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Concentrated Solar Power

 Solar Thermal ‘
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« Central Receiver

— Heliostats ~50% of Plant ..
Capital Costs &

» Parabolic Dish
— No Storage, Space Limitations

L' -
G. J. Kolb, et al., Sandia National Laboratories SAND2007-3293, June 2007.
G. Glatzmaier, National Renewable Energy Laboratory NREL/TP-5500-52134, August 2011.




High Temperature Operation
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 More efficient thermal-to-electric conversion
* Higher thermal losses

N. P. Siegel, Wiley Interdisciplinary Reviews: Energy and Environment, vol. 1, pp. 119-131, 2012.



2| Thermochemical Energy Storage

 Ammonia Synthesis

{3 Ammonia Synthesis
Ammonia Dissociation (Exothermic Reactor)

(Endothermic Reactor)

q Heat Exchangers
Power Generation

(Steam Cycle)

Separation and Storage

NH, +DH = 1/2N, + 3/2H,

K. Lovegrove, Solar Energy, vol. 76, pp. 331-337, 2004.



(55 Thermochemical “Boosting’

« Sensible AND Thermochemical Energy Storage
— Qsensipie(T) = f;{; Cp(T’) dT’

— Qthermochem (T, [02]) = AHyy (T, [02]) - x
* Augmenting effective heat capacity
— Increased energy storage density

* Increased exergetic efficiency (Ex = ( - —) Q)

— Keeping reactants at temperature

— Higher upper limit of exergetic efficiency
Thigh Tiow Exergy Loss

Ammonia Cycle 700°C 500°C 11.26%
“Hercynite Cycle” 1200°C 1150°C 0.90%



Potential Systems
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* Moving or Stationary Solid Media
* Direct vs Indirect Storage
* Pros and Cons to each
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Hercynite Reaction

COF6204 + 3 A|203 < COAI204 + 2 FeA|204 + % 02
» Water/CO, Splitting
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D. Arifin, et al., Energy & Environmental Science, vol. 5, J. R. Scheffe, et al., International Journal of

pp. 9438-9443, 2012. Hydrogen Energy, vol. 35, pp. 3333-3340, 2010. 8



Hercynite Cycle for Boosting

* Why Hercynite Cycle?

e Chemical

Components
Al,O, 83
Sio, 5
TiO, 3.5
Fe,O, 7.0
Other 1.5

http://www.carboceramics.com/CARBO-HSP/

N. P. Siegel, et al., Journal of Solar Energy
Engineering, vol. 132, p. 021008, 2010.

Moles OEJMnIe Ferrite

 Reaction

Temperatures
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J. R. Scheffe, et al., International Journal of
Hydrogen Energy, vol. 35, pp. 3333-3340, 2010.
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L) Thermodynamic Predictions

&dﬁage

« FACTSage™ Proprietary Software
* Gibbs free energy minimization
« Specific initial materials and conditions

« Software calculates composition and state
of material at thermodynamic equilibrium

— Also calculates changes from initial conditions



| FACT — Temperature and O, Study

° CaICUIated reaCtlon 0 Heat of Reaction for Various Temperature and O2 Concentrations (kJ/kg)
enthalpy in isothermal
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&l FACT — Comparison to Exergy

Fractional ThermoChemical Boost to Sensible Exergy (%)

« Sensible energy 10
calculated from
ambient (23°C)

« Sensible energy
calculated in Excel

e (Calculated
thermochemical 3
fraction of sensible

e

energy D = |
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E. S. Domalski and E. D. Hearing, NIST Chemistry WebBook, Standard Reference Database Number 69, P. J. Linstrom
and W. G. Mallard, Eds., Gaithersburg, MD: National Institute of Standards and Technology.



)i Experimental Set Up

* Physically Mixed
Powders

— “Base Powder”

* 1:1:3 Molar Ratio
Co0O:Fe;0,:Al,04

— “Alumina-6 and -9~

 1:1:6 and 1:1:9 Molar
Ratio CoO:Fe,0;:Al,04

— Calcined at 850°C
e HT-XRD in-situ
« NETZSCH STA 409 CD TGA/DSC

13



2l Selected Peaks - HT-XRD in-situ
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2l Selected Peaks - HT-XRD in-situ
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2l Selected Peaks - HT-XRD in-situ
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DSC Data Summary

Heat of Oxidation
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@T Theoretical-Experimental Comparisons

Base Powder 1400-1000C Cycles Mass Changes

/ VAV

=f=L:perimental 1

5‘f':- of Initi:ll I"-ﬂ:lss

Experimental 2

T
Redl Oxl Red2 Ox2 Red3

Experimental Step

Theoretical calculations done with FACTSage™
“Base Powder” Material Formulation



(57 Predictions for Reaction Enthalpy

Base Powder 1400-1000C Cycles Reaction Enthalpy

A =
e

Experimental Step

Reaction Enthalpy (Ifg)

* Not necessarily due to -« Difference most likely
material formulation due to:

* Probably not kinetic — Experimental error
limitations — Reactant contact



b Conclusions

* Thermochemical energy storage “boost” from
Hercynite cycle can be up to ~19% of sensible

— Will be lower due to kinetic/reactivity limitations
and parasitic loads

— This is probably not enough to be useful

* Preliminary results are informative
— Matching cycle to sensible energy ranges
— High specific reaction enthalpy is critical
— Demonstration of isothermal energy storage
— Additional experimental verification needed



Suggestions for Future Work

» Better exploration of “"design space” for
thermochemical boost
— Thermodynamic and experimental
— Other materials are promising

 Mass and Energy system model for more in-
depth energy and exergy analysis

— Explore potential improvements to cycle process
and chemistry

— Evaluate thermochemical benefit vs parasitic
losses



Y New Materials

Hercynite Cycle Reduction Composition Study
600

Spinel Mass

F9203 — 2/3 Fe3O4 + 1/6 02 471 kJ/kg 500 Cor Mass
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300

Mass (g)
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200

Manganese Oxide Reduction Composition Study

« Cobalt and manganese |
. . . 0.9
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. . Eos

— High energy density Zos Mn304
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0.1
cost 0

500 550 600 650

Temperature (deg C)



Acknowledgements

e Team Weimer

S U.S. DEPARTMENT OF

@ Sandia National Laboratories ~ @) ENERGY ViS4

— Sandia National Laboratories is a multi-program laboratory managed
and operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the U.S. Department of Energy’s

National Nuclear Security Administration under contract DE-AC04-
94AL85000. T

— CSMP

— Kristin Meyer
— Mark Rodriguez ¢
— Kalvis Terauds .




Works Cited

D. Arifin, V. J. Aston, X. Liang, A. H. McDaniel, and A. W. Weimer, "CoFe204 on a porous
AlI203 nanostructure for solar thermochemical CO2 splitting," Energy & Environmental Science,
vol. 5, pp. 9438-9443, 2012.

E. S. Domalski and E. D. Hearing, "Condensed Phase Heat Capacity Data," in NIST Chemistry
WebBook, Standard Reference Database Number 69, P. J. Linstrom and W. G. Mallard, Eds.,
ed. Gaithersburg, MD: National Institute of Standards and Technology.

G. Glatzmaier, "Summary Report for Concentrating Solar Power Thermal Storage Workshop:
New Concept and Materials for Thermal Energy Storage and Heat-Transfer Fluids May 20,
2011," National Renewable Energy Laboratory (NREL) Golden, CO NREL/TP-5500-52134,
August 2011.

J. M. Hruby, "A Technical Feasibility Study of a Solid Particle Solar Central Receiver for High
Temperature Applications," Sandia National Laboratories SAND86-8211, 1986.

G. J. Kolb, S. A. Jones, M. W. Donnelly, D. Gorman, R. Thomas, R. Davenport, and R. Lumia,
"Heliostat Cost Reduction Study," Sandia National Laboratories SAND2007-3293, June 2007.

K. Lovegrove, "Developing ammonia based thermochemical energy storage for dish power
plants," Solar Energy, vol. 76, pp. 331-337, 2004.

J. R. Scheffe, J. Li, and A. W. Weimer, "A spinel ferrite/hercynite water-splitting redox cycle,"
International Journal of Hydrogen Energy, vol. 35, pp. 3333-3340, 2010.

N. P. Siegel, "Thermal energy storage for solar power production," Wiley Interdisciplinary
Reviews: Energy and Environment, vol. 1, pp. 119-131, 2012.



Questions?

@' University of Colorado Boulder



Additional Slides




High Temperature Operation

« Improvement of Power Cycle Efficiency

— Carnot Efficiency 7 = 1 — <ot
Thot

« Current materials do not operate at these
temperatures

Inconel 625 982°C
Stainless 347 899°C

 Containment materials would need to be rated
(or insulated) for higher temperatures

- 589



Hercynite Cycle for Boosting

* Why Hercynite Cycle?

* Direct Heating « Oxygen Control

O, product ?
+ 20 > 0,+4¢e

anode layer (porous) +
— electrolyte

cathode layer (porous)
—> air feed

D. L. Meixner, et al., Journal of the Electrochemical
Society, vol. 149, pp. D132-D132, 2002.

J. M. Hruby, Sandia National Laboratories SAND86-8211, 1986.



Oxygen Control
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D. L. Meixner, et al., Journal of the Electrochemical Society, vol. 149, pp. D132-D132, 2002.



TGA/DSC Data - Energy Flows

TG /%
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& FACT - Comparison to Limited Exergy

Fractional Thermochemical Boost to Sensible Exergy from 900 C (%)
10

* Reaction enthalpy
compared to
exergy from
900°C
— Not very realistic

e Maximum is
66.1%

02 concentration (%)

9
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1 | 1 25— I 1
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Repeatable Cycles

Temp. /°C
TG /% DSC /(uV/mg)
Area: -28 83 pVs/mg Area: -28 28 pVs/mg Area: -28.32 pVs/mg L exo L 0.4
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. . L 800
1 | /I
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1 I : =02
98.5 | \ 600
.__:1_
5
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- 200
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Mass Change: -1.52 % Mass Change: -1.49 %  Mass Change: -1.47 % 0
0 50 100 150 200

Time /min



) Repeatable Cycles
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J. R. Scheffe, et al., International Journal of Hydrogen Energy, vol. 35, pp. 3333-3340, 2010.



b Reaction Extent

* VVolume Reduced:

4

Vred — 3 n(rpz —Tred 2)

» Particle diameter = 100 ym

* Reduction Depth = 6.69 ym

* Volume fraction reduced:
35%




Thermochemical/Thermal Storage Unit (SUN-TSU)
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Issues with TGA-DSC Data

 Al, O, crucible used for previous runs

» Al,O; becomes “heat transparent” at high
temperatures

— Al, O, is transparent in far-infrared and part of
the mid-infrared spectrum

— Radiative heat travels through crucible to
sample

— Gives false exotherms and/or exothermic shift

* Very little (any?) information available in
the literature



L) TGA-DSC Setup
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95% Exergetic Efficiency

Maximum Temperature Drop to Acheive 95% Exergetic Efficiecy
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Sulfur Process
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Power Cycle Matching

Sensible HTF - Isothermal Cycle

Sensible HTF - Sensible Cycle
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Fxargy
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Desirable Solar Resource

1>
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Parabolic Trough

Heat Transfer Fluid Thermal Energy Storage
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) Hercynite Cycle Composition

Hercynite Cycle Reduction Composition Study
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i Alumina-6 Experimental Comparisons

Alumina-6 TR and IsoRedox Mass Changes
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i Alumina-9 Experimental Comparisons

Alumina-9 TR and IsoRedox Mass Changes
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Solid Particle Receivers

Solid Particle “Heat
Transfer Fluid”

Operation at much higher

# 7~ || Solid Particle
R Receiver

temperatures

. . . High Temp
Moving particles is a Concentrated Soids Storage
challenge

J Direct Contact
Heat Exchanger

Initially studied in late
1970’s to mid-1980’s

— Currently being studied
again

Low Temp
Solids Storage

=

Lift

A Y

-J. M. Hruby, Sandia National Laboratories SAND86-8211, 1986.
-N. P. Siegel, et al., Journal of Solar Energy Engineering, vol. 132, p. 021008, 2010.
-http://www.carboceramics.com/CARBO-HSP/

\
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&l  Potential Systems - CASPR

Concentrated
Insolation

e

I

Lift

Z

Chemically
augmented solid
particle receiver

Benefits

— Direct utilization of
heat in particles

Issues

— Moving particles can
be difficult at high
temperatures

— Controlling
atmosphere can be
difficult at large scale



&l  Potential Systems - CASES
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« Chemically Augmented Stationary-solid Energy Storage

* Benefits
— No moving particles
— Could help put useful storage on dishes

* Issues
— Indirect storage can have efficiency losses
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) Fe,0,-Fe;O, Synthesis Comparison

Fe203-Fe304 Composition Comparison
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FACT — Isothermal Cycling

Calculated reaction
enthalpy in isothermal
cycling

Solid Material with

Argon (reduction) or
Oxygen (oxidation)
Normalized per unit
mass

Corrected for any
enthalpy changes in
gas phase

,_-
&

=
P

Reaction Enthalpy (klfkg)

=

o

hey

Isothermal Redox Reaction Enthalpy of
Hercynite Cycle

=== Reduction Enthalpy {1}

Oxidation Enthalpyil)

1050 1150 1250 1350 1450

Temperature {°C)



b Considerations for Other Materials

e Cobalt Oxide of interest

 Desirable Traits

— High specific reaction
enthalpy
. 901 kJ/kg @ 800°C
« 265 kJ/kg for hercynite

— Small AT for full reaction
* Potential Issues

— Sintering

— Toxicity

Mass (g)

600
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100

0

Hercynite Cycle Reduction Composition Study
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Total Solids

[\
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Cobalt Oxide Reduction Composition Study




