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Motivation

* Provide a unified computational framework
for finite element (FE) and an molecular
dynamics (MD) for problems in which

1. An atomistic description of material is needed
only for a localized region and the dynamical
interactions between the FE and MD are
important for understanding the system

* MD cost to simulate entire system atomistically
would be prohibitive

+ Dual Statement: FE constitutive models are not
of sufficient fidelity for all of the system

» See Wagner et al.
2. Complex boundary conditions must be
applied to an atomic system to understand
the physics of interest

» MD typically does not provide the infrastructure
for complex, engineering calculations

+ See Templeton et al. Left Ghost Atoms Internal Atoms Right Ghost Atoms
» Specific motivation for improved time / _, / \
integration algorithms ; i L
— Enhanced stability through conservation of T I l
energy in the multiscale coupling scheme q. Finite Element Mesh G

— Enhanced stability by minimizing temperature
drift for Dirichlet boundary conditions
— Ability to consider more complex temperature

definitions, e.g. including the potential energy @ Sandia
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% Continuum Heat Equation

» Heat equation with Fourier heat conduction arising from
Boltzmann Transport equation for energy conservation:

« Finite element discretization leads to a set of ODE’ s for the
nodal temperatures
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‘ MD Temperature Definition

* We have to relate the dynamics of atoms to the nodal temperature field
2
e ~mg vL|" /AV,
t

2
el ~ (ma VL7 /2 + gbg) AV,
 Define restriction operation: MD field - Nodal field

— E.g. projection, averaging, shape functions...
— One way: minimize difference between MD and continuum temperature fields
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‘Derivation of Coupled FEM-MD Equations

* Apply Galerkin method to entire domain:

- Decompose domain:
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— Use atomic energy density:
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— Apply physics:
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— Discretize:
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}‘ Coupling MD Thermostat

« Effects of FEM on MD can be included by prescribing
constraints relating the FE and MD dynamics:

— Temperature constraint
0
ZNIQVCE £, + ZNlagbiy + Z (VNIa . Va) e AV, — Z E (M%D6J> =0
o o o J
— Heat flux constraint
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» Thermostat force exactly cancels the FE boundary flux for the
total temperature definition, otherwise there is a partial residL@ Sandia
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Governing Equation for the
Lagrange Multiplier

%i
 Application of Gauss’ principle of least constraint to atomic
forces provides an elliptic equation for the Lagrange Multiplier:
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* Variable A is a continuum field defined on the nodes:
A(xa) =) NiaAs
I

» Differentiating the constraint w.r.t the new force gives
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» So atomic degrees of freedom are governed by

Sandia
National
Laboratories



e . .
' Motivation for the
. Fractional Step Method
 Fractional step originally developed by Chorin to exactly satisfy
elliptic constraints on a a hyperbolic problem

* In this case there are several complicating factors
— Discrepancy in evolution of kinetic energy in atomic system

A2
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— No direct evaluation of the time derivative of the potential

0
¢Oé — ?
ot
— Drift between change in shape functions and convection
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F 2

« Gear time integration for FE dynamics: K760

Fractional Step Method
for Time Integration

» Velocity-Verlet time integration for MD dynamics: Mo Ve = féw b

» Consistent update for MD contribution to FE temperature:

» Considering the change in nodal energy
NiAE; = Nip, | Atvy - £ At ~Af, - f / /
I I—; la Vo Ig + 9 My 1o - a+¢a’t+At_¢a‘t

« Enables general temperature definitions to be used
 Eliminates temperature drift between FE and MD systems
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' Modified Equation for
. Exactly Satisfying Constraints
« Second order terms must be account for in the constraint
equations

AtZN})‘KaZNJ)\J——ZN})‘K (ZN;IAJ> (ZN;‘;)\K) =R
o J J K

— Boundary flux when needed is added with the Verlet step

« Solvability criteria gives time step size criterion: Ath < 1

* Iterative methods can be use to converge the solution to
machine precision for exact constraint enforcement

 Eliminates drift which causes instability with fixed temperature
constraints

* Enables exact energy conservation in the coupling algorithm
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‘ Demonstration Problems

Finite Element Mesh
Boundary Conditions Free atoms

Ghost Atoms

Lennard-Jones Argon with equilibrium FCC spacing at 20 K
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Equilibration to 20 K
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'
Mplication of Fixed Temperature BCs
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i ‘ Fluxed-Based Multiscale Coupling

Atomic Configurational Temperature
Atomic Kinetic Temperature
Kinetic Temperature
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Conclusions

'},7

» A generalized set of equations for coupled MD-FE thermal
transport has been derived

— Appropriate for Lagrangian or Eulerian frames
— Can use a large class of temperature definitions
» Hyperbolic transport equations were solved consistently with an
elliptic constraint using a fractional step method

— Increases numerical stability by exactly enforcing coupling
constraints

* Robustness has been demonstrated in several example
problems covering the types of problems of interest

* Future work:
— Determination of thermal properties of complex systems
— Assessment of heat propagation through nano-devices
— Modeling of fluid-solid interfaces
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