a) friction-induced grain growth, and (b) stability of
ultrananocrystalline zones.
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Raj and Ashby suggest a dependence of the grain-boundary-
accommodated shear on the inverse of the cube of the grain
size. Thus, very small grains might be expected to slide or
rotate, even at room temperature. If we postulate an exponential
dependence of the friction coefficient on the ratio between grain
boundary and dislocation straining, and we bound the
functional form according to the experimentally observed
friction limits, 1.e. 0.2 and 0.6, then we gqualitatively reproduce
the friction behavior observed experimentally.
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The material model for dislocation plasticity is based on a
reduced form of continuum crystal plasticity. The stress tensor,
sigma, IS projected, I.e. resolved, onto each slip system. The
resulting resolved shear stress, tau_rss, relative to the critical
value, tau_crss, determines the rate of dislocation slip,
gamma_dot. This, in turn, is projected onto the slip geometry to
produce the plastic strain rate tensor. An invariant of this tensor,
Integrated in time, is used to calculate the plastic strain increment,
and the total plastic strain is used to update the critical resovled
shear stress for the next cycle.
@ ﬁg?igir?al_
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}‘ Grain Boundary Sliding and Diffusional Creep
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i TWO KEY ENABLING MECHANISMS

1. Suppress length-scale for dislocation-mediated plastic damage modes

Conventional grain dislocation-based Nanocrystalline plaéticity via grain rotation
persistent slip band (PSB) crack initiation ~ Or nanotwinning prevents PSB cracks.

2. Stablize beneficial nanodomains against thermal or mechanical coarsening

(‘fp HprYer ( 1 ) P
= M ] Y -+ — -
dt 20?”)2[' ta (a }.D 4

Fatigue,
Friction, Wear,

(a) Unstable:

Or Temperature

Fatigue,
Friction, Wear,

Or Temperature

(b) Stable:

New Science:
(a) Exploit length-scale transition from dislocations to alternative nanoscale mechanisms (twinning, grain rotation).

(b) A nanoscale grain-growth model with incorporation of Zener pinning and solute drag to predict nanodomain stability.
(c) Grain-size effects predicted by MD-informed grain-boundary interactions in a dislocation dynamics framework

(d) Understand failure mechanisms (crack initiation, frictional accomodation) in dislocation-starved scenarios. @ Sandia
National
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