

A Fractional Step Method for Coupling Molecular Dynamics and Finite Element Models of Thermal Transport

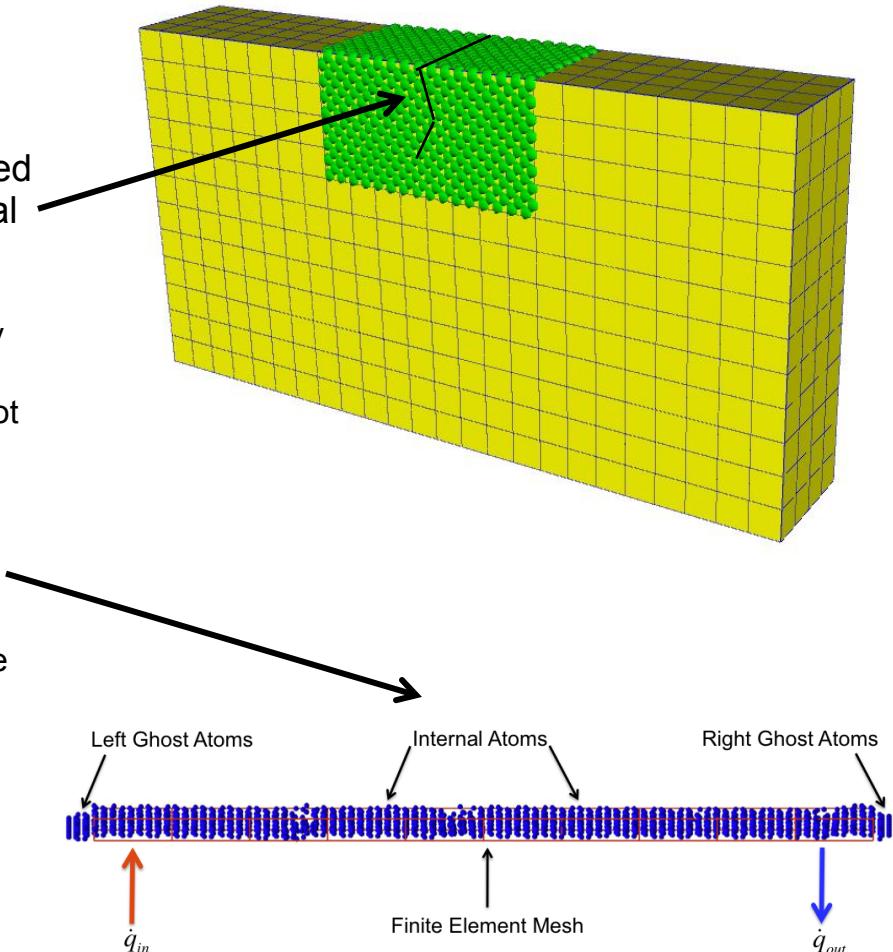
Jeremy A. Templeton & Reese E. Jones

Sandia National Laboratories, Livermore CA

US National Congress on Computational Mechanics
Minneapolis MN, July 2011

Motivation

- Provide a unified computational framework for finite element (FE) and an molecular dynamics (MD) for problems in which
 1. An atomistic description of material is needed only for a localized region and the dynamical interactions between the FE and MD are important for understanding the system
 - MD cost to simulate entire system atomistically would be prohibitive
 - Dual Statement: FE constitutive models are not of sufficient fidelity for all of the system
 - See Wagner *et al.*
 2. Complex boundary conditions must be applied to an atomic system to understand the physics of interest
 - MD typically does not provide the infrastructure for complex, engineering calculations
 - See Templeton *et al.*
- Specific motivation for improved time integration algorithms
 - Enhanced stability through conservation of energy in the multiscale coupling scheme
 - Enhanced stability by minimizing temperature drift for Dirichlet boundary conditions
 - Ability to consider more complex temperature definitions, e.g. including the potential energy
 - Eulerian frame calculations



Continuum Heat Equation

- Heat equation with Fourier heat conduction arising from Boltzmann Transport equation for energy conservation:

$$\frac{\partial}{\partial t} (\rho c_v \theta (\mathbf{x}, t)) = \nabla \cdot (\kappa \nabla \theta (\mathbf{x}, t))$$

- Finite element discretization leads to a set of ODE's for the nodal temperatures

$$\theta^h (\mathbf{x}, t) = \sum_I N_I (\mathbf{x}) \theta_I (t) \implies \frac{\partial}{\partial t} (\mathbf{M} \theta) = \mathbf{K} \theta$$

$$M_{IJ} = \int_{\Omega} \rho c_v N_I N_J dV$$

$$K_{IJ} = \int_{\Omega} \kappa \nabla N_I \cdot \nabla N_J dV$$

MD Temperature Definition

- We have to relate the dynamics of atoms to the nodal temperature field

$$E^{MD} = \sum_{\alpha} \frac{1}{2} m_{\alpha} |\mathbf{v}_{\alpha}|^2 + \Phi \implies \begin{aligned} e_{\alpha}^k &\approx m_{\alpha} |\mathbf{v}'_{\alpha}|^2 / \Delta V_{\alpha} \\ e_{\alpha}^t &\approx (m_{\alpha} |\mathbf{v}'_{\alpha}|^2 / 2 + \phi'_{\alpha}) / \Delta V_{\alpha} \end{aligned}$$

- Define restriction operation: MD field \rightarrow Nodal field
 - E.g. projection, averaging, shape functions...
 - One way: minimize difference between MD and continuum temperature fields

$$\min_{\theta_I} \sum_{\alpha \in \text{atoms}} \left(e_{\alpha} \Delta V_{\alpha} - \sum_{I \in \text{nodes}} \rho c_v N_{I\alpha} \theta_I \Delta V_{\alpha} \right)^2 \implies \theta_I = \sum_{\alpha} \hat{N}_{I\alpha} T_{\alpha}$$

$$\rho \equiv \frac{m_{\alpha}}{\Delta V_{\alpha}}, \quad c_v \equiv \frac{3k_B}{m_{\alpha}}$$

Dulong-Petit expression for heat capacity of a mono-atomic solid or dense fluid above the Debye temperature

Using row-sum lumping (localization) and atomic quadrature for mass matrix in MD region (thermodynamic consistency)

$$\begin{aligned} \hat{N}_{I\alpha} &= \frac{N_{I\alpha}}{\sum_{\beta} N_{I\beta}} \\ T_{\alpha} &= \frac{1}{3k_B} e_{\alpha} \end{aligned}$$

Derivation of Coupled FEM-MD Equations

- Apply Galerkin method to entire domain:

- Decompose domain:

$$\int_{\Omega} N_I(\mathbf{x}) \frac{\partial}{\partial t} \left(\rho c_v \theta^h(\mathbf{x}) \right) dV = \int_{\Omega_{\text{fem}}} N_I(\mathbf{x}) \frac{\partial}{\partial t} \left(\rho c_v \theta^h(\mathbf{x}) \right) dV + \sum_{\alpha} \frac{\partial}{\partial t} \left(N_{I\alpha} \rho c_v \theta_{\alpha}^h \Delta V_{\alpha} \right)$$

- Use atomic energy density:

$$\int_{\Omega_{\text{fem}}} N_I(\mathbf{x}) \frac{\partial}{\partial t} \left(\rho c_v \theta^h(\mathbf{x}) \right) dV + \sum_{\alpha} \frac{\partial}{\partial t} \left(N_{I\alpha} \rho c_v \theta_{\alpha}^h \Delta V_{\alpha} \right) = \int_{\Omega_{\text{fem}}} N_I(\mathbf{x}) \frac{\partial}{\partial t} \left(\rho c_v \theta^h(\mathbf{x}) \right) dV + \sum_{\alpha} \frac{\partial}{\partial t} \left(N_{I\alpha} e_{\alpha} \Delta V_{\alpha} \right)$$

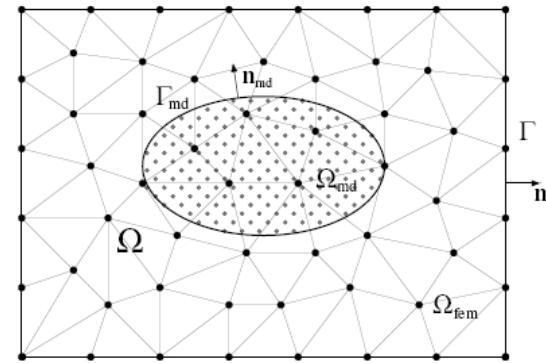
- Apply physics:

$$\int_{\Omega_{\text{fem}}} N_I(\mathbf{x}) \frac{\partial}{\partial t} \left(\rho c_v \theta^h(\mathbf{x}) \right) dV + \sum_{\alpha} \frac{\partial}{\partial t} \left(N_{I\alpha} \rho c_v \theta_{\alpha}^h \Delta V_{\alpha} \right) =$$

$$\int_{\Omega_{\text{fem}}} N_I \nabla \cdot \kappa \nabla \theta^h dV + \sum_{\alpha} N_{I\alpha} \left(\mathbf{v}_{\alpha} \cdot \mathbf{f}_{\alpha} + \dot{\phi}'_{\alpha} \right) + \sum_{\alpha} (\nabla N_{I\alpha} \cdot \mathbf{v}_{\alpha}) e_{\alpha} \Delta V_{\alpha}$$

- Discretize:

$$\sum_J \frac{\partial}{\partial t} (M_{IJ} \theta_J) = \sum_J K_{IJ} \theta_J + \sum_{\alpha} N_{I\alpha} \left(\mathbf{v}_{\alpha} \cdot \mathbf{f}_{\alpha} + \dot{\phi}'_{\alpha} \right) + \sum_{\alpha} (\nabla N_{I\alpha} \cdot \mathbf{v}_{\alpha}) e_{\alpha} \Delta V_{\alpha}$$



Coupling MD Thermostat

- Effects of FEM on MD can be included by prescribing constraints relating the FE and MD dynamics:

- Temperature constraint

$$\sum_{\alpha} N_{I\alpha} \mathbf{v}_{\alpha} \cdot \mathbf{f}_{\alpha} + \sum_{\alpha} N_{I\alpha} \phi'_{\alpha} + \sum_{\alpha} (\nabla N_{I\alpha} \cdot \mathbf{v}_{\alpha}) e_{\alpha} \Delta V_{\alpha} - \sum_J \frac{\partial}{\partial t} (M_{IJ}^{MD} \theta_J) = 0$$

- Heat flux constraint

$$\sum_{\alpha} N_{I\alpha} \left(\frac{\partial \Phi}{\partial \mathbf{x}_{\alpha}} \cdot \mathbf{v}_{\alpha} + \mathbf{v}_{\alpha} \cdot \mathbf{f}_{\alpha} \right) + \int_{\Gamma_{MD}} N_{I\alpha} \mathbf{n}_{md} \cdot \mathbf{q}^h \, dA = 0$$

- Thermostat force exactly cancels the FE boundary flux for the total temperature definition, otherwise there is a partial residual

Governing Equation for the Lagrange Multiplier

- Application of Gauss' principle of least constraint to atomic forces provides an elliptic equation for the Lagrange Multiplier:

$$\sum_{\alpha} N_{I\alpha} K_{\alpha} \sum_J N_{J\alpha} \lambda_J = R_I^c$$

- Variable λ is a continuum field defined on the nodes:

$$\lambda(\mathbf{x}_{\alpha}) = \sum_I N_{I\alpha} \lambda_I$$

- Differentiating the constraint w.r.t the new force gives

$$\mathbf{f}_{\alpha} = \mathbf{f}_{\alpha}^{MD} - \frac{m_{\alpha}}{2} \lambda(\mathbf{x}_{\alpha}) \mathbf{v}_{\alpha}$$

- So atomic degrees of freedom are governed by

$$m_{\alpha} \dot{\mathbf{v}}_{\alpha} = \mathbf{f}_{\alpha}^{MD} - \frac{m_{\alpha}}{2} \sum_I N_{I\alpha} \lambda_I \mathbf{v}_{\alpha}$$

Motivation for the Fractional Step Method

- Fractional step originally developed by Chorin to exactly satisfy elliptic constraints on a hyperbolic problem
- In this case there are several complicating factors
 - Discrepancy in evolution of kinetic energy in atomic system

$$\Delta K_\alpha = \Delta t \mathbf{v}_\alpha \cdot \mathbf{f}_\alpha + \frac{\Delta t^2}{2} \mathbf{f}_\alpha \cdot \mathbf{f}_\alpha$$

- No direct evaluation of the time derivative of the potential

$$\frac{\partial \phi_\alpha}{\partial t} = ?$$

- Drift between change in shape functions and convection

$$\nabla N_{I\alpha} \cdot \mathbf{v}_\alpha \neq \Delta N_{I\alpha}$$

Fractional Step Method for Time Integration

- Gear time integration for FE dynamics: $K_{IJ}\theta_J$
- Velocity-Verlet time integration for MD dynamics: $m_\alpha \dot{\mathbf{v}}_\alpha = \mathbf{f}_\alpha^{MD}$
- Consistent update for MD contribution to FE temperature:

$$\Delta\theta_I = M_{IJ}^{-1} \sum_\alpha N_{I\alpha} e_\alpha \Delta V_\alpha \Big|_{t+\Delta t} - M_{IJ}^{-1} \sum_\alpha N_{I\alpha} e_\alpha \Delta V_\alpha \Big|_t$$
- Considering the change in nodal energy

$$N_I \Delta E_I = \sum_\alpha N_{I\alpha} \left(\Delta t \mathbf{v}_\alpha \cdot \mathbf{f}_\alpha + \frac{\Delta t^2}{2} m_\alpha^{-1} \mathbf{f}_\alpha \cdot \mathbf{f}_\alpha + \phi'_\alpha \Big|_{t+\Delta t} - \phi'_\alpha \Big|_t \right)$$

- Enables general temperature definitions to be used
- Eliminates temperature drift between FE and MD systems

Modified Equation for Exactly Satisfying Constraints

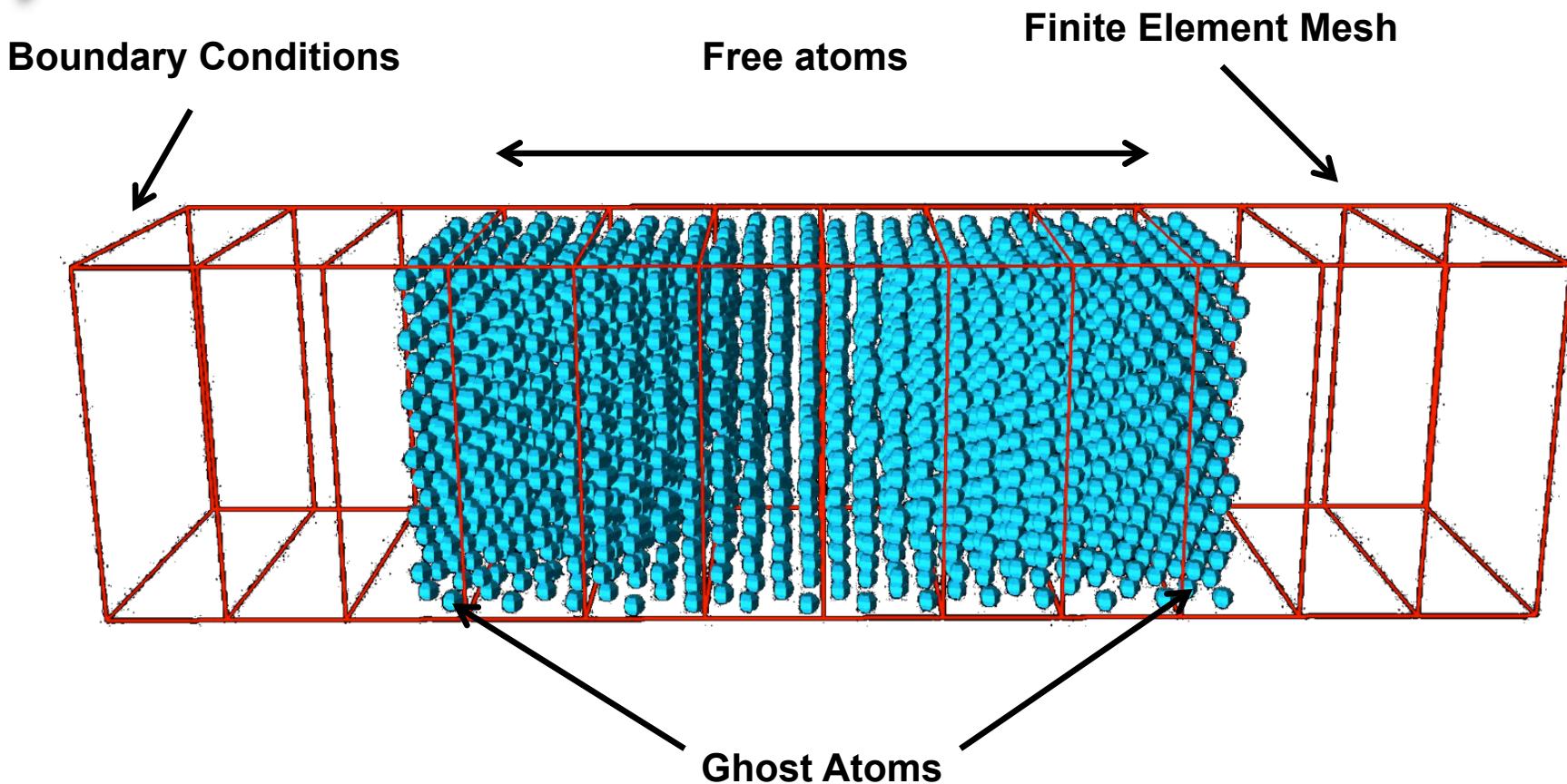
- Second order terms must be account for in the constraint equations

$$\Delta t \sum_{\alpha} N_I^{\alpha} K_{\alpha} \sum_{\mathcal{J}} N_J^{\alpha} \lambda_J - \frac{\Delta t^2}{4} \sum_{\alpha} N_I^{\alpha} K_{\alpha} \left(\sum_J N_J^{\alpha} \lambda_J \right) \left(\sum_K N_K^{\alpha} \lambda_K \right) = R_I^c$$

- Boundary flux when needed is added with the Verlet step

- Solvability criteria gives time step size criterion: $\Delta t \lambda < 1$
- Iterative methods can be use to converge the solution to machine precision for exact constraint enforcement
- Eliminates drift which causes instability with fixed temperature constraints
- Enables exact energy conservation in the coupling algorithm

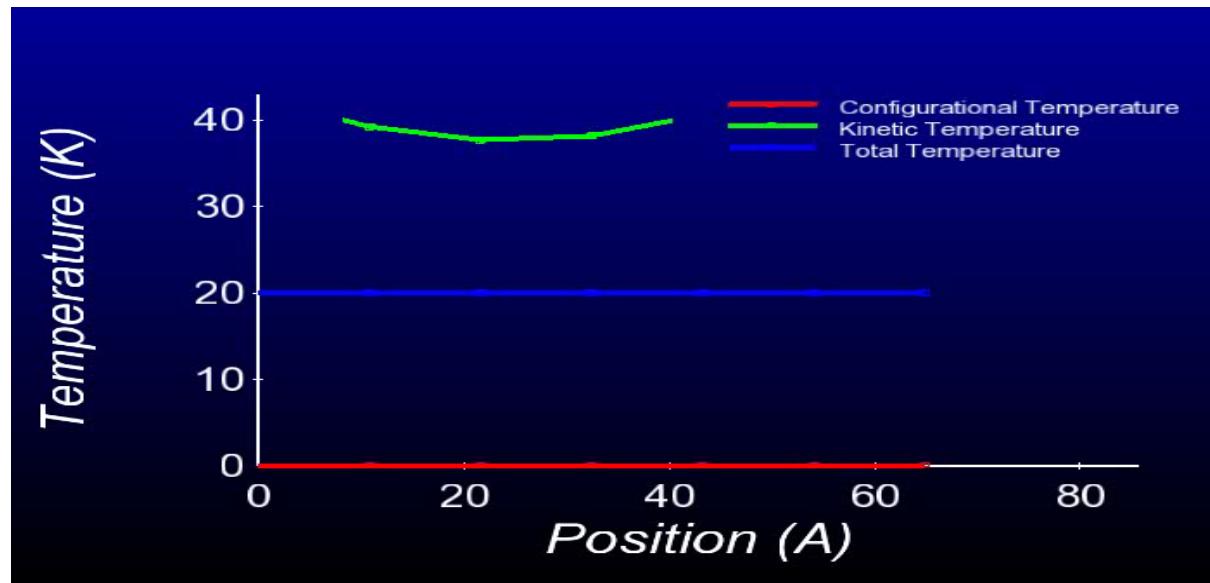
Demonstration Problems



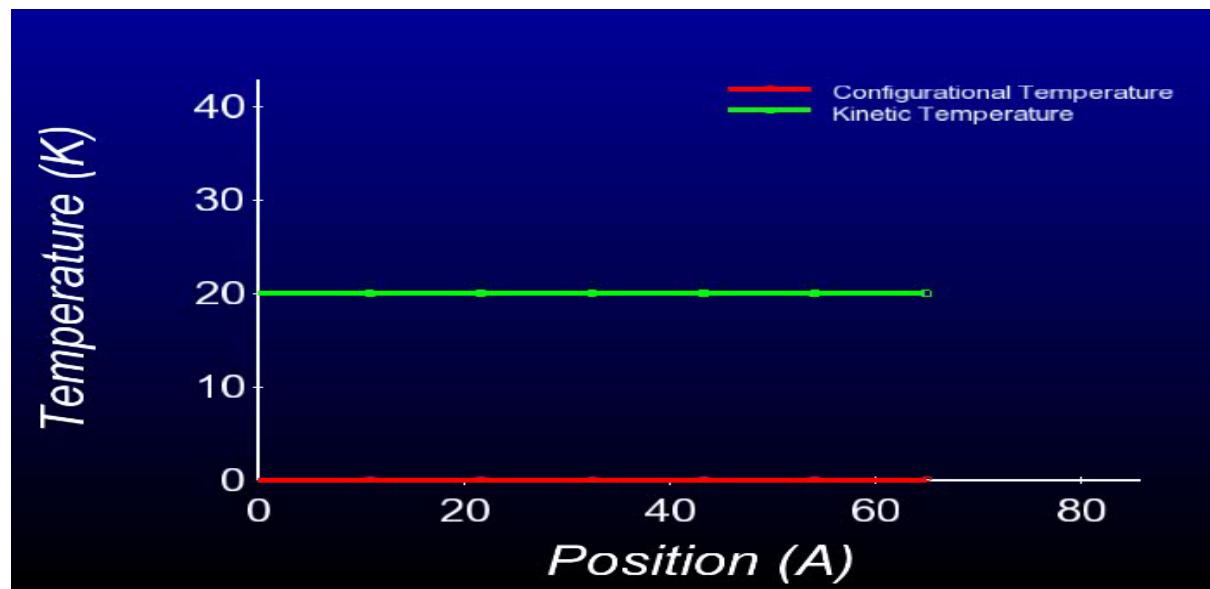
Lennard-Jones Argon with equilibrium FCC spacing at 20 K

Equilibration to 20 K

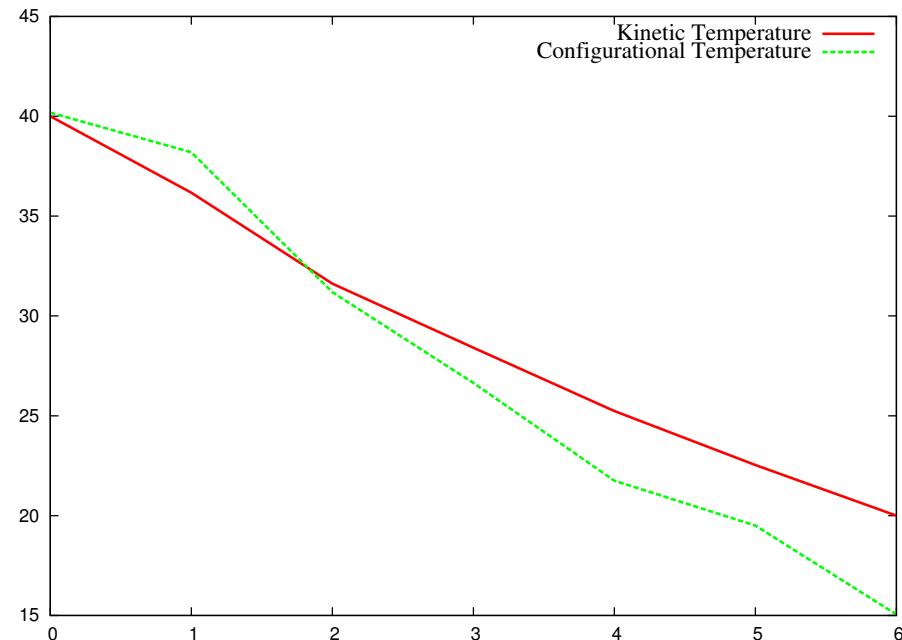
Total
Temperature



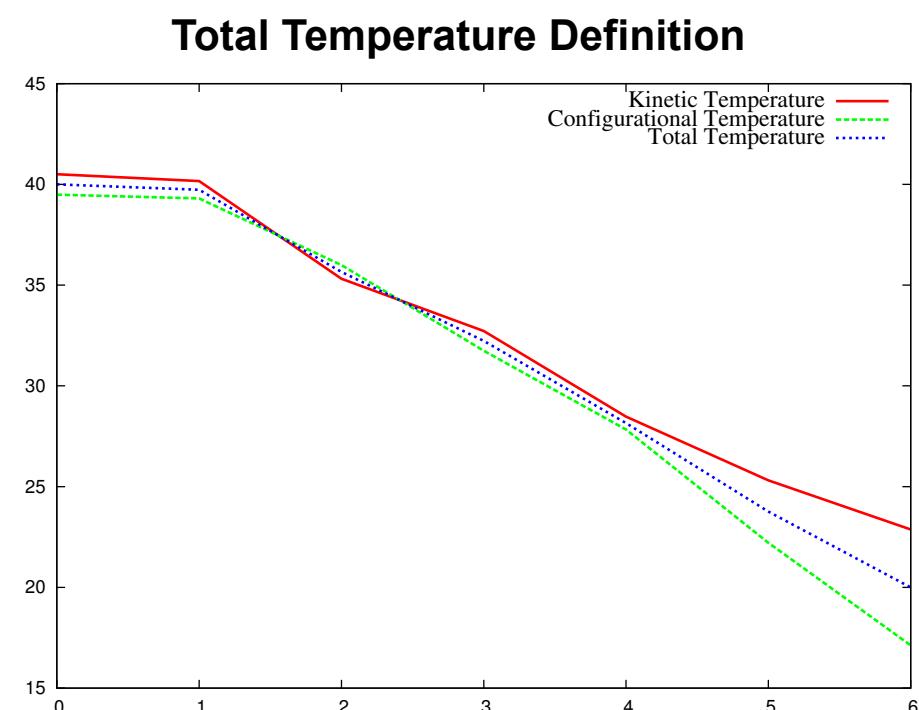
Kinetic
Temperature



Application of Fixed Temperature BCs

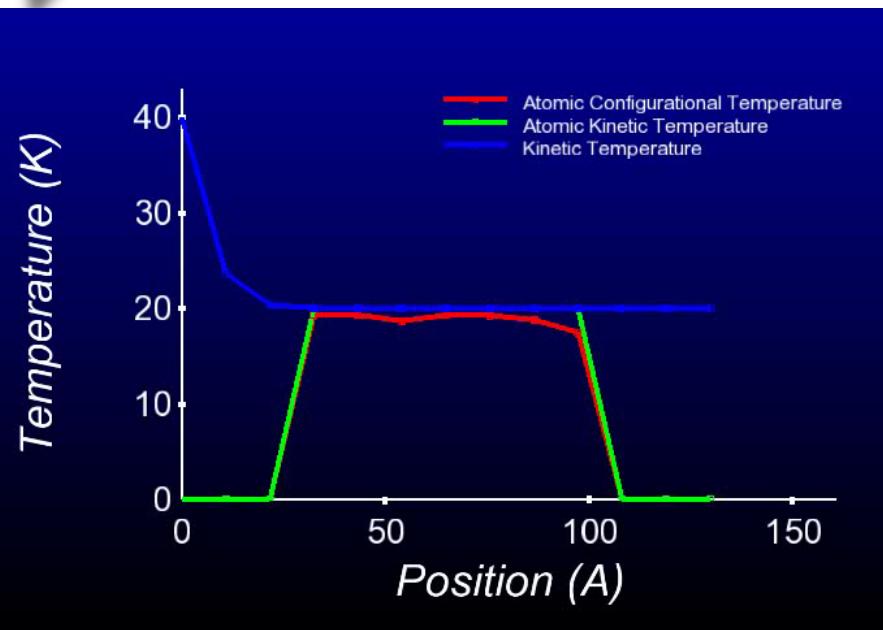
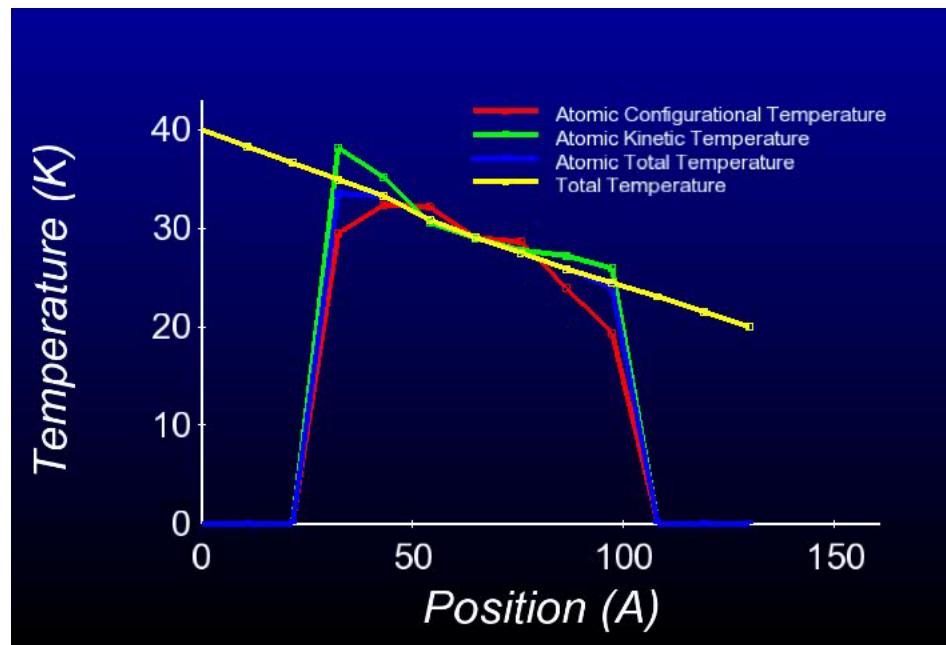


Kinetic Temperature Definition

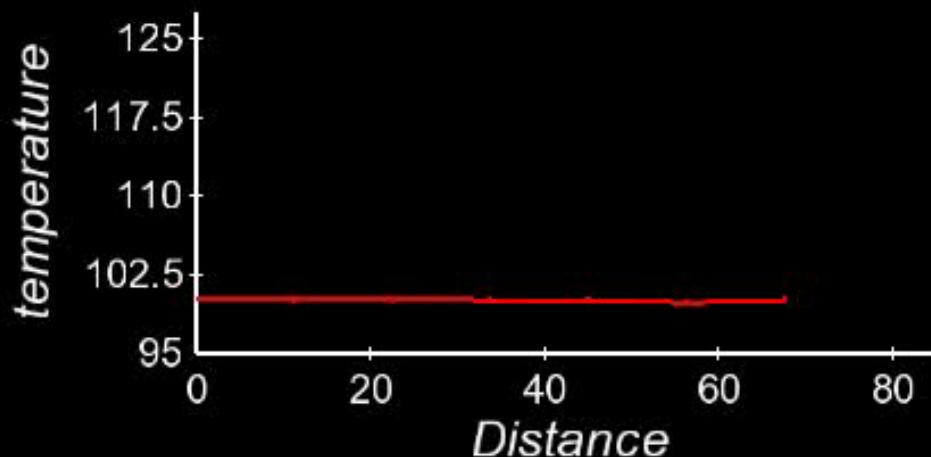
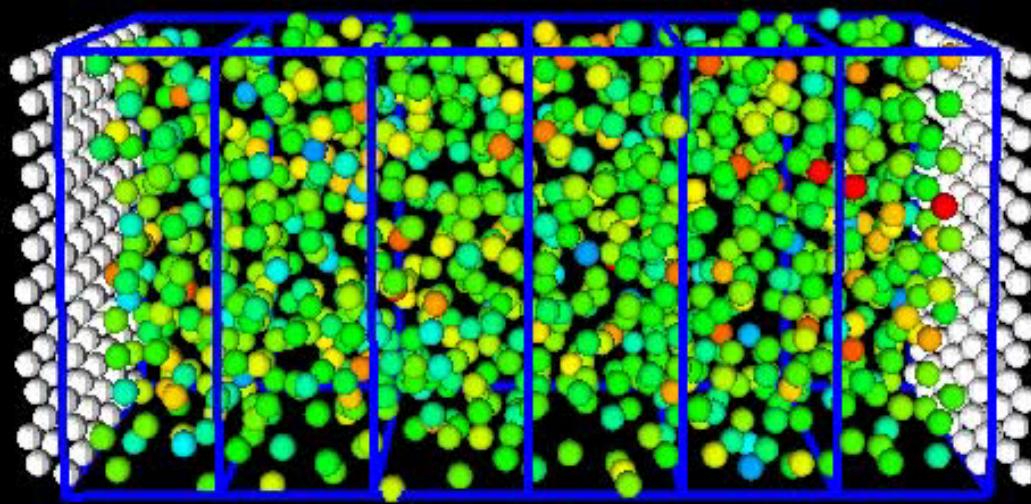


Total Temperature Definition

Fluxed-Based Multiscale Coupling

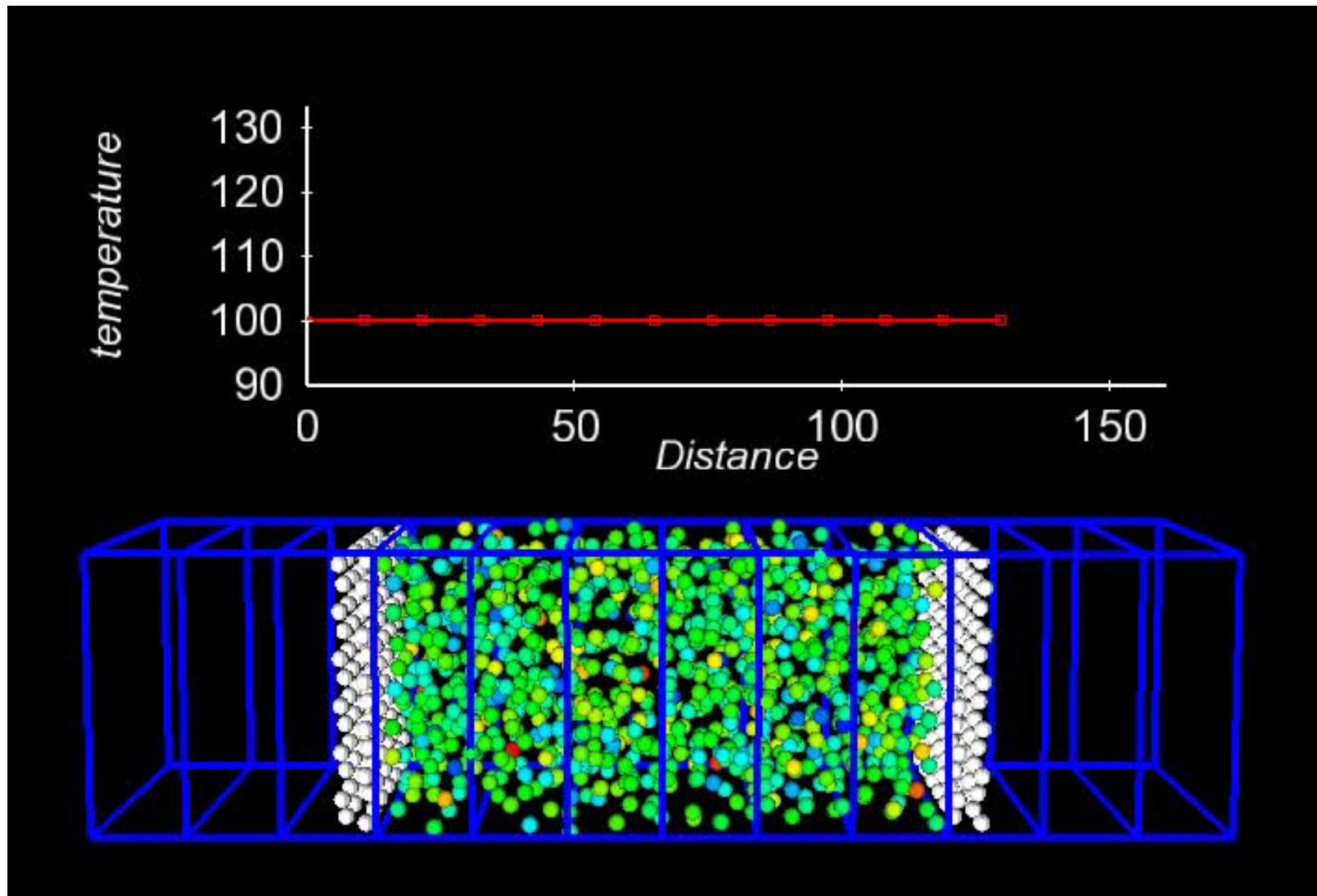


Liquid Argon Temperture BCs



$$\kappa = 1.54 \times 10^{-9} \text{ AMU/fs}^3 \text{ K}$$

Liquid Argon Flux Coupling



Conclusions

- A generalized set of equations for coupled MD-FE thermal transport has been derived
 - Appropriate for Lagrangian or Eulerian frames
 - Can use a large class of temperature definitions
- Hyperbolic transport equations were solved consistently with an elliptic constraint using a fractional step method
 - Increases numerical stability by exactly enforcing coupling constraints
- Robustness has been demonstrated in several example problems covering the types of problems of interest
- Future work:
 - Determination of thermal properties of complex systems
 - Assessment of heat propagation through nano-devices
 - Modeling of fluid-solid interfaces