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Motivation 

•  Provide a unified computational framework 
for finite element (FE) and an molecular 
dynamics (MD) for problems in which 

1.  An atomistic description of material is needed 
only for a localized region and the dynamical 
interactions between the FE and MD are 
important for understanding the system 

•  MD cost to simulate entire system atomistically 
would be prohibitive 

•  Dual Statement:  FE constitutive models are not 
of sufficient fidelity for all of the system 

•  See Wagner et al. 
2.  Complex boundary conditions must be 

applied to an atomic system to understand 
the physics of interest 

•  MD typically does not provide the infrastructure 
for complex, engineering calculations 

•  See Templeton et al. 

•  Specific motivation for improved time 
integration algorithms 

–  Enhanced stability through conservation of 
energy in the multiscale coupling scheme 

–  Enhanced stability by minimizing temperature 
drift for Dirichlet boundary conditions 

–  Ability to consider more complex temperature 
definitions, e.g. including the potential energy 

–  Eulerian frame calculations 



Continuum Heat Equation 

• Heat equation with Fourier heat conduction arising from 
Boltzmann Transport equation for energy conservation: 
 
 
 

•  Finite element discretization leads to a set of ODE’s for the 
nodal temperatures ρcv
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MD Temperature Definition 

•  We have to relate the dynamics of atoms to the nodal temperature field 
 
 
 
 

•  Define restriction operation: MD field à Nodal field 
–  E.g. projection, averaging, shape functions… 
–  One way: minimize difference between MD and continuum temperature fields 

 

Using row-sum 
lumping 

(localization) and 
atomic quadrature 
for mass matrix in 

MD region 
(thermodynamic 

consistency) 
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Dulong-Petit expression for heat capacity 
of a mono-atomic solid or dense fluid 

above the Debye temperature 
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Derivation of Coupled FEM-MD Equations 

 
•  Apply Galerkin method to entire domain: 

 

–  Decompose domain: 
 
 
 

–  Use atomic energy density: 
 

–  Apply physics: 
 
 
 

–  Discretize: 
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Coupling MD Thermostat 

• Effects of FEM on MD can be included by prescribing 
constraints relating the FE and MD dynamics: 
 

–  Temperature constraint 

 
 
–  Heat flux constraint 

 

•  Thermostat force exactly cancels the FE boundary flux for the 
total temperature definition, otherwise there is a partial residual 
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Governing Equation for the  
Lagrange Multiplier 

• Application of Gauss’ principle of least constraint to atomic 
forces provides an elliptic equation for the Lagrange Multiplier: 

• Variable λ is a continuum field defined on the nodes: 
 

• Differentiating the constraint w.r.t the new force gives 

• So atomic degrees of freedom are governed by 
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Motivation for the  
Fractional Step Method 

•  Fractional step originally developed by Chorin to exactly satisfy 
elliptic constraints on a a hyperbolic problem 

•  In this case there are several complicating factors 
–  Discrepancy in evolution of kinetic energy in atomic system 

–  No direct evaluation of the time derivative of the potential 

–  Drift between change in shape functions and convection 
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Fractional Step Method  
for Time Integration 

• Gear time integration for FE dynamics: 

• Velocity-Verlet time integration for MD dynamics: 

• Consistent update for MD contribution to FE temperature: 
 

• Considering the change in nodal energy 

• Enables general temperature definitions to be used 
• Eliminates temperature drift between FE and MD systems 
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Modified Equation for  
Exactly Satisfying Constraints 

• Second order terms must be account for in the constraint 
equations 

–  Boundary flux when needed is added with the Verlet step 

• Solvability criteria gives time step size criterion: 

•  Iterative methods can be use to converge the solution to 
machine precision for exact constraint enforcement 

• Eliminates drift which causes instability with fixed temperature 
constraints 

• Enables exact energy conservation in the coupling algorithm 
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Demonstration Problems 

Free atoms 

Ghost Atoms 

Boundary Conditions 

Lennard-Jones Argon with equilibrium FCC spacing at 20 K 

Finite Element Mesh 



Equilibration to 20 K 

Total  
Temperature 

Kinetic 
Temperature 



Application of Fixed Temperature BCs 
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Fluxed-Based Multiscale Coupling 



Liquid Argon Temperture BCs 
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Liquid Argon Flux Coupling 



Conclusions 

• A generalized set of equations for coupled MD-FE thermal 
transport has been derived 
–  Appropriate for Lagrangian or Eulerian frames 
–  Can use a large class of temperature definitions 

• Hyperbolic transport equations were solved consistently with an 
elliptic constraint using a fractional step method 
–  Increases numerical stability by exactly enforcing coupling 

constraints 
• Robustness has been demonstrated in several example 

problems covering the types of problems of interest 
•  Future work: 

–  Determination of thermal properties of complex systems 
–  Assessment of heat propagation through nano-devices 
–  Modeling of fluid-solid interfaces 


