
Combining HPC and Virtual Machines to
understand Internet-scale phenomena

Ron Minnich
Don Rudish
John Floren

Sandia National Laboratories

Andrew Sweeney
David Fritz

Keith Vanderveen
Sandia National Laboratories

Kevin Pedretti
Kristopher Watts

Casey Deccio
Sandia National Laboratories

Abstract—In this paper we describe the application of super-
computing to a new area: the setup and control of hundreds of
thousands to millions of virtual machines, in order to facilitate
research into the behavior of internet-scale phenomena such
as peer-to-peer networking, botnets, routing behavior, and new
network protocols. We are currently able to run 1200 Linux
virtual machines, or 200 Windows 7 virtual machines, on a single
HPC node. In each case, we can boot the full complement of
virtual machines in a few minutes. We are overcommitting the
resources of the system to an unusual degree: the CPU by factors
of several hundred, and the memory by a factor of at least 10.

An early emphasis of our work is to run botnets in captivity
and at scale, because they are a low-hanging fruit and at the same
time, they are a good measure of how well the system is working.
Botnets are complex distributed systems consisting of many tens
of thousands of individual instances of malware which, once
connected, are resilient, self-healing, controllable from a central
place, and capable of autonomous behavior; botnets exhibit
a wide variety of complex behavior and network structures
[5]. Furthermore, many important characteristics and effects
of botnets, such as DDOS attack potency and controllability,
emerge only at the scale of tens to hundreds of thousands of
nodes [5]. There are very few organizations with supercomputers
with ten thousand sockets, much less one hundred thousand.
Virtualization is required to run a botnet at scale.

For the past four years, we have been working to run large
numbers of tightly connected virtual machines on HPC systems.
We began with the ability to boot 100 virtual nodes on our
laptops, to test clustering software; from that point, we have
scaled up and, in the process, have developed new ways of
managing HPC systems at this scale.

Using our software, we recently ran an IRC botnet that we
captured in the wild. We ran this botnet on a 520-node cluster,
hosting it on 62,000 Windows 7 virtual machines.

In this paper, we describe the cluster we have built, the
software we have developed, and its recent applications. Our
experience has shown that few HPC software scales to the
millions. Problems discovered through our emulated environment
will mirror scaling problems in the HPC world. Hence, the
software we develop may well be useful for future large-scale
HPC systems.

I. I NTRODUCTION

As of this writing, there are no longer any 32-bit IP
addresses left, and many of those IP addresses front organiza-
tions, not computers: the real ”address space” of the Internet
is hard to estimate, but it is certainly larger than 32 bits.

Finding out what is going on even a small piece of the
Internet is a daunting task. Much of the observed behavior

of the Internet is difficult to understand, in part because
collecting the data is so difficult. Typically, those hoping
to measure some phenomena attach probes to points on the
Internet and try to extrapolate behavior from those points.
Frequently, organizational, national, and technical boundaries
sharply limit how many probes can be set up. It is somewhat
like determining the health of a whale by examining hair
follicles, subject to the rule that if one examines the flukes,
one is not also allowed to examine the flippers.

The intrinsic communication behaviors ofbotnets make
them both interesting and difficult to observe. Botnets are com-
plex distributed systems consisting of many tens of thousands
of individual instance of malware (called “bots”) which, once
connected, are resilient, self-healing, controllable from a cen-
tral place, and sometimes capable of sophisticated autonomous
behavior.

Botnets are an example of well-designed distributed systems
software. Sophisticated botnets such as Storm, Conficker, and
Waledac use or have used peer-to-peer (P2P) networks for
command and control [8] and [6], which results in an “overlay”
botnet topology unrelated to the underlying Internet and geog-
raphy. The result is that two “nearby” nodes may be far apart
in space, and hosted in two completely different subnets. This
address structure makes advanced botnets resilient to outages
of either countries or single organizations.

Traditionally, studies of botnet software and behavior have
relied nearly exclusively on reverse engineering of captured
bot binaries, dynamic analysis of bot binaries using sand-
boxes, and observation of botnets “in the wild” using hon-
eynets/honeyfarms [18] or through insertion of an instru-
mented false bot controlled by researchers into an extant botnet
[12] and [9]. As noted by studies such as Calvet [3] and
Barford [1], however, the aforementioned techniques cannot
provide the “big picture” of a botnet’s operations.

The solution, as recognized by Calvet [3] and Barford [1],
is to build a network testbed capable of holding an entire
operational botnet in a “network sandbox.” Like sandboxingof
individual bots, a capability to sandbox an entire functioning
botnet would provide the opportunity to investigate the botnet’s
behavior and function, test “what if” scenarios, and reliably
re-run experiments to generate confidence in the researcher’s
conclusions, all without threatening the safety and reliability
of the Internet.

SAND2011-3057C

Both Calvet [3] and Barford [1] demonstrated testbeds
capable of holding a few hundred to a few thousand nodes
of a botnet, and both correctly highlight the importance of
scale in understanding botnet behavior. However, we believe
that even greater scale is needed, because actual botnets can
consist of hundreds of thousands to millions of nodes [19].
Trying to understand botnets and their interactions with (and
effects on) networks by extrapolating from studies done at two
to three orders of magnitude smaller scale risks missing crucial
effects that manifest themselves in the real botnet runningon
the real Internet.

Further, we can anticipate building useful software systems
based on botnet concepts. Many botnet properties are desirable
for HPC systems and application software. We intend to
investigate the benefits of using the structures of million-
scale botnets for monitoring, diagnosing, and controllingHPC
systems.

In the remainder of this paper, we discuss the creation
of a network testbed capable of running the largest botnets
discovered to date on the Internet, and initial experiments
conducted on this testbed with a real botnet. We have de-
veloped a prototype testbed consisting of a 520-node cluster,
capable of hosting 62000 Windows 7 virtual machines or
600000 Linux virtual machines, each of which can in turn host
application software and malware. We attacked the problem of
achieving a larger scale botnet testbed through several different
approaches: use of high performance computing hardware,
development of scalable cluster management software, and
development of custom-built lightweight OS kernels.

The rest of this paper is organized as follows. In sectionSec-

tions

refer-

ences

are

incor-

rect.

2, we discuss related work in the context of harnessing large
numbers of virtual machines to study botnets. In section 3,
we discuss our research into building and running lightweight
Linux virtual machines, and the management software we have
developed which allows us to control the process of booting
and configuring these machines by the millions. In section 4,
we describe the special-purpose cluster which we built to carry
out this research, and discuss its similarities and differences
with more conventional computing clusters. In section 5, we
describe the application of the lightweight Linux VM research
to the task of making a lightweight Windows VM, and we
also discuss reverse engineering of botnets, which is crucial
to getting bot instances to run at scale in virtual machines.
In section 6, we discuss how we monitor an experiment on
our testbed, and the challenges in collecting and analyzing
data at the scale and degree of oversubscription of resources
exhibited by our system. In section 7, we present our findings,
and finally we conclude and present some limitations of our
work as well as possible areas for future research in section
8.

II. RELATED WORK

Previous research into understanding the behavior of botnets
has followed the approaches of reverse engineering and static
analysis of captured bot code [16], breaking into an extant
botnet[12], running actual bot code at a small scale[15],

or creating a simulation of the botnet’s network behavior
and observing that [6]. While all of these approaches have
increased our understanding of botnets, what has been missing
is an experimental platform capable of running a full-sized
botnet in a controlled environment.

A. Scalable Platforms to Host Bots

Some prior research has sought to achieve scalable tools for
better understanding botnets and other malware. The Potemkin
project [18] used virtualization, oversubscription of physical
resources, and late binding of resources to requests to achieve a
high fidelity honeyfarm capable of scaling to tens of thousands
of emulated hosts. Unlike our project, the goal of Potemkin
was not to actually run a botnet in its entirety. Potemkin
aimed to present a large number of vulnerable systems to elicit
attempts from the Internet to compromise the systems, and
thereby learn about the exploits used by malware, understand
the behavior of malware after it has compromised a new host,
and capture samples of malware. While some of the techniques
used by Potemkin are similar to our project (lots of VMs,
oversubscription of resources), Potemkin mostly focused on
and facilitated interactions between its VMs and the rest of
a botnet residing on the Internet, as opposed to our project,
in which bots on different VMs interact with each other in a
closed environment.

Barford et al. [1] demonstrated a botnet testbed with similar
goals to our project and designed to scale to thousands of bots.
The system, called the Botnet Evaluation Environment, was
built to run on Emulab [20] enabled network testbeds such
as DETER [2], and contained essential services such as DNS
and IRC to provide a closed environment within which a fully
formed botnet could function, albeit at the scale of hundreds
to thousands of bots.

More recently, Calvet et al. hosted a captive Waledac botnet
with 3000 bot instances [3]. They achieved this using a 98-
node server farm and roughly, 30 VMs per physical node,
with each VM presumably containing an instance of Windows
infected with the Waledac bot. Calvet et al. give convincing
reasons why emulation of a botnet at scale is a necessary
adjunct to understanding and observations of botnets in the
wild.

Our project has similar goals to the Barford and Calvet
emulation testbeds. However, we were able to improve on
the scale of experiments reported by both groups by more
than an order of magnitude. The improvement was due to
our use of lighter weight virtual machines, substantial efforts
to decrease the memory footprints of Linux and Windows
instances, use of scalable cluster management software, and
use of larger clusters commonplace in the high performance
computing community.

III. E MULATION ENVIRONMENT

1) Overview: The emulation environment aims to achieve
two goals, scale and fidelity. Scale is essential for understand-
ing characteristics of botnets that only emerge at realistic sizes
[3]. Host level fidelity, on the other hand, is necessary in order

to achieve credible simulation results, and simplifies the task
of getting malware to run in the emulation environment with
minimal modifications.

Oversubscribing resources on a massive scale create various
problems. First, we are required to use network hardware not
designed for such over-subscription. Limitations on cachesizes
may result in a breakdown in normal network operation. On
an Ethernet switch, too many MAC addresses will result in a
CAM table overflow. Second, we are constrained on providing
a high fidelity emulation of the target environment. As such,
our system virtualizes hardware but uses the genuine software
stack from the operating system, such as Linux, Windows,
or Cisco IOS, as well as the applications running on it. We
employ different methods for putting together the different
instances in the emulation environment depending on desired
results. For example, we employ Linux as the unaltered host
OS on each of the physical nodes to maintain a genuine
protocol stack, but then we may execute windows malware
inside of WINE for the compatibility layer. The MegaWin
effort (discussed below) runs VMs containing a true Windows
7 operating system to achieve higher host-level fidelity, but at
some cost in scale. The emulation environment also aims at
compensating for properties that are intrinsic to a virtualized
environment. An example of a compensating factor would be
the insertion of artificial latency through traffic controls.

2) vmatic: We created the vmatic software package to ad-
dress the problem of bootstrapping an Internet-like emulation.
It consists of a set of modifications to the Sandia oneSIS
software1 and some new tools for monitoring and process
startup.

We designed vmatic to run on diskless nodes, for several
reasons, not all of them technical:

• The high end systems – Blue Gene and Cray XT – we
are targeting for the largest:wq runs consist completely of
diskless nodes. It is essential that we design our software
in a way that will run well on these systems as they allow
us to create environments ranging to the multi-million
node scale.

• It has not proven practical to share a single disk between
thousands of VMs per node;

• if we ever connect the emulated envirnment to the real
internet, we want to be able to erase any downloaded data
with a simple power cycle.

The standard oneSIS diskless mode requires an NFS root file
system. This does not scale very far; in fact oneSIS requires
a hierarchy of NFS servers to support clusters with more than
256 nodes, and even in that case many write-required files and
directories, such as/tmp, need to be mounted on a local ram
disk, not on the NFS server.

We extended the oneSIS diskless mode to support a pure
local RAM root file system. On clusters, the kernel and
initial RAM disk (initrd) are downloaded via PXE. The initial
RAM disk includes a kernel and initrd for the guest VMs.
In each case, the initrd includes enough programs to boot the

1http://onesis.org

node. Any other programs that need to be run are pushed to
the node via gproc (described below). The result is a pure
memory-based node that has no dependencies on external
file system mounts. This design has been tested on a broad
scale of systems, from booting 100 VMs on our laptops to
booting millions of VMs on the Cray XT system at Oak Ridge
(Jaguar).

vmatic is responsible for the configuration of network and
startup services, with the end goal of creating a national-scale,
unified standalone virtual Internet.

A. Computational Configuration

A common design for cluster management systems is to use
a configuration file to define address to IP mappings and other
host parameters for each host. Many of these systems have an
excruciatingly detailed per-host configuration, with in some
cases hundreds of bytes of XMLper host. On some cluster
systems, a million hosts would require a configuration file on
the order of 500 Megabytes. This configuration approach is
clearly impractical as we move to larger scale systems.

Put another way, cluster systems follow a “configure, then
boot” model. For the millions-of-nodes scale we are targeting,
we have adopted a “boot, then configure” model. As the
nodes come up, they examine their state, and the host-local
configuration files are written dynamically. In some cases, such
as for gproc, there are no configuration files at all; the software
determines its place in the hierarchy by reading hardware
state (such as the Torus coordinates on the Cray) and then
computing parameters.

We call this technique computational configuration: the key
control parameters are computed, rather than written in a
file, and are recomputed each time the system is booted. The
computation itself is embarrassingly parallel. Many of thepa-
rameters are deterministic, i.e. a given node will have the same
configuration from boot to boot. Repeatable configuration is
important on higher end systems to enable optimized use of
the network. On Blue Gene, for example, the 3D coordinate
of a node in the Torus network is directly linked to that
node’s position in the Collective Routing Network, and hence
software trees should replicate the hardware structure as much
as possible.

The use of the computation tactic for deployment as op-
posed to a centralized approach like DHCP has allowed our
HPC platforms to emulate much larger systems containing
networks and routers ranging in the thousands and other fully
routable nodes ranging in the millions. The total time to
instantiate such a network is a matter of minutes. The vmatic
deployment on 7,816 Jaguar Cray Compute Nodes achieved its
boot of 4.5 million fully routable virtual nodes in 18 minutes.

In order to scale efficiently and ease the deployment on
various HPC platforms, vmatic splits the build process intoa
static and a dynamic segment. The static segment is primarily
responsible for defining the physical resources and fixed
addresses of the HPC platform which will serve as a basis
for constructing the backbone of the virtual Internet. The
dynamic segment uses the backbone definition, a unique key

identifier and a consistent hash shared amongst all nodes to
compute non-conflicting network information. In this scheme,
a physical node encompasses all the necessary information for
assembling a piece of the virtual Internet independently and
in a non-conflicting manner.

Advanced features in the Linux kernel were applied to
achieve the excessive oversubscription of physical resources.
The first was the tickless kernel feature applied to both the
host and guest operating systems. This was done to avert
interrupt timers that would periodically query the system
for outstanding tasks to processes. With over one thousand
virtual machines on a single physical host, each VM would be
constantly active and would be in a constant state of contention
for the physical CPU. With tickless kernel enabled in com-
bination with a convention to limit unnecessary applications
that aggressively contend for CPU cycles, a physical node can
deploy over a thousand virtual machines but still achieve close
to 100% idle time. This is possible since the VM process can
remain in a sleep state longer when idle, and will only wake up
when a task is scheduled for execution. This tactic is applicable
to various malware applications that do not demand a constant
state of processing.

Conservation of memory resources is critical, making tactics
such as copy on write and other techniques such as page-
level merging schemes essential. The KSM page level de-
duplication module is discussed elsewhere in this paper. Other
strategies, such as a shared read-only block device that is
shared amongst VMs on the same physical machine, help
present VMs with a vast amount of storage without travers-
ing the network stack as would be required for an NFS
equivalent. The shared block device lives on RAM on the
physical machine and VMs mount this device read-only. If
the virtualization technology can take advantage of Execute-
In-Place (XIP), programs can be executed directly without the
need of a memory copy. Regardless, a shared RAM based
storage system gives over a thousand virtual machines a fast
filesystem with which to access data.

Accommodating the diversity and changes in virtualization
technology, vmatic is designed to be impartial to any particular
hypervisor implementation. Execution arguments to a virtual
machine contain little system configuration information and
is primarily limited to the kernel location and the memory
allocation. Configuration information is passed directly into
Linux through Kernel command line arguments. Exploiting
this type of communication allows vmatic to keep the config-
uration framework virtual machine independent.

1) DNS: In the default DNS configuration, vmatic estab-
lishes a zone of authority for each physical host on the cluster,
making that node the master authoritative server for the virtual
machines within it. The DNS configuration files are built as
part of the boot process. Slave DNS servers also exist for this
zone as a mechanism to emulate DNS redundancy throughout
the emulated environment. In the real world, DNS backup
servers should use separate power and network resources; in
an HPC system this is impractical, there being one power feed
per machine room, so vmatic uses the next node in the system

modulo the number of nodes as its zone slave. For example,
if an HPC system consists of physical nodes 1 through 100,
node1 will be the Master DNS server for the .node1 zone and
node2 will be the Slave for the .node1 zone; node100 will
be Master for the .node100 zone and node1 will be slave for
the .node100 zone. Changes to entries on the Master zone
automatically notify their slaves of the change and update
them accordingly. Physical hosts act as a caching name server
to reduce the amount of network traffic on the system as
well as the load on the authoritative DNS server. The cache
has an arbitrary time-to-live parameter set to keep the system
functioning in a dynamic environment.

The DNS servers used are BIND9 based and have support
for Dynamic DNS enabled, allowing authorized users to
update their DNS entries at will, which in turn allows a propa-
gation of names throughout the emulated Internet environment.
Users or automated programs also have the ability to register
sub-domains to be registered through delegated subzones tolet
users manage a part of a particular zone. The dynamic nature
of vmatic allows for different scenarios or experiments to be
simulated once bootstrap of the emulated Internet is complete.

B. Monitoring

Monitoring on the emulated environment continues to be an
area of development. As we are running on HPC platforms,
we also inherit HPC-related problems associated with storage
and analysis of execution results. Particularly, analysisof real
time data remains challenging since it is important to avoid
creating artifacts that would influence the actual results of
the experiment. On a multi-million node environment, data
reduction techniques must be exercised so as to reduce network
congestion. Even modest amount of data generated from each
node can result in a self denial-of-service.

1) The Pushmon Monitoring Tool:Currently, our main
monitoring and data collection mechanism has been a tool
we developed called Pushmon. Pushmon is a hierarchical
monitoring program built from Supermon, a cluster monitoring
system developed at Las Alamos [17]. Like Supermon, Push-
mon uses S-expressions to describe the data, and is designed
for hierarchy with Pushmon nodes functioning as both clients
and servers. Unlike Supermon, Pushmon relies on a push
model, with data being periodically pushed from the leaves
to the root. Like Supermon, Pushmon uses S-expressions to
describe the data, and is designed for hierarchy with Pushmon
nodes functioning as both clients and servers. However unlike
Supermon, Pushmon relies on a push model, with data being
periodically pushed from the leaves to the root. Supermon
used a ”pull” model, in which data collection was initiated
by a request from a central collector. On multi-thousand node
systems this model had scaled extremely well, far better than
existing ”push”-based models such as Ganglia: Supermon can
sample thousands of nodes at several hz., whereas Ganglia, on
the same scale is limited to 1/600 hz. Nevertheless, the pull
model did not seem a good fit to one million nodes.

Pushmon is also self-configuring, with the nodes using a
low-cost computation to determine where their parent in the

tree resides, up to the root. Finally, Pushmon is designed
not just to group S-expressions together, but also to perform
computations on the S-expressions so as to reduce the data
load on the network. The computations to be performed
can themselves be defined by S-expressions and interpreted,
allowing a great deal of flexibility. Data load on the network
is also reduced when the VMs’ relationship to their host OS is
taken into account. When considering the fast communication
path between a VM and its host OS, Pushmon can be used
as an effective aggregator to collect messages from the child
VMs before forwarding the messages up the tree.

C. Other Approaches to Data Collection and Visualization

Despite the care with which we designed Pushmon to be
efficient, any cpu cycles or memory devoted to monitoring
and data collection comes at the expense of the emulation
itself, and this remains a big concern given the extent to
which we are overcommitting resources in our system. Hence,
a major focus of our work going forward will be to develop
even more scalable techniques for monitoring and analysis
which require as few resources as possible. Directions we are
exploring include conducting aggressive in situ analysis and
reduction of data at each physical node, and “entropy aware”
data collection methods that only collect data when it departs
from what is expected.

A completely different mechanism for collecting data would
be to pause the entire emulation, take snapshots of particular
VMs, and then resume the emulation. By taking regular
snapshots, we can gain an understanding of what happens to
VMs as the experiment progresses.

Scalable visualization remains a long term goal of our
research. We are seeking ways to visually represent both
the functioning of the emulation (how many VMs are up,
how much memory, cpu, and network bandwidth is in use at
the physical nodes) and the progress of the experiment itself
(e.g., nodes joining and leaving the botnet, traffic originating
from the botnet compared to other traffic, dissemination of
commands through the botnet).

D. Management of Large Numbers

Past projects, bproc, XCPU.
1) gproc: Gproc is a reimplementation and combination of

the best parts of the LANL version of bproc[7] and xcpu[11].
Like bproc, gproc uses a push model, in which the user
specifies a program to be run, and the program is pushed
to a server daemon on a node and set up and started by
that server daemon. In contrast, ssh uses a pull model, in
which a command string is sent to each node and the node
is responsible for pulling the program and all its librariesto
itself, usually via NFS. Push allows more coordinated control
of data movement, whereas pull, even in systems as small as a
few hundred nodes, can lead to contention for the file system,
as hundreds of nodes all vie to scan the same directories and
read the same data blocks. Network utilization for pull models
is also typically much lower, which increases the time to start
a program and move its data files. Finally, for our 1 gigabyte

virtual machine image files, pull data movement requires
millions of RPCs, each of which involves a high latency
request/response cycle. Push on the other hand provides a
more ordered set of network operations, lower file server load,
and higher network utilization, as the request/response RPC
transactions of the pull model are replaced by TCP streams.
We have done extensive measurement of push vs. pull models
over the last decade, most recently on our KANE cluster and
on Blue Gene/P, and for our uses the push model is superior.

The push model can also be cleanly extended to support
hierarchy, since it uses streams, not Remote Procedure Calls.
While the construction of hierarchical file systems is still a
research project, hierarchical push model systems like LANL’s
bproc implementation have been in use for 10 years.

Like the LANL bproc software, gproc has support for
hierarchy. The server daemons can be arranged as a tree, so
that in a system ofn nodes, no server daemon is ever pushing
a program to more than, eg,

√

n nodes. Unlike bproc, there is
no kernel component to gproc, which makes it more portable–
in fact, it is written entirely in Google’s Go programming
language, and compiles to a single statically-linked binary.

Unlike bproc, the hierarchy in gproc can be as deep as
needed; in a system of 32,000 nodes gproc can be arranged
with a 3-level tree, such that no daemon is ever talking to
more than 32 daemons. Here, the tree spawn mechanism used
in gproc is similar to that of xcpu. [11] However, instead of the
ad-hoc command tree spawn technique that xcpu uses, Gproc
sets up a persistent tree of servers that reduces the tree spawn
overhead. Finally, Gproc uses intermediate nodes in the tree to
aggregate I/O from remote processes, instead of counting on
the top-level command to aggregate I/O as in BProc. Figure 1
shows an example of such a tree, as used in the KANE cluster,
in which commands and files are passed from the master node
to every twentieth node. These level 1 slaves then pass the
commands and files on to the 19 nodes under each of them
and relay the output from their subnodes back to the master.

Fig. 1. The KANE cluster’s default gproc hierarchy

Users frequently need to push input files along with the
program to a node. Gproc is like xcpu in that it has support
for pushing these additional files, via a simple command-line
switch. Even directories can be pushed, by specifying their
path in the command line.

Gproc preserves the file system hierarchy of the files and
directories it transfers. On the remote node, the file systemtree
is reconstructed to avoid clashes between file names. Consider

a user running in some part of their home directory, e.g.
src/megatux. If the user runs/bin/date, the remote
gproc hierarchy will consist of a directory tree including
/home/$user/src/megatux, as well as the requisite
/lib, /usr/lib and/bin directories.

A common problem in cluster management systems is
getting rid of the files created by users. The problem is even
more serious when working with malware; it is important
to clean the node up after a program is done. The simplest
solution is to reboot the node each process is run, but that is
not always practical or even desirable.

Gproc uses a Linux mount type calledprocess private
mounts. Process private mounts, as the name implies, are not
visible outside the process that performs them – they are only
visible to the process and its children. Transferred files are
placed in process-private hierarchy mounted on /tmp/xproc.
When the process and its children exit, the mount is garbage
collected by the kernel; in other words, the unmount comes
for free. Since the process-private mount is on a ram disk
file system, once these processes exit, all their files disappear.
Process-private mounts are a very powerful way to ensure that
the files used by a process are gone when the process is gone;
the clumsy and failure-prone file cleanup of, e.g., PBS, is not
needed. Note that if file persistence is needed, a program can
copy a file to, e.g., /tmp, for other subsequent processes to
see.

Configuration is a complex problem. The LANL bproc
configuration file would be impractical for systems consist-
ing of millions of nodes, for example. Gproc uses a form
of computational configuration, and allows several different
configurations to be contained in one gproc binary. We call
these configurationslocales. Locales are in fact sets of simple
Go functions (in Go terms, an interface, specified as one
package per locale). These interfaces return information about
a configuration. Thekane locale, for instance, defines a tree
hierarchy, with 1 root node, 26 nodes on the next level, and
20 nodes for each of the 26 nodes on the level below that.

For most locales, a node’s identity and all other information
can be computed from its IP address or some other unique
property of the node. There is no configuration file to read.
This technique is particularly useful on systems such as Blue
Gene or the Cray XT series, where a node’s location in the 3D
torus is easily determined, and from there all other information
can be computed.

A node can compute which level of the tree it must inhabit
and which node is directly above it in the tree. The use of pro-
grammatic configurations allows interesting flexibility; rather
than trying to design a configuration file format to encompass
all possible configurations, configuration information is instead
expressed through functions.

Gproc has proven to be fast and efficient. For example,
on a 520-node cluster with only Gigabit Ethernet, we are
able to move a 1 Gigabyte DVD to all 520 nodes at an
effective bandwidth of 16 Gbits/second, thanks to the gproc’s
tree structure. We are thus able to get 16 Gigabit ethernets for
the price of one.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 50 100 150 200 250 300 350 400 450 500

T
ot

al
 ti

m
e

(s
ec

.)

Number of nodes

Transferring a 1 GiB file using gproc and SCP

gproc
SCP

Fig. 2. Transfer times for gproc and SCP

Gproc was much more effective than any alternatives. A 1
GiB file was transferred to different numbers of nodes using
gproc and SCP to compare the efficiency of the two methods.
As Figure 2 shows, gproc scales considerably better than
SCP for large numbers of nodes, completing approximately
10 times faster. We did experiment with hand-building a tree-
structured copy with ssh/scp, but it was hard to make it reliable
and it was still not as fast as gproc. We also experimented with
using NFS (for timing purposes) but it never ran to completion;
NFS does not handle this amount of activity very well on
Linux.

IV. KANE T ESTBED

In Sandia California’s Network Research Laboratory, we
have created a cluster known as KANE which stands for
the Knowledge Acquisition Network Emulation system. The
system is unique from other HPC platforms in that it was
purchased using true off the shelf commodity PC’s for less
than $500,000 (including auxiliary hardware) and contains
no exceptional message passing interconnect. The nodes are
comparable to home desktop PC’s that are connected to the
Internet using a single Ethernet connection. Using the software
we have developed, each KANE node is capable of booting
1024 virtual machines providing us with a low cost cluster
of over half a million nodes. KANE serves as our dedicated
testbed environment which allows us to prototype experiments
prior to running on bigger systems like Oak Ridge National
Laboratory’s Jaguar Super Computer, where our time on the
system is more scarce. The KANE network also contains
a heterogeneous environment comprised of Linux, Windows
and 900+ ARM Cortex-A9 devices running Linux/Android
operating systems to represent the increased role of mobile
devices on the Internet.

KANE differs from other network testbeds in that it is
primarily focused on scaling, leveraging virtualization tech-
nology. Unlike the DETER testbed, which is distributed across
a geographic region, the KANE testbed is isolated from the

outside Internet and is entirely contained within the Network
Research Laboratory in California.

A. Hardware

The KANE cluster is composed of 13 shelving units, which
we call racks, of 5 shelves each. Each rack contains 40
compute nodes, a gigabit Ethernet switch, and a PDU. These
racks act as the basic unit of the KANE cluster and are
interconnected using a central Enterasys switch. They are
managed using a front-end node called “cesspool.” Figure 3
illustrates this layout.

Cesspool provides a number of services for the cluster.
First and foremost, it acts as a barrier between the potentially
harmful programs running on KANE and the outside network.
Nodes are powered on and off using “powerman” from LLNL.
The nodes boot using DHCP and tftp to load a minimal
memory-resident Linux system. Cesspool also serves as the
“master” node when running gproc.

KANE’s interconnect is simple gigabit Ethernet. Each rack
contains a 48-port switch, which is connected to the 40 nodes,
the PDU’s Ethernet interface, and the central Enterasys switch.
While individual compute nodes only have a single gigabit
interface, the head node (cesspool) is equipped with 4 channel-
bonded interfaces to provide greater throughput.

Fig. 3. This figure illustrates the basic layout of the KANE cluster.

V. M EGAWIN

Megawin is a platform for running large numbers of Win-
dows images on Megatux. Windows does not permit the high
degree of controllability that comes with an open source
operating system such as Linux, and we have found that a
ten Mbyte OS image is simply not possible. Again, due to
its closed nature, it is not possible to modify Windows to run
as a paravirtual guest: we must use full virtualization, which
imposes costs in both memory usage and performance. We
currently use KVM[10] to support Windows guests.

Hence, in Megawin, we combine two strategies: cutting
down the size of the Windows image, as much as possible;
and using Linux and KVM capabilities to the maximum extent
possible.

A. Cutting down Windows

As mentioned above, Megatux is targeted to cluster nodes
that are memory-only. Memory-only operation improves image
file access and greatly simplifies the problem of wiping the
machine, but complicates the problem of managing Windows
images, because everything is in RAM. Windows can be
considered to have two footprints: static and dynamic. The
static image is the disk image which Windows boots and
which is held in the root file system. The dynamic image is
the memory Windows grows to occupy as it runs.

A bootable Windows image is for a virtual machine is
contained in a file and in standard usage configured for only
one machine: Windows image files contain a lot of per-
machine information. Image files can be reduced to 1 Gbyte,
but further reduction is very difficult.

It is not possible to boot large numbers of Windows VM
guests if they each require a 1 Gbyte image file. MegaWin
allows many guests to share a common Windows image.
Further, for supporting quick boot, MegaWin can boot from a
“frozen” image. To create a frozen image, MegaWin support
software takes a snapshot of an almost-booted Windows and
stores that snapshot. Per-instance information is generated
once the snapshot is unfrozen, so that each guest gets its
own personality, including network configuration. MegaWin
can hence boot up to 200 Windows instances on a machine
with only 12 Gybtes of memory.

Some issues affect both the static and dynamic footprint.
To minimize these factors, we use the Windows Embedded
version; further, we replaced the standard huge desktop with
the bblean desktop2. The result is a Windows image that
consumes only one Gbyte of disk for the static footprint, and
512 Mbytes for the dynamic footprint. Thanks to the use of
freezing an image, we can boot each image in a few seconds.

Clearly, one can not boot 100 512Mbyte images on a
system with only 12 Gbytes of memory. To get further VMs
booted we exploit new capabilites of Linux virtualization,in
particular a new software system called KSM[21]. KSM, as
the authors describe it, “is code running in the Linux kernel
scanning the memory of all the virtual machines running on
a single host, looking for duplication and consolidating”[21].
KSM accomplishes this by periodically scanning all pages that
are eligible for deduplication and merging identical ones into
copy-on-write pages. The use of KSM is especially effective
with our workload, as there exists a large amount of mergable
data across hundreds of identical, with the exception of some
runtime activity, virtual machines.

The use of KSM with a dataset approaching 100GB intro-
duces some key problems. KSM cannot scan and merge pages
faster than we can allocate them through launching new virtual
machines. To facilitate this, we modified the KSM interface
to force the KSM thread to only scan memory belonging to
processes that we indicate. This allows us to focus KSM on
newly create virtual machines during launch, or on key virtual
machines that we know are better matches for deduplication

2http://bb4win.sourceforge.net/bblean/

during runtime. KSM can operate on any number of processes
that we inform it to at any point in time. The result is the abil-
ity to more intelligently manage significantly over-budgeted
memory. Figure ¡X¿ illustrates launching many Windows 7
virtual machines on a host with KSM. In the default KSM
usage, we launch virtual machines until we run out of physical
memory, and block until KSM merges enough memory to
continue launching. With our modification, we can force KSM
to focus on newly launched virtual machines, which saves time
and maintains enough free memory to avoid out of memory
events when running virtual machines become more active.
This result is more pronounced as the amount of volatile
(rapidly changing) pages increases. In practice, we are able
to launch ten virtual machines at a time, focusing KSM on all
ten. When KSM completes a full scan, we launch another ten
virtual machines.

0 200 400 600 800 1000
Time (s)

0

2000

4000

6000

8000

10000

Fr
ee

 M
em

or
y

(M
B)

KSM Naive vs PID Focus - 100 VMs @ 512mb each

KSM Default
KSM Focus

Fig. 4. KSM: Free memory vs. Time

B. Reverse Engineering and Preparation of Malware Samples

Traditionally, studying malware has required significant
forensics and reverse engineering analysis, dissecting and
probing the sample from multiple avenues [13]. These tech-
niques are simply not feasible when looking at botnets and
malware at scale in a traditional HPC environment. There
are numerous reverse engineering challenges that must be
overcome before deploying a live malware sample in an HPC
setting. Current malware uses numerous custom protection
mechanisms that are often tied to a specific operating system,
making it difficult to provide an overarching automated re-
versing solution. Malware takes this a step further by breaking
specifications, exploiting implementation errors in loaders, and
using various anti-tamper techniques. Since malware is so
closely coupled to the system for which it was designed, taking
a random malware sample and attempting to run it in an HPC
environment may fail. When attempting to execute malware on
a platform for which it was not specifically designed, analysts
must often remove the protective features of an executable that

prevent it from running or expose the platform’s abnormalities
to the sample. It is common for malware to detect that it is
executing in a virtual machine and take responsive action by
either altering its behavior or refusing to run at all [4].

The Storm worm is an example of a piece of malware
that attempts to identify when it is executing on a platform
typically used for analysis such as a virtual machine [4].
While our specific platform uses LGuest and KVM to host the
guests, malware could just as easily detect these platformsand
alter their behavior. The Spybot malware contains a corrupted
PE header as a form of protection [14]. The PE header
is slightly modified in a way that technically violates the
PE32 specification, however the Windows XP loader is lenient
enough that it will properly load and execute the malware.
However, WINE and other tools that adhere to the PE32
specification will reject the sample. In this case, removing
the protection mechanisms from the malware allowed us to
execute the sample in our testbed environment. While time
consuming and difficult, the effort allowed us to properly
execute the Spybot sample and subsequently allowed for study
at scale in our HPC environment.

Reverse engineering and manually modifying each piece of
malware prior to study is not a scalable solution. Our ultimate
goal is to create a platform that is robust enough that malware
will run without modification on our HPC platform without
the need to individually modify each sample. This will allow
us to focus on on studying botnets at scale, and processing
larger quantities of samples that are captured from the wild.

C. Performance

Need numbers from Andrew.

D. High Fidelity

VI. CONCLUSIONS ANDFUTURE WORK

In this paper we presented an approach to achieving realistic
scale in emulation of botnets in a laboratory setting. Our
approach builds on lightweight virtualization technologyand
scalable cluster management tools. While our cluster manage-
ment tools owe their heritage to tools familiar in the HPC
world, we have had to make significant modifications to boot,
configure, and manage the very large numbers of VMs with
which we are working.

Our research is directed at understanding Internet-scale
phenomena. We are starting with botnets because botnets
implement protocols and capabilities we are interested in un-
derstanding. We have begun to perform experiments with real
botnets, and in our first such experiment we ran an instance
of the Virut botnet with 62,000 members. The individual bots
ran on a Windows 7 image which we were able to make
significantly smaller than is typical. We determined that the
bots, once booted, registered with the IRC command and
control channel, and we could issue commands to the bots.

The tools and techniques which we reported here were
developed on a specially built cluster in our laboratory. How-
ever, we have designed these tools and techniques with the
vision to run them on the largest supercomputers available,

and preliminary experiments we have conducted on the Jaguar
supercomputer at Oak Ridge National Laboratory indicate that
our approaches will work on such platforms. Therefore, we see
no reason why emulations of botnets with millions of nodes
should not be possible using our approach.

Significant challenges remain to be addressed to make emu-
lation with millions of nodes a viable adjunct to other research
methods in studying Internet-scale phenomena. First among
these are developing scalable methods for visualization and
analysis of data. While we have a tool, Pushmon (described
above), for monitoring, we are still limited in the amount of
information we can collect from each VM without contending
for resources with the emulation experiment.

Simulation and Emulation of the Internet is a valuable tool
for gaining insight into its functionality and the impact of
proposed changes. The benefit of performing emulations as
opposed to simulations is the level of fidelity an emulated
environment can provide. Real bug for bug compatible OS
instances are used. Components may be real or virtualized but
either method should provide the same functional capabilities.
The virtual Cisco routers run an actual Cisco IOS software
image which routes real network traffic across virtual machines
or real hardware.

Performing measurement or experimentation directly on
Internet is an indispensable tool for understanding botnets
and other malware, but it does have drawbacks. We can only
take measurements on the present Internet with its existing
protocols and architectures, not possible alternatives. Experi-
mentation is also valuable, but the nature of experiments we
can conduct on the existing Internet is constrained by the
necessity not to interfere with the Internet’s function or to
cause harm to other Internet users. Experimentation on smaller
physical networks intended to replicate Internet functionality
has been a valuable tool, but the scale of the largest experi-
mental networks is at least five orders of magnitude smaller
than that of the Internet, and many phenomena of interest in
the real Internet do not occur at the scale of the much smaller
experimental networks. Furthermore, experimental networks
using real networking equipment and real hosts are quite costly
to build compared with simulation.

Emulation enables a highly repeatable, flexible test labo-
ratory for conducting experiments. When an experiment is
executed, it could also be checkpointed during critical events
allowing staff to analyze the global state of the network.
Events such as the 2007 botnet attack which took down many
important network services in Estonia would be interestingto
re-enact on the internet emulator. During the 2 week attack,
companies resorted to blocking all international traffic in
order to keep their servers from crashing, essentially cutting
themselves off from the rest of the world.

REFERENCES

[1] Paul Barford and Mike Blodgett. Toward botnet mesocosms. In
Proceedings of the first conference on First Workshop on Hot Topics in
Understanding Botnets, pages 6–6, Berkeley, CA, USA, 2007. USENIX
Association.

[2] T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph, K. Sklower,
R. Ostrenga, and S. Schwab. Experience with deter: a testbedfor security
research. InTestbeds and Research Infrastructures for the Development
of Networks and Communities, 2006. TRIDENTCOM 2006. 2nd Inter-
national Conference on, pages 10 pp. –388, 2006.

[3] Joan Calvet, Carlton R. Davis, José M. Fernandez, Jean-Yves Marion,
Pier-Luc St-Onge, Wadie Guizani, Pierre-Marc Bureau, and Anil So-
mayaji. The case for in-the-lab botnet experimentation: creating and
taking down a 3000-node botnet. InProceedings of the 26th Annual
Computer Security Applications Conference, ACSAC ’10, pages 141–
150, New York, NY, USA, 2010. ACM.

[4] Xu Chen, J. Andersen, Z.M. Mao, M. Bailey, and J. Nazario.Towards
an understanding of anti-virtualization and anti-debugging behavior in
modern malware. InDependable Systems and Networks With FTCS and
DCC, 2008. DSN 2008. IEEE International Conference on, pages 177
–186, june 2008.

[5] David Dagon, Guofei Gu, Christopher P. Lee, and Wenke Lee. A taxon-
omy of botnet structures.Computer Security Applications Conference,
Annual, 0:325–339, 2007.

[6] Carlton Davis, Stephen Neville, Jos Fernandez, Jean-Marc Robert, and
John McHugh. Structured peer-to-peer overlay networks: Ideal botnets
command and control infrastructures? In Sushil Jajodia and Javier
Lopez, editors,Computer Security - ESORICS 2008, volume 5283 of
Lecture Notes in Computer Science, pages 461–480. Springer Berlin /
Heidelberg, 2008. 10.1007/978-3-540-88313-530.

[7] Erik A. Hendriks and Ronald Minnich. How to build a fast and reliable
1024 node cluster with only one disk.The Journal of Supercomputing,
36(2):171–181, 2006.

[8] Brent ByungHoon Kang, Eric Chan-Tin, Christopher P. Lee, James
Tyra, Hun Jeong Kang, Chris Nunnery, Zachariah Wadler, GregSinclair,
Nicholas Hopper, David Dagon, and Yongdae Kim. Towards complete
node enumeration in a peer-to-peer botnet. InProceedings of the 4th
International Symposium on Information, Computer, and Communica-
tions Security, ASIACCS ’09, pages 23–34, New York, NY, USA, 2009.
ACM.

[9] Chris Kanich, Christian Kreibich, Kirill Levchenko, Brandon Enright,
Geoffrey M. Voelker, Vern Paxson, and Stefan Savage. Spamalytics: an
empirical analysis of spam marketing conversion. InProceedings of the
15th ACM conference on Computer and communications security, CCS
’08, pages 3–14, New York, NY, USA, 2008. ACM.

[10] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: the
Linux virtual machine monitor. InProceedings of the Linux Symposium,
volume 1, pages 225–230, 2007.

[11] Ronald Minnich and Andrey Mirtchovski. Xcpu: a new, 9p-based,
process management system for clusters and grids. InCLUSTER. IEEE,
2006.

[12] Chris Nunnery, Greg Sinclair, and Brent ByungHoon KangKang. Tum-
bling down the rabbit hole: Exploring the idiosyncrasies ofbotmaster
systems in a multi-tier botnet infrastructure. InProceedings of the
4th Usenix Workshop on Large-Scale Exploits and Emergent Threats,
Berkeley, CA, USA, 2011. USENIX Association.

[13] PLACEHOLDER, editor.PLACEHOLDER, PLACEHOLDER.
[14] PLACEHOLDER, editor.PLACEHOLDER, PLACEHOLDER.
[15] Phillip Porras, Hassen Saidi, and Vinod Yegneswaran. Amulti-

perspective analysis of the storm (peacomm) worm. Technical report,
SRI International, October 2007.

[16] Phillip Porras, Hassen Sadi, and Vinod Yegneswaran. A foray into
confickers logic and rendezvous points. InIn USENIX Workshop on
Large-Scale Exploits and Emergent Threats, 2009.

[17] M.J. Sottile and R.G. Minnich. Supermon: a high-speed cluster mon-
itoring system. InCluster Computing, 2002. Proceedings. 2002 IEEE
International Conference on, pages 39 – 46, 2002.

[18] Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft,
Alex C. Snoeren, Geoffrey M. Voelker, and Stefan Savage. Scalability,
fidelity, and containment in the potemkin virtual honeyfarm. InProceed-
ings of the twentieth ACM symposium on Operating systems principles,
SOSP ’05, pages 148–162, New York, NY, USA, 2005. ACM.

[19] Rhiannon Weaver. A probabilistic population study of the conficker-
c botnet. In Arvind Krishnamurthy and Bernhard Plattner, editors,
Passive and Active Measurement, volume 6032 ofLecture Notes in
Computer Science, pages 181–190. Springer Berlin / Heidelberg, 2010.
10.1007/978-3-642-12334-419.

[20] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Gu-
ruprasad, Mac Newbold, Mike Hibler, Chad Barb, and AbhijeetJoglekar.

An integrated experimental environment for distributed systems and
networks.SIGOPS Oper. Syst. Rev., 36:255–270, December 2002.

[21] Chris Wright. Ksm: A mechanism for improving virtualization density
with kvm. In linuxcon2009, 2009.

