SAND2011- 3057C

Combining HPC and Virtual Machines to
understand Internet-scale phenomena

Ron Minnich Andrew Sweeney Kevin Pedretti
Don Rudish David Fritz Kristopher Watts
John Floren Keith Vanderveen Casey Deccio
Sandia National Laboratories Sandia National Laboratories Sandia National Laboratories

Abstract—In this paper we describe the application of super- of the Internet is difficult to understand, in part because
computing to a new area: the setup and control of hundreds of collecting the data is so difficult. Typically, those hoping
thousands to millions of virtual machines, in order to facilitate {4 neasure some phenomena attach probes to points on the
research into the behavior of internet-scale phenomena such . .
as peer-to-peer networking, botnets, routing behavior, and ne Internet and try t_o gxtrapolatg behavior from. those _pomts.
network protocols. We are currently able to run 1200 Linux Frequently, organizational, national, and technical lolawies
virtual machines, or 200 Windows 7 virtual machines, on a single sharply limit how many probes can be set up. It is somewhat
HPC node. In each case, we can boot the full complement of ike determining the health of a whale by examining hair

virtual machines in a few minutes. We are overcommitting the follicles, subject to the rule that if one examines the flykes
resources of the system to an unusual degree: the CPU by facto . t al I dt ine the fli
of several hundred, and the memory by a factor of at least 10. ©ON€ IS N0t alSO allowed o examine the TIppers.

An early emphasis of our work is to run botnets in captivity The intrinsic communication behaviors dfotnets make

and at scale, because they are a low-hanging fruit and at the samethem both interesting and difficult to observe. Botnets ara-c
time, they are a good measure of how well the system is working. plex distributed systems consisting of many tens of thodsan
Botnets are complex distributed systems consisting of many tens o jndjvidual instance of malware (called “bots”) which, aan
of thousands of individual instances of malware which, once o .

connected, are resilient, self-healing, controllable from a central connected, are re5|l|§nt, self-healing, cont_rol_lablerfra cen-
place, and capable of autonomous behavior; botnets exhibit tral place, and sometimes capable of sophisticated autonsm
a wide variety of complex behavior and network structures behavior.

[5]. Furthermore, many important characteristics and effects Botnets are an example of well-designed distributed system
of botnets, such as DDOS attack potency and controllability, gofiware, Sophisticated botnets such as Storm, Conficker, a

emerge only at the scale of tens to hundreds of thousands of
nodes [5]. There are very few organizations with supercomputesr Waledac use or have used peer-to-peer (P2P) networks for

with ten thousand sockets, much less one hundred thousand. command and control [8] and [6], which results in an “ovetlay

Virtualization is required to run a botnet at scale. botnet topology unrelated to the underlying Internet anabge
For the past four years, we have been working to run large raphy. The result is that two “nearby” nodes may be far apart

numbers of tightly connected virtual machines on HPC systems. space, and hosted in two completely different subnetis Th

We began with the ability to boot 100 virtual nodes on our s
laptops, to test clustering software; from that point, we have address structure makes advanced botnets resilient tgesuta

scaled up and, in the process, have developed new ways off €ither countries or single organizations.
managing HPC systems at this scale. Traditionally, studies of botnet software and behaviorehav

Using our software, we recently ran an IRC botnet that we relied nearly exclusively on reverse engineering of cagtur
captured in the wild. We ran this botnet on a 520-node cluster, pqt binaries, dynamic analysis of bot binaries using sand-

hosting it on 62,000 Windows 7 virtual machines. ; AT e ;
In this paper. we describe the cluster we have built, the boxes, and observation of botnets “in the wild” using hon

software we have developed, and its recent applications. Our €ynets/honeyfarms [18] or through insertion of an instru-
experience has shown that few HPC software scales to themented false bot controlled by researchers into an extanebo

millions. Problems discovered through our emulated environment [12] and [9]. As noted by studies such as Calvet [3] and
will ‘mirror scaling problems in the HPC world. Hence, the Barford [1], however, the aforementioned techniques canno
|s_|o|;‘tc\évare we develop may well be useful for future large-scale provide the “big picture” of a botnet's operations.

systems. . .

The solution, as recognized by Calvet [3] and Barford [1],
is to build a network testbed capable of holding an entire
operational botnet in a “network sandbox.” Like sandboxaifg

As of this writing, there are no longer any 32-bit IFAndividual bots, a capability to sandbox an entire fundtign
addresses left, and many of those IP addresses front oaganimtnet would provide the opportunity to investigate thenkets
tions, not computers: the real "address space” of the Iaterfbehavior and function, test “what if” scenarios, and rdiiab
is hard to estimate, but it is certainly larger than 32 bits. re-run experiments to generate confidence in the rese&cher

Finding out what is going on even a small piece of theonclusions, all without threatening the safety and rdlisth
Internet is a daunting task. Much of the observed behaviof the Internet.

I. INTRODUCTION

Sec-
tions
refer-

ences
are
incor-

rect.

Both Calvet [3] and Barford [1] demonstrated testbeds creating a simulation of the botnet’s network behavior
capable of holding a few hundred to a few thousand nodasd observing that [6]. While all of these approaches have
of a botnet, and both correctly highlight the importance afcreased our understanding of botnets, what has beemissi
scale in understanding botnet behavior. However, we belieig an experimental platform capable of running a full-sized
that even greater scale is needed, because actual botmetsbcanet in a controlled environment.
consist of hundreds of thousands to millions of nodes [19].
Trying to understand botnets and their interactions witid(a
effects on) networks by extrapolating from studies donevatt Some prior research has sought to achieve scalable tools for
to three orders of magnitude smaller scale risks missingia@ru better understanding botnets and other malware. The Patemk
effects that manifest themselves in the real botnet runoimg project [18] used virtualization, oversubscription of ploal
the real Internet. resources, and late binding of resources to requests tevacai

Further, we can anticipate building useful software systerhigh fidelity honeyfarm capable of scaling to tens of thoasan
based on botnet concepts. Many botnet properties are Hiesiradf emulated hosts. Unlike our project, the goal of Potemkin
for HPC systems and application software. We intend twas not to actually run a botnet in its entirety. Potemkin
investigate the benefits of using the structures of millior@imed to present a large number of vulnerable systems tib elic
scale botnets for monitoring, diagnosing, and controliRC attempts from the Internet to compromise the systems, and
systems. thereby learn about the exploits used by malware, undefstan

In the remainder of this paper, we discuss the creatithe behavior of malware after it has compromised a new host,
of a network testbed capable of running the largest botnetsd capture samples of malware. While some of the techniques
discovered to date on the Internet, and initial experimengsed by Potemkin are similar to our project (lots of VMs,
conducted on this testbed with a real botnet. We have darersubscription of resources), Potemkin mostly focused o
veloped a prototype testbed consisting of a 520-node cjusi@nd facilitated interactions between its VMs and the rest of
capable of hosting 62000 Windows 7 virtual machines @ botnet residing on the Internet, as opposed to our project,
600000 Linux virtual machines, each of which can in turn ho#t which bots on different VMs interact with each other in a
application software and malware. We attacked the problemaosed environment.
achieving a larger scale botnet testbed through sevefatelift Barford et al. [1] demonstrated a botnet testbed with simila
approaches: use of high performance computing hardwageals to our project and designed to scale to thousands sf bot
development of scalable cluster management software, affte system, called the Botnet Evaluation Environment, was
development of custom-built lightweight OS kernels. built to run on Emulab [20] enabled network testbeds such

The rest of this paper is organized as follows. In sectiaxs DETER [2], and contained essential services such as DNS
2, we discuss related work in the context of harnessing larged IRC to provide a closed environment within which a fully
numbers of virtual machines to study botnets. In section ®rmed botnet could function, albeit at the scale of hunsdred
we discuss our research into building and running lightiveigto thousands of bots.

Linux virtual machines, and the management software we haveMore recently, Calvet et al. hosted a captive Waledac botnet
developed which allows us to control the process of bootingith 3000 bot instances [3]. They achieved this using a 98-
and configuring these machines by the millions. In section dpde server farm and roughly, 30 VMs per physical node,
we describe the special-purpose cluster which we built toycawith each VM presumably containing an instance of Windows
out this research, and discuss its similarities and diffees infected with the Waledac bot. Calvet et al. give convincing
with more conventional computing clusters. In section 5, weasons why emulation of a botnet at scale is a necessary
describe the application of the lightweight Linux VM resgar adjunct to understanding and observations of botnets in the
to the task of making a lightweight Windows VM, and wewild.

also discuss reverse engineering of botnets, which is aruci Our project has similar goals to the Barford and Calvet
to getting bot instances to run at scale in virtual machinesmulation testbeds. However, we were able to improve on
In section 6, we discuss how we monitor an experiment dhe scale of experiments reported by both groups by more
our testbed, and the challenges in collecting and analyzitigan an order of magnitude. The improvement was due to
data at the scale and degree of oversubscription of resouroer use of lighter weight virtual machines, substantiabeeg
exhibited by our system. In section 7, we present our findings decrease the memory footprints of Linux and Windows
and finally we conclude and present some limitations of ounstances, use of scalable cluster management softwadle, an
work as well as possible areas for future research in sectioge of larger clusters commonplace in the high performance
8. computing community.

. Scalable Platforms to Host Bots

Il. RELATED WORK IIl. EMULATION ENVIRONMENT

Previous research into understanding the behavior of botne 1) Overview: The emulation environment aims to achieve
has followed the approaches of reverse engineering and stawo goals, scale and fidelity. Scale is essential for undadst
analysis of captured bot code [16], breaking into an extaimy characteristics of botnets that only emerge at realstes
botnet[12], running actual bot code at a small scale[19B]. Host level fidelity, on the other hand, is necessary itheor

to achieve credible simulation results, and simplifies tekt node. Any other programs that need to be run are pushed to
of getting malware to run in the emulation environment witthe node via gproc (described below). The result is a pure
minimal modifications. memory-based node that has no dependencies on external
Oversubscribing resources on a massive scale create varifile system mounts. This design has been tested on a broad
problems. First, we are required to use network hardware rsgale of systems, from booting 100 VMs on our laptops to
designed for such over-subscription. Limitations on cagihes booting millions of VMs on the Cray XT system at Oak Ridge
may result in a breakdown in normal network operation. Oidaguar).
an Ethernet switch, too many MAC addresses will result in a vmatic is responsible for the configuration of network and
CAM table overflow. Second, we are constrained on providirgiartup services, with the end goal of creating a natiocales
a high fidelity emulation of the target environment. As suclunified standalone virtual Internet.
our system virtualizes hardware but uses the genuine saftwa)))
stack from the operating system, such as Linux, Windowd; Computational Configuration
or Cisco 10S, as well as the applications running on it. We A common design for cluster management systems is to use
employ different methods for putting together the diff¢rera configuration file to define address to IP mappings and other
instances in the emulation environment depending on dksiteost parameters for each host. Many of these systems have an
results. For example, we employ Linux as the unaltered hastcruciatingly detailed per-host configuration, with inmeo
OS on each of the physical nodes to maintain a genuinases hundreds of bytes of XMber host On some cluster
protocol stack, but then we may execute windows malwasgstems, a million hosts would require a configuration file on
inside of WINE for the compatibility layer. The MegaWinthe order of 500 Megabytes. This configuration approach is
effort (discussed below) runs VMs containing a true Windowaearly impractical as we move to larger scale systems.
7 operating system to achieve higher host-level fidelity,ddu ~ Put another way, cluster systems follow a “configure, then
some cost in scale. The emulation environment also aimshaot” model. For the millions-of-nodes scale we are targgti
compensating for properties that are intrinsic to a viingsl we have adopted a “boot, then configure” model. As the
environment. An example of a compensating factor would ®des come up, they examine their state, and the host-local
the insertion of artificial latency through traffic controls configuration files are written dynamically. In some caseshs
2) vmatic: We created the vmatic software package to aas for gproc, there are no configuration files at all; the safiw
dress the problem of bootstrapping an Internet-like erariat determines its place in the hierarchy by reading hardware
It consists of a set of modifications to the Sandia oneSkate (such as the Torus coordinates on the Cray) and then
softwaré and some new tools for monitoring and processomputing parameters.

startup. We call this technique computational configuration: the key
We designed vmatic to run on diskless nodes, for severaintrol parameters are computed, rather than written in a
reasons, not all of them technical: file, and are recomputed each time the system is booted. The

« The high end systems — Blue Gene and Cray XT — wgomputation itself is embarrassingly parallel. Many of gze
are targeting for the largest:wq runs consist completely meters are deterministic, i.e. a given node will have #mees
diskless nodes. It is essential that we design our softwa&i@nfiguration from boot to boot. Repeatable configuration is
in a way that will run well on these systems as they allofinportant on higher end systems to enable optimized use of
us to create environments ranging to the multi-milliothe network. On Blue Gene, for example, the 3D coordinate

node scale. of a node in the Torus network is directly linked to that
« It has not proven practical to share a single disk betwe8fde’s position in the Collective Routing Network, and henc
thousands of VMs per node; software trees should replicate the hardware structureuasi m

. if we ever connect the emulated envirnment to the re@$ possible. _ _
internet, we want to be able to erase any downloaded datal he use of the computation tactic for deployment as op-
with a simple power cycle. posed to a centralized approach like DHCP has allowed our
The standard oneSIS diskless mode requires an NFS root fiBC Platforms to emulate much larger systems containing
system. This does not scale very far; in fact oneSIS requifd&Works and routers ranging in the thousands and other full
a hierarchy of NFS servers to support clusters with more thifp/t@ble nodes ranging in the millions. The total time to

256 nodes, and even in that case many write-required files dpgtantiate such a network is a matter of minutes. The vmatic
directories, such akt np, need to be mounted on a local ranfléPloyment on 7,816 Jaguar Cray Compute Nodes achieved its
disk. not on the NFS server. boot of 4.5 million fully routable virtual nodes in 18 mingte

We extended the oneSIS diskless mode to support a purdn order to scale efficiently and ease the deployment on
local RAM root file system. On clusters, the kernel an4a/ious HPC platforms, vmatic splits the build process iato

initial RAM disk (initrd) are downloaded via PXE. The initia Static and a dynamic segment. The static segment is prymaril
RAM disk includes a kernel and initrd for the guest VMs'€SPonsible for defining the physical resources and fixed

In each case, the initrd includes enough programs to boot firesses of the HPC platform which will serve as a basis
for constructing the backbone of the virtual Internet. The

Lhitp://onesis.org dynamic segment uses the backbone definition, a unique key

identifier and a consistent hash shared amongst all nodesrtodulo the number of nodes as its zone slave. For example,
compute non-conflicting network information. In this sclegsm if an HPC system consists of physical nodes 1 through 100,
a physical node encompasses all the necessary informationrfodel will be the Master DNS server for the .nodel zone and
assembling a piece of the virtual Internet independently anode2 will be the Slave for the .nodel zone; nodel00 will

in a non-conflicting manner. be Master for the .node100 zone and nodel will be slave for

Advanced features in the Linux kernel were applied tthe .nodel00 zone. Changes to entries on the Master zone
achieve the excessive oversubscription of physical ressur automatically notify their slaves of the change and update
The first was the tickless kernel feature applied to both thleem accordingly. Physical hosts act as a caching namerserve
host and guest operating systems. This was done to auvertreduce the amount of network traffic on the system as
interrupt timers that would periodically query the systerwell as the load on the authoritative DNS server. The cache
for outstanding tasks to processes. With over one thousdmab an arbitrary time-to-live parameter set to keep theemyst
virtual machines on a single physical host, each VM would Banctioning in a dynamic environment.
constantly active and would be in a constant state of cootent The DNS servers used are BIND9 based and have support
for the physical CPU. With tickless kernel enabled in confor Dynamic DNS enabled, allowing authorized users to
bination with a convention to limit unnecessary applicasio update their DNS entries at will, which in turn allows a prepa
that aggressively contend for CPU cycles, a physical node agation of names throughout the emulated Internet enviroihme
deploy over a thousand virtual machines but still achieesel Users or automated programs also have the ability to registe
to 100% idle time. This is possible since the VM process caub-domains to be registered through delegated subzotets to
remain in a sleep state longer when idle, and will only wake upsers manage a part of a particular zone. The dynamic nature
when atask is scheduled for execution. This tactic is apgplee of vmatic allows for different scenarios or experiments & b
to various malware applications that do not demand a constaimulated once bootstrap of the emulated Internet is cample
state of processing.

Conservation of memory resources is critical, making tacti
such as copy on write and other techniques such as pageMonitoring on the emulated environment continues to be an
level merging schemes essential. The KSM page level dwea of development. As we are running on HPC platforms,
duplication module is discussed elsewhere in this papé&eiOtwe also inherit HPC-related problems associated with geora
strategies, such as a shared read-only block device thatigl analysis of execution results. Particularly, analg$iseal
shared amongst VMs on the same physical machine, héiipe data remains challenging since it is important to avoid
present VMs with a vast amount of storage without traversreating artifacts that would influence the actual resufts o
ing the network stack as would be required for an NFfe experiment. On a multi-million node environment, data
equivalent. The shared block device lives on RAM on theeduction techniques must be exercised so as to reducernketwo
physical machine and VMs mount this device read-only. tfongestion. Even modest amount of data generated from each
the virtualization technology can take advantage of Ex@cunode can result in a self denial-of-service.

In-Place (XIP), programs can be executed directly withbett 1) The Pushmon Monitoring ToolCurrently, our main
need of a memory copy. Regardless, a shared RAM basadnitoring and data collection mechanism has been a tool
storage system gives over a thousand virtual machines a fast developed called Pushmon. Pushmon is a hierarchical
filesystem with which to access data. monitoring program built from Supermon, a cluster monitgri

Accommodating the diversity and changes in virtualizatiosystem developed at Las Alamos [17]. Like Supermon, Push-
technology, vmatic is designed to be impartial to any paldic mon uses S-expressions to describe the data, and is designed
hypervisor implementation. Execution arguments to a alirtufor hierarchy with Pushmon nodes functioning as both client
machine contain little system configuration informatiordanand servers. Unlike Supermon, Pushmon relies on a push
is primarily limited to the kernel location and the memorynodel, with data being periodically pushed from the leaves
allocation. Configuration information is passed directiyoi to the root. Like Supermon, Pushmon uses S-expressions to
Linux through Kernel command line arguments. Exploitinglescribe the data, and is designed for hierarchy with Pushmo
this type of communication allows vmatic to keep the configiodes functioning as both clients and servers. Howevekenli
uration framework virtual machine independent. Supermon, Pushmon relies on a push model, with data being

1) DNS: In the default DNS configuration, vmatic estabperiodically pushed from the leaves to the root. Supermon
lishes a zone of authority for each physical host on the efustused a "pull” model, in which data collection was initiated
making that node the master authoritative server for thiealr by a request from a central collector. On multi-thousandenod
machines within it. The DNS configuration files are built asystems this model had scaled extremely well, far better tha
part of the boot process. Slave DNS servers also exist fer tlixisting "push”-based models such as Ganglia: Supermon can
zone as a mechanism to emulate DNS redundancy throughsample thousands of nodes at several hz., whereas Ganglia, o
the emulated environment. In the real world, DNS backupe same scale is limited to 1/600 hz. Nevertheless, the pull
servers should use separate power and network resourcesnadel did not seem a good fit to one million nodes.
an HPC system this is impractical, there being one power feedPushmon is also self-configuring, with the nodes using a
per machine room, so vmatic uses the next node in the systienv-cost computation to determine where their parent in the

B. Monitoring

tree resides, up to the root. Finally, Pushmon is designetual machine image files, pull data movement requires
not just to group S-expressions together, but also to parfomillions of RPCs, each of which involves a high latency
computations on the S-expressions so as to reduce the datpiest/response cycle. Push on the other hand provides a
load on the network. The computations to be performedore ordered set of network operations, lower file served,loa
can themselves be defined by S-expressions and interpreta] higher network utilization, as the request/respons€ RP
allowing a great deal of flexibility. Data load on the networlransactions of the pull model are replaced by TCP streams.
is also reduced when the VMs’ relationship to their host OS We have done extensive measurement of push vs. pull models
taken into account. When considering the fast communicatioxer the last decade, most recently on our KANE cluster and
path between a VM and its host OS, Pushmon can be usedBlue Gene/P, and for our uses the push model is superior.
as an effective aggregator to collect messages from thd chil The push model can also be cleanly extended to support
VMs before forwarding the messages up the tree. hierarchy, since it uses streams, not Remote Procedurs. Call
. . While the construction of hierarchical file systems is still a

C. Other Approaches to Data Collection and Visualization esearch project, hierarchical push model systems like &N

Despite the care with which we designed Pushmon to beroc implementation have been in use for 10 years.
efficient, any cpu cycles or memory devoted to monitoring Like the LANL bproc software, gproc has support for
and data collection comes at the expense of the emulatigierarchy. The server daemons can be arranged as a tree, so
itself, and this remains a big concern given the extent tbat in a system of nodes, no server daemon is ever pushing
which we are overcommitting resources in our system. Hen@eprogram to more than, eg/n nodes. Unlike bproc, there is
a major focus of our work going forward will be to developo kernel component to gproc, which makes it more portable—
even more scalable techniques for monitoring and analysisfact, it is written entirely in Google’'s Go programming
which require as few resources as possible. Directions we éanguage, and compiles to a single statically-linked lyinar
exploring include conducting aggressive in situ analysid a Unlike bproc, the hierarchy in gproc can be as deep as
reduction of data at each physical node, and “entropy awamgeded; in a system of 32,000 nodes gproc can be arranged
data collection methods that only collect data when it dspawith a 3-level tree, such that no daemon is ever talking to
from what is expected. more than 32 daemons. Here, the tree spawn mechanism used

A completely different mechanism for collecting data wouldéh gproc is similar to that of xcpu. [11] However, instead loé t
be to pause the entire emulation, take snapshots of panticid-hoc command tree spawn technique that xcpu uses, Gproc
VMs, and then resume the emulation. By taking regul&ets up a persistent tree of servers that reduces the trem spa
snapshots, we can gain an understanding of what happensverhead. Finally, Gproc uses intermediate nodes in tieetére
VMs as the experiment progresses. aggregate I/O from remote processes, instead of counting on

Scalable visualization remains a long term goal of ouihe top-level command to aggregate I/O as in BProc. Figure 1
research. We are seeking ways to visually represent beiows an example of such a tree, as used in the KANE cluster,
the functioning of the emulation (how many VMs are uph which commands and files are passed from the master node
how much memory, cpu, and network bandwidth is in use & every twentieth node. These level 1 slaves then pass the
the physical nodes) and the progress of the experiment itsgdmmands and files on to the 19 nodes under each of them
(e.g., nodes joining and leaving the botnet, traffic oriimg and relay the output from their subnodes back to the master.
from the botnet compared to other traffic, dissemination of
commands through the botnet). Gproc

Master

D. Management of Large Numbers

Past projects, bproc, XCPU.

1) gproc: Gproc is a reimplementation and combination of
the best parts of the LANL version of bproc[7] and xcpu[11].
Like bproc, gproc uses a push model, in which the user
specifies a program to be run, and the program is pushigg'{
to a server daemon on a node and set up and started by
that server daemon. In contrast, ssh uses a pull model, in Fig. 1. The KANE cluster's default gproc hierarchy
which a command string is sent to each node and the node
is responsible for pulling the program and all its librartes ~ Users frequently need to push input files along with the
itself, usually via NFS. Push allows more coordinated amntrprogram to a node. Gproc is like xcpu in that it has support
of data movement, whereas pull, even in systems as small gsrapushing these additional files, via a simple commané-lin
few hundred nodes, can lead to contention for the file systeswitch. Even directories can be pushed, by specifying their
as hundreds of nodes all vie to scan the same directories aath in the command line.
read the same data blocks. Network utilization for pull mMede Gproc preserves the file system hierarchy of the files and
is also typically much lower, which increases the time tatstadirectories it transfers. On the remote node, the file systeen
a program and move its data files. Finally, for our 1 gigabyie reconstructed to avoid clashes between file names. Gansid

Slave #26

Slave #1

Slave #1 Slave #19

Slave #19 Slave #1

a user running in some part of their home directory, e.g. w00 | | Tfjnsfe"ihgf1GiBfi'f“5inggﬁf°°and§CP | |
src/ megat ux. If the user rung/ bi n/ dat e, the remote E S—
gproc hierarchy will consist of a directory tree including “*[.
/ hone/ $user/ src/ negat ux, as well as the requisite = 0o 1
[1ib, [usr/liband/bin directories. as00 | .
A common problem in cluster management systems is
getting rid of the files created by users. The problem is evea
more serious when working with malware; it is important§
to clean the node up after a program is done. The simplest @®
solution is to reboot the node each process is run, but that is 1so | 1
not always practical or even desirable. 1000 | , ,
Gproc uses a Linux mount type callgatocess private w0l
mounts Process private mounts, as the name implies, are not -
visible outside the process that performs them —they ang onl "o s 100 10 20 20 0 @0 40 40 500
visible to the process and its children. Transferred files ar umber ofnodes
placed in process-private hierarchy mounted on /tmp/xproc Fig. 2. Transfer times for gproc and SCP
When the process and its children exit, the mount is garbage
collected by the kernel; in other words, the unmount comes

for free. Since the process-private mount is on a ram diskgproc was much more effective than any alternatives. A 1
file system, once these processes exit, all their files despp GiB file was transferred to different numbers of nodes using
Process-private mounts are a very powerful way to ensute taroc and SCP to compare the efficiency of the two methods.
the files used by a process are gone when the process is g@eiFigure 2 shows, gproc scales considerably better than
the clumsy and failure-prone file cleanup of, e.g., PBS, s ngCp for large numbers of nodes, completing approximately
needed. Note that if file persistence is needed, a program @@ntimes faster. We did experiment with hand-building a-tree
copy a file to, e.g., /tmp, for other subsequent processesstfctured copy with ssh/scp, but it was hard to make itloégia
see. and it was still not as fast as gproc. We also experimente wit
Configuration is a complex problem. The LANL bprogsing NFS (for timing purposes) but it never ran to compketio

configuration file would be impractical for systems consisiyFS does not handle this amount of activity very well on
ing of millions of nodes, for example. Gproc uses a forminux.

of computational configuration, and allows several différe
configurations to be contained in one gproc binary. We call IV. KANE TESTBED
these configurationcales Locales are in fact sets of simple
Go functions (in Go terms, an interface, specified as oneln Sandia California’s Network Research Laboratory, we
package per locale). These interfaces return informatimutn have created a cluster known as KANE which stands for
a configuration. Theane locale, for instance, defines a treéhe Knowledge Acquisition Network Emulation system. The
hierarchy, with 1 root node, 26 nodes on the next level, asyistem is unique from other HPC platforms in that it was
20 nodes for each of the 26 nodes on the level below that.purchased using true off the shelf commodity PC’s for less
For most locales, a node’s identity and all other informraticthan $500,000 (including auxiliary hardware) and contains
can be computed from its IP address or some other unigue exceptional message passing interconnect. The nodes are
property of the node. There is no configuration file to readomparable to home desktop PC’s that are connected to the
This technique is particularly useful on systems such ag Blinternet using a single Ethernet connection. Using thenswét
Gene or the Cray XT series, where a node’s location in the 3B have developed, each KANE node is capable of booting
torus is easily determined, and from there all other infdioma 1024 virtual machines providing us with a low cost cluster
can be computed. of over half a million nodes. KANE serves as our dedicated
A node can compute which level of the tree it must inhabiestbed environment which allows us to prototype expertsen
and which node is directly above it in the tree. The use of prprior to running on bigger systems like Oak Ridge National
grammatic configurations allows interesting flexibilitgtmer Laboratory’s Jaguar Super Computer, where our time on the
than trying to design a configuration file format to encompasygstem is more scarce. The KANE network also contains
all possible configurations, configuration informationristead a heterogeneous environment comprised of Linux, Windows
expressed through functions. and 900+ ARM Cortex-A9 devices running Linux/Android
Gproc has proven to be fast and efficient. For exampleperating systems to represent the increased role of mobile
on a 520-node cluster with only Gigabit Ethernet, we amdevices on the Internet.
able to move a 1 Gigabyte DVD to all 520 nodes at an KANE differs from other network testbeds in that it is
effective bandwidth of 16 Gbits/second, thanks to the gprogrimarily focused on scaling, leveraging virtualizaticech-
tree structure. We are thus able to get 16 Gigabit etherpets fology. Unlike the DETER testbed, which is distributed asro
the price of one. a geographic region, the KANE testbed is isolated from the

3000 b

2500 B

outside Internet and is entirely contained within the Netwvo A. Cutting down Windows

Research Laboratory in California. As mentioned above, Megatux is targeted to cluster nodes
that are memory-only. Memory-only operation improves imag
))) _ file access and greatly simplifies the problem of wiping the
The KANE cluster is composed of 13 shelving units, whichachine, but complicates the problem of managing Windows
we call racks, of 5 shelves each. Each rack contains ﬂﬂages, because everything is in RAM. Windows can be
compute nodes, a gigabit Ethernet switch, and a PDU. Theggisidered to have two footprints: static and dynamic. The
racks act as the basic unit of the KANE cluster and agatic image is the disk image which Windows boots and
interconnected using a central Enterasys switch. They &{fich is held in the root file system. The dynamic image is
managed using a front-end node called “cesspool.” Figureyss memory Windows grows to occupy as it runs.
illustrates this layout. _ A bootable Windows image is for a virtual machine is
Cesspool provides a number of services for the clustepntained in a file and in standard usage configured for only
First and foremost, it acts as a barrier between the pothntiagne machine: Windows image files contain a lot of per-
harmful programs running on KANE and the outside networkyachine information. Image files can be reduced to 1 Gbyte,
Nodes are powered on and off using “powerman” from LLNLyt further reduction is very difficult.
The nodes boot using DHCP and tftp to load a minimal |t js not possible to boot large numbers of Windows VM
memory-resident Linux system. Cesspool also serves as Q“LPests if they each require a 1 Gbyte image file. Megawin
“master” node when running gproc. allows many guests to share a common Windows image.
KANE's interconnect is simple gigabit Ethernet. Each rackyther, for supporting quick boot, MegaWin can boot from a
contains a 48-port switch, which is connected to the 40 nodeggy,en” image. To create a frozen image, MegaWin support
the PDU's Ethernet interface, and the central Enterasy&Bwi ggftware takes a snapshot of an almost-booted Windows and
While individual compute nodes only have a single gigabifiores that snapshot. Per-instance information is gesbrat
interface, the head node (cesspool) is equipped with 4 @anrynce the snapshot is unfrozen, so that each guest gets its
bonded interfaces to provide greater throughput. own personality, including network configuration. MegaWin
can hence boot up to 200 Windows instances on a machine
Head node with only 12 Gybtes of memory.
Some issues affect both the static and dynamic footprint.
To minimize these factors, we use the Windows Embedded
version; further, we replaced the standard huge desktdp wit
ger)ttrgl __ Rack13 the bblean desktdp The result is a Windows image that
| T consumes only one Gbyte of disk for the static footprint, and
| :X: GigE | :X: GigE | 512 I'\/Ibytes.for the dynamic footprint._ Thanks to the use of
switch . switch™ freezing an image, we can boot each image in a few seconds.
| Clearly, one can not boot 100 512Mbyte images on a
system with only 12 Gbytes of memory. To get further VMs
| booted we exploit new capabilites of Linux virtualizatian,
node 481 node 520 particular a new goftvyarg system call_ed KSM[Zl]. KSM, as
the authors describe it, “is code running in the Linux kernel
scanning the memory of all the virtual machines running on
a single host, looking for duplication and consolidatir®{].
KSM accomplishes this by periodically scanning all pages th
V. MEGAWIN are eligible.for deduplication and mergipg identif:al ommi.
o _ ~ copy-on-write pages. The use of KSM is especially effective
Megawin is a platform for running large numbers of Winyith our workload, as there exists a large amount of mergable
dows images on Megatux. Windows does not permit the higfi5 across hundreds of identical, with the exception ofesom
degree of controllability that comes with an open sourGgntime activity, virtual machines.
operating system such as Linux, and we have found that arne yse of KSM with a dataset approaching 100GB intro-
ten Mbyte OS image is simply not possible. Again, due g ces some key problems. KSM cannot scan and merge pages
its closed nature, it is not possible to modify Windows 10 IUf,ster than we can allocate them through launching newatirtu
as a paravirtual guest: we must use full virtualization, alhi o chines. To facilitate this, we modified the KSM interface
imposes costs in both memory usage and performance. Werorce the KSM thread to only scan memory belonging to
currently use KVM[10] to support Windows guests. _ processes that we indicate. This allows us to focus KSM on
Hence, in Megawin, we combine two strategies: cuttinge\yly create virtual machines during launch, or on key wirtu

down the size of the Windows image, as much as possiblggchines that we know are better matches for deduplication
and using Linux and KVM capabilities to the maximum extent

possible. 2http://bb4win.sourceforge.net/bblean/

A. Hardware

Fig. 3. This figure illustrates the basic layout of the KANEster.

during runtime. KSM can operate on any number of procesga®vent it from running or expose the platform’s abnornegit
that we inform it to at any point in time. The result is the abilto the sample. It is common for malware to detect that it is
ity to more intelligently manage significantly over-budegt executing in a virtual machine and take responsive action by
memory. Figure iX¢, illustrates launching many Windows &ither altering its behavior or refusing to run at all [4].

virtual machines on a host with KSM. In the default KSM The Storm worm is an example of a piece of malware
usage, we launch virtual machines until we run out of physictihat attempts to identify when it is executing on a platform
memory, and block until KSM merges enough memory ttypically used for analysis such as a virtual machine [4].
continue launching. With our modification, we can force KSMVhile our specific platform uses LGuest and KVM to host the
to focus on newly launched virtual machines, which saves tinguests, malware could just as easily detect these platfants
and maintains enough free memory to avoid out of memoajter their behavior. The Spybot malware contains a coedipt
events when running virtual machines become more act\RE header as a form of protection [14]. The PE header
This result is more pronounced as the amount of volatile slightly modified in a way that technically violates the
(rapidly changing) pages increases. In practice, we are aBIE32 specification, however the Windows XP loader is lenient
to launch ten virtual machines at a time, focusing KSM on adinough that it will properly load and execute the malware.
ten. When KSM completes a full scan, we launch another tetowever, WINE and other tools that adhere to the PE32

virtual machines. specification will reject the sample. In this case, removing
the protection mechanisms from the malware allowed us to
KSM Naive vs PID Focus - 100 VMs @ 512mb each execute the sample in our testbed environment. While time

10000 consuming and difficult, the effort allowed us to properly

execute the Spybot sample and subsequently allowed foy stud
at scale in our HPC environment.

Reverse engineering and manually modifying each piece of
malware prior to study is not a scalable solution. Our ultena
goal is to create a platform that is robust enough that malwar
will run without modification on our HPC platform without
the need to individually modify each sample. This will allow
us to focus on on studying botnets at scale, and processing
larger quantities of samples that are captured from the. wild

— KSM Default
— KSM Focus

8000

6000

40000

Free Memory (MB)

2000} C. Performance

Need numbers from Andrew.

o 200 200 600 800 1000 D. High Fidelity
Time (s)
mes VI. CONCLUSIONS ANDFUTURE WORK

In this paper we presented an approach to achieving realisti
scale in emulation of botnets in a laboratory setting. Our
approach builds on lightweight virtualization technoloagyd
B. Reverse Engineering and Preparation of Malware Samplgga|able cluster management tools. While our cluster manage

Traditionally, studying malware has required significannent tools owe their heritage to tools familiar in the HPC
forensics and reverse engineering analysis, dissectinfy awvorld, we have had to make significant modifications to boot,
probing the sample from multiple avenues [13]. These tecbenfigure, and manage the very large numbers of VMs with
niques are simply not feasible when looking at botnets amchich we are working.
malware at scale in a traditional HPC environment. There Our research is directed at understanding Internet-scale
are numerous reverse engineering challenges that mustpbenomena. We are starting with botnets because botnets
overcome before deploying a live malware sample in an HR@plement protocols and capabilities we are interestednin u
setting. Current malware uses numerous custom protectidgrstanding. We have begun to perform experiments with real
mechanisms that are often tied to a specific operating systératnets, and in our first such experiment we ran an instance
making it difficult to provide an overarching automated reof the Virut botnet with 62,000 members. The individual bots
versing solution. Malware takes this a step further by birepk ran on a Windows 7 image which we were able to make
specifications, exploiting implementation errors in loagdand significantly smaller than is typical. We determined tha th
using various anti-tamper techniques. Since malware is Isots, once booted, registered with the IRC command and
closely coupled to the system for which it was designedngaki control channel, and we could issue commands to the bots.
a random malware sample and attempting to run it in an HPCThe tools and techniques which we reported here were
environment may fail. When attempting to execute malware aeveloped on a specially built cluster in our laboratorywHo
a platform for which it was not specifically designed, antdysever, we have designed these tools and techniques with the
must often remove the protective features of an executhbte tvision to run them on the largest supercomputers available,

Fig. 4. KSM: Free memory vs. Time

and preliminary experiments we have conducted on the Jaguar T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph, K. Skiowe
supercomputer at Oak Ridge National Laboratory indicadé th

our approaches will work on such platforms. Therefore, vee se
no reason why emulations of botnets with millions of nodes

should not be possible using our approach.

Significant challenges remain to be addressed to make emu-
lation with millions of nodes a viable adjunct to other resba

(3]

methods in studying Internet-scale phenomena. First among
these are developing scalable methods for visualizatiah ary,
analysis of data. While we have a tool, Pushmon (described
above), for monitoring, we are still limited in the amount of
information we can collect from each VM without contending

for resources with the emulation experiment.

(5]

Simulation and Emulation of the Internet is a valuable tool
for gaining insight into its functionality and the impact of g
proposed changes. The benefit of performing emulations as
opposed to simulations is the level of fidelity an emulated
environment can provide. Real bug for bug compatible OS
instances are used. Components may be real or virtualized bu

either method should provide the same functional capegsilit

(7]

The virtual Cisco routers run an actual Cisco I0S software

image which routes real network traffic across virtual maeki

or real hardware.

(8]

Performing measurement or experimentation directly on
Internet is an indispensable tool for understanding betnet
and other malware, but it does have drawbacks. We can only
take measurements on the present Internet with its existirg

protocols and architectures, not possible alternativepef-

mentation is also valuable, but the nature of experiments we
can conduct on the existing Internet is constrained by the
necessity not to interfere with the Internet’s function or t[10]
cause harm to other Internet users. Experimentation oneamal

physical networks intended to replicate Internet fundidn

(11]

has been a valuable tool, but the scale of the largest experi-

mental networks is at least five orders of magnitude small
than that of the Internet, and many phenomena of interest

er
(32l

the real Internet do not occur at the scale of the much smaller
experimental networks. Furthermore, experimental neksior
using real networking equipment and real hosts are quilm/cosm]

to build compared with simulation.

(14]

Emulation enables a highly repeatable, flexible test labB®]
ratory for conducting experiments. When an experiment is
executed, it could also be checkpointed during criticaihéve [16]
allowing staff to analyze the global state of the network.

Events such as the 2007 botnet attack which took down map
important network services in Estonia would be interesting

re-enact on the internet emulator. During the 2 week attack
companies resorted to blocking all international traffic |F1

order to keep their servers from crashing, essentiallyingutt

themselves off from the rest of the world.

REFERENCES

[1] Paul Barford and Mike Blodgett. Toward botnet mesocosms
Proceedings of the first conference on First Workshop on ldpicE in

(29]

Understanding Botnetpages 6—6, Berkeley, CA, USA, 2007. USENIX[20]

Association.

R. Ostrenga, and S. Schwab. Experience with deter: a tefibedcurity
research. Inmestbeds and Research Infrastructures for the Development
of Networks and Communities, 2006. TRIDENTCOM 2006. 2ret-Int
national Conference qrpages 10 pp. —388, 2006.

Joan Calvet, Carlton R. Davis, Jo$1. Fernandez, Jean-Yves Marion,
Pier-Luc St-Onge, Wadie Guizani, Pierre-Marc Bureau, amil So-
mayaji. The case for in-the-lab botnet experimentation: targaand
taking down a 3000-node botnet. Rroceedings of the 26th Annual
Computer Security Applications Conferen@éCSAC '10, pages 141—
150, New York, NY, USA, 2010. ACM.

Xu Chen, J. Andersen, Z.M. Mao, M. Bailey, and J. Nazafiowards
an understanding of anti-virtualization and anti-debnggbehavior in
modern malware. IiDependable Systems and Networks With FTCS and
DCC, 2008. DSN 2008. IEEE International Conference pages 177
—-186, june 2008.

David Dagon, Guofei Gu, Christopher P. Lee, and Wenke lfetaxon-
omy of botnet structuresComputer Security Applications Conference,
Annual 0:325-339, 2007.

Carlton Davis, Stephen Neville, Jos Fernandez, JeareN&@bert, and
John McHugh. Structured peer-to-peer overlay networksalldhotnets
command and control infrastructures? In Sushil Jajodia awmierJa
Lopez, editors,Computer Security - ESORICS 200&Ilume 5283 of
Lecture Notes in Computer Sciengeges 461-480. Springer Berlin /
Heidelberg, 2008. 10.1007/978-3-540-883136.

Erik A. Hendriks and Ronald Minnich. How to build a fastdareliable
1024 node cluster with only one diskhe Journal of Supercomputing
36(2):171-181, 2006.

Brent ByungHoon Kang, Eric Chan-Tin, Christopher P. Ldames
Tyra, Hun Jeong Kang, Chris Nunnery, Zachariah Wadler, Giaglair,
Nicholas Hopper, David Dagon, and Yongdae Kim. Towards cotaple
node enumeration in a peer-to-peer botnet.Plnceedings of the 4th
International Symposium on Information, Computer, and @omica-
tions Security ASIACCS '09, pages 23-34, New York, NY, USA, 2009.
ACM.

Chris Kanich, Christian Kreibich, Kirill Levchenko, Bndon Enright,
Geoffrey M. Voelker, Vern Paxson, and Stefan Savage. Spaitslan
empirical analysis of spam marketing conversionPhceedings of the
15th ACM conference on Computer and communications sgc@@S
‘08, pages 3-14, New York, NY, USA, 2008. ACM.

A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. km: the
Linux virtual machine monitor. IfProceedings of the Linux Symposium
volume 1, pages 225-230, 2007.

Ronald Minnich and Andrey Mirtchovski. Xcpu: a new, 8psed,
process management system for clusters and gridSLWSTER IEEE,
2006.

Chris Nunnery, Greg Sinclair, and Brent ByungHoon Katang. Tum-
bling down the rabbit hole: Exploring the idiosyncrasiesbotmaster
systems in a multi-tier botnet infrastructure. Rroceedings of the
4th Usenix Workshop on Large-Scale Exploits and Emergergai$
Berkeley, CA, USA, 2011. USENIX Association.

PLACEHOLDER, editor.PLACEHOLDER PLACEHOLDER.
PLACEHOLDER, editor.PLACEHOLDER PLACEHOLDER.

Phillip Porras, Hassen Saidi, and Vinod Yegneswaran. mAlti-
perspective analysis of the storm (peacomm) worm. Technigarte
SRI International, October 2007.

Phillip Porras, Hassen Sadi, and Vinod Yegneswaran. ofayf into
confickers logic and rendezvous points. Iln USENIX Workshop on
Large-Scale Exploits and Emergent Threa&2609.

y] M.J. Sottile and R.G. Minnich. Supermon: a high-speadstelr mon-

itoring system. InCluster Computing, 2002. Proceedings. 2002 IEEE
International Conference grpages 39 — 46, 2002.

Michael Vrable, Justin Ma, Jay Chen, David Moore, Eriindekieft,
Alex C. Snoeren, Geoffrey M. Voelker, and Stefan SavagelaBitiy,
fidelity, and containment in the potemkin virtual honeyfarmPhoceed-
ings of the twentieth ACM symposium on Operating systemsiples
SOSP '05, pages 148-162, New York, NY, USA, 2005. ACM.
Rhiannon Weaver. A probabilistic population study bé tconficker-

c botnet. In Arvind Krishnamurthy and Bernhard Plattner,t@di
Passive and Active Measuremenblume 6032 ofLecture Notes in
Computer Sciencgages 181-190. Springer Berlin / Heidelberg, 2010.
10.1007/978-3-642-12334-49.

Brian White, Jay Lepreau, Leigh Stoller, Robert RicchaShi Gu-
ruprasad, Mac Newbold, Mike Hibler, Chad Barb, and Abhijimjlekar.

An integrated experimental environment for distributed eyst and
networks. SIGOPS Oper. Syst. Re86:255-270, December 2002.

[21] Chris Wright. Ksm: A mechanism for improving virtualizatiaensity
with kvm. In linuxcon2009 2009.

