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A Novel Technology for Reactor Safeguards

= Antineutrino Monitoring of Reactors provides independent
measurements of Thermal Power and Fissile Inventory

= Non-intrusive with NO connection to plant systems
s Continuous Remote Monitoring
= Highly tamper resistant

= Potential Applications to Present and Future Safeguards
= Independent Confirmation of Operator Declarations
= Reduction in needed Inspector visits

= Provide fissile content information for Next-Generation
fuel cycles (MOX, Th, bulk process)
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Reactor Power Monitoring using only v
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Large power changes are readily observed with no
physical connection to the plant
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The Antineutrino Rate varies with Isotope

The energy spectrum and integral rate The fuel of a PLWR evolves under irradiation:

produced by each isotope is different 235 is consumed and 23°Pu is produced
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vV Provides Information on Fuel Composition

Standard Refueling is Clearly Visible
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Sensitive to undeclared removal of 70 kg 23°Pu
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Core and Assembly Level Verification Studies

Replace 10 once burnt assemblies 70 kg Pu239 in
removed assemblies

Over time, a statistical test
detects the anomalous fuel loading

Event statistics, misreporting of thermal

With 10 fresh assemblies Replacement keeps ower are the dominant effects
thermal power constant
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the cycle is affected by the change in individual assemblies, in conjunction
initial fuel loading with modern evolution codes
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Aboveground Challenge:

Increased backgrounds

= Without overburden, an
aboveground detector is exposed to:

* An increased muon rate
 Hadronic showers
* Electromagnetic showers

* Secondary particles produced by all of
the above in the detector and its
surroundings

= Belowground (only a few meters) many
of these cosmic backgrounds are
significantly reduced

* SONGS1 design would not have survived
aboveground backgrounds

= A shield can control backgrounds more
simply than detector design

* Need to reduce neutron impact is severe

* Constructed a high-quality shield within a
transportable 20’ shipping container
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Next Stop....San Onofre
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inal Deployment at SONGS
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2 Detector Technologies:

Different Methods of Background Rejection

The “Smart” (complex) Detector:
Segmented Scintillator with
Particle Identification (PID)

Identify and reject:

* Fast neutrons
 Gamma-rays
Explicitly tag final state products:
* Positron
* Thermal neutron (capture)

- ,
i, positron

n thermal neutron

n fast neutron
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The “Dumb” (simple) Detector:
Gd-Doped Water Cerenkov
Indifferently sensitive to:
* Positron
* Neutron (captures)
« Gamma

Insensitive to an important class of
background:

* Fast neutron recoils

. .
€’ positron

M thermal neutron
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First Try: No Particle Identification, Just

Physics

A Water Based Antineutrino Detector
m Water Cerenkov used for neutrino detection
* Deployability — Environmentally safe

* Reduced sensitivity to fast neutron
backgrounds

* Poor energy resolution, due to:
« Directionality of photons
+ Low number of photons

+ Minimum electron/positron energy
required to produce any photons

= Addition of a neutron capture agent (~0.2%
GdCl,; ) allows for antineutrino detection via
inverse beta decay

* Previous small-scale test showed promise }J
so we have improved it
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Preliminary Water Detector Analysis

[ Time to Last Muon for Candidate Pairs

= Initial operation of muon system looks good
* >98% efficiency to detect muons

* 100 uys veto around muon detection
eliminates most cosmic induced showers

104 | . Gives 21% deadtime

A = Clean separation of correlated events from
iy uncorrelated backgrounds through timing

e * Time constant of ~28 ps for neutron
P capture on Gd
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Second Try: PID with Segmented Scintillator
Detector

Individual Segments contain organic
scintillator with ZnS:Ag/SLiF screens
on outer surface

* 3 cells with Plastic scintillator
* 1 cell with Liquid scintillator

Use of ZnS:Ag with SLiF allows
identification of neutron capture

* ZnS:Ag is sensitive to alpha from n-
capture on Li

* Very slow scintillator time constant
(~100ns) allows pulse shape
discrimination to separate n-capture
from y events

With Liquid Scintillator, proton recoils
are also easily identified

* Allows a comparison to test need for
additional rejection

Ultimate design would be for 16 cells
but this 4-cell prototype was sufficient
for first testing
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Particle Identification (PID)

Neutron identification through Pulse Shape Discrimination (PSD)
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Positron Identification through Topology
= Positrons are rare in nature V
* Deposit most of their kinetic energy very €
quickly through standard ionization losses s >
> ny

m Positrons will annihilate into two back-to-
back 511 keV gammas et %
* Very distinctive signature ;
- Gammas will travel ~2-5” through most Liquid or Plastic 4~ ¥
scintillators scintillator
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First Analysis of Reactor Off Data
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Detector Performance looks stable
No PID * Detector efficiencies look reasonable

0 225,200 ev/day + N-capture efficiency of 18%
’ . Positron efficiency 2—87%
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Conclusion

= Previously demonstrated short and long
term relative monitoring of power operational
status, and fissile content in reactors

= This project aims to expand the range of
utility by enabling above ground deployment

= We have examined several powerful tools to
achieve the required ~3-5 orders of
magnitude suppression of background

= The hoped for demonstration of both water
and scintillator paths will permit design
trade-offs for end users

= Very encouraged by performance of
Segmented Scintillator prototype

« Scaled up to 16-cells, this would almost
reach SONGS1 performance
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