

Performance of an Implicit Finite Element Resistive MHD Solver for High Rayleigh Number Thermal Convection in Rotating Systems with Magnetic Fields

John N. Shadid

***Computational Science and Applied Mathematics Group,
Sandia National Laboratories***

Collaborators:

**Roger P. Pawlowski
Eric C. Cyr
Tom M. Smith
Tim M. Wildey**

Sandia National Laboratories

Luis Chacon

Los Alamos National Laboratory

Resistive MHD Equations

Resistive MHD Model in Residual Notation

$$\mathbf{R}_u = \frac{\partial(\rho\mathbf{u})}{\partial t} + \nabla \cdot (\rho\mathbf{u} \otimes \mathbf{u} - (\mathbf{T} + \mathbf{T}_M)) - \rho\mathbf{g} = 0; \quad \mathbf{T} = -\left(P + \frac{2}{3}\mu(\nabla \bullet \mathbf{u})\right)\mathbf{I} + \mu[\nabla\mathbf{u} + \nabla\mathbf{u}^T]$$

$$R_P = \frac{\partial\rho}{\partial t} + \nabla \cdot (\rho\mathbf{u}) = 0 \quad \mathbf{T}_M = \frac{1}{\mu_0}\mathbf{B} \otimes \mathbf{B} - \frac{1}{2\mu_0}\|\mathbf{B}\|^2\mathbf{I}$$

$$R_e = \frac{\partial(\rho e)}{\partial t} + \nabla \cdot [\rho\mathbf{v}e + \mathbf{q}] - \mathbf{T} : \nabla\mathbf{v} - \eta\left\|\frac{1}{\mu_0}\nabla \times \mathbf{B}\right\|^2 = 0$$

$$\mathbf{R}_B = \frac{\partial\mathbf{B}}{\partial t} - \nabla \times (\mathbf{u} \times \mathbf{B}) + \nabla \times \left(\frac{\eta}{\mu_0}\nabla \times \mathbf{B}\right) = \mathbf{0}.$$

2D $\mathbf{B} = \nabla \times \mathbf{A}$

$$R_{A_z} = \frac{\partial A_z}{\partial t} + \mathbf{u} \cdot \nabla A_z - \frac{\eta}{\mu_0}\nabla^2 A_z + E_z^0 = 0.$$

General Case a Strongly Coupled, Multiple Time- and Length-Scale, Nonlinear, Nonsymmetric System with Parabolic and Hyperbolic Character

B Field Lagrange Multiplier Formulation (Dedner et. al. 2002, Codina et. al. 2006, 2011; ...)

$$\frac{\partial(\rho\mathbf{v})}{\partial t} + \nabla \cdot \left[\rho\mathbf{v} \otimes \mathbf{v} - \frac{1}{\mu_0} \mathbf{B} \otimes \mathbf{B} + \left(P + \frac{1}{2\mu_0} \|\mathbf{B}\|^2 \right) \mathbf{I} - \boldsymbol{\Pi} \right] = \mathbf{0}$$

$$\frac{\partial(\rho)}{\partial t} + \nabla \cdot [\rho\mathbf{v}] = 0$$

$$\frac{\partial \mathbf{B}}{\partial t} + \nabla \cdot \left[\mathbf{v} \otimes \mathbf{B} - \mathbf{B} \otimes \mathbf{v} - \frac{\eta}{\mu_0} (\nabla \mathbf{B} - (\nabla \mathbf{B})^T) \right] - \nabla \psi = \mathbf{0}$$

$$\nabla \cdot \mathbf{B} = 0$$

Remarks:

- Elliptic constraint used to enforce divergence involution.
 - Only weakly divergence free in FE implementation (stabilization)
- Can show relationship with a projection method (e.g. Brackbill and Barnes 1980) when a 1st order-split integration is used.
- Issue for using C⁰ FE for domains with reentrant corners / soln singularities (Costabel et. al. 2000, 2002, Codina, 2011)

Summary of Initial Stabilized FE Weak form of Equations for Low Mach Number MHD System;

Governing Equation	Stabilized FE Residual (following Hughes et. al., Shakib - Navier-Stokes; Salah et. al. 99 & 01, Codina et. al. 2006 -Magnetics)
Momentum	$F_{m,i} = \int_{\Omega} \Phi R_{m,i} d\Omega + \sum_e \int_{\Omega^e} \rho \tau_m (\mathbf{u} \bullet \nabla \Phi) R_{m,i} d\Omega + \sum_e \int_{\Omega^e} \nu_{m,i} \nabla \Phi \bullet \mathbf{C}^c \nabla u_i d\Omega$
Total Mass	$F_P = \int_{\Omega} \Phi R_P d\Omega + \sum_e \int_{\Omega^e} \rho \tau_m \nabla \Phi \bullet \mathbf{R}_m d\Omega$ $\sum_e \int_{\Omega^e} \rho \tau_m \nabla \Phi \cdot \left[\frac{\partial(\rho \mathbf{v})}{\partial t} + \nabla \cdot [\rho \mathbf{v} \otimes \mathbf{v}] + \nabla P - \nabla \cdot \Pi - \mathbf{J} \times \mathbf{B} \right] d\Omega$
Thermal Energy	$F_T = \int_{\Omega} \Phi R_T d\Omega + \sum_e \int_{\Omega^e} \rho C_P \tau_T (\mathbf{u} \bullet \nabla \Phi) R_T d\Omega + \sum_e \int_{\Omega^e} \nu_T \nabla \Phi \bullet \mathbf{C}^c \nabla T d\Omega$
Magnetics (Vector Potential)	$F_{A_z} = \int_{\Omega} \Phi R_{A_z} d\Omega + \sum_e \int_{\Omega^e} \rho \tau_{A_z} (\mathbf{u} \bullet \nabla \Phi) R_{A_z} d\Omega + \sum_e \int_{\Omega^e} \nu_{A_z} \nabla \Phi \bullet \mathbf{C}^c \nabla A_z d\Omega$

Summary of Structure of Linear Systems Generated in Newton's Method

Galerkin FE (e.g. Mixed Q2/Q1 interpolation FEM):

$$\begin{bmatrix} \mathbf{M} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{v}} \\ \dot{\mathbf{P}} \end{bmatrix} + \begin{bmatrix} \mathbf{A} & -\mathbf{B}^T \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ \mathbf{P} \end{bmatrix} \quad \mathbf{v} = (\mathbf{u}, T, A_z)$$

Stabilized Q1/Q1 V-P elements, SUPG like terms and Discontinuity Capturing type operators

$$\begin{bmatrix} \mathbf{M} & \mathbf{0} \\ \mathbf{N} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{v}} \\ \dot{\mathbf{P}} \end{bmatrix} + \begin{bmatrix} \mathbf{A} & -\mathbf{B}^T \\ (\mathbf{B} + \mathbf{L}) \mathbf{K} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ \mathbf{P} \end{bmatrix}$$

$$\mathbf{K} = \sum_e \int_{\Omega^e} \rho \tau_m \nabla \Phi \bullet \nabla \Phi d\Omega$$

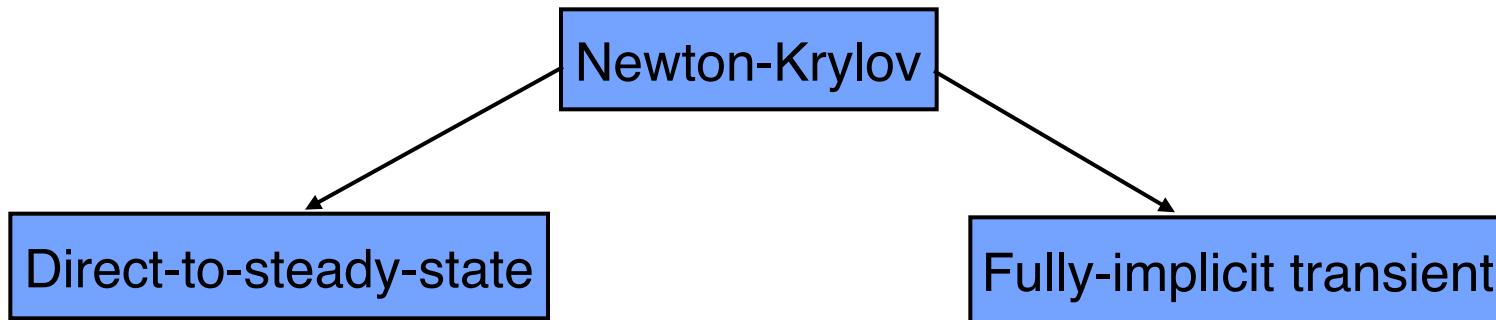
Comments on Formulations, Solution Algorithms and Underlying Software Arch.

Drekar: Low flow Mach number CFD & resistive MHD with coupled multiphysics

- Multiple Momentum, Energy, Mass Transport/reaction eqns.
- Fully-implicit: 1st-5th order BDF; IRK; MP; (**Rythmos**), & Semi-implicit with BDF compatible extrapolation.
- 2D & 3D Unstructured FE (**Intrepid**)
 - Stabilized FE (VMS),
 - Mixed FE e.g. Q2/Q1,
 - Physics Compatible Discretizations (edge, face, ...)
 - High-resolution Positivity-preserving in dev.
- Software Arch.:
 - Massively Parallel: Currently MPI-only (>128K cores); Exploring kernels on GPUs;
 - Solvers/Linear Alg. tools based on **Trilinos packages**
 - Template-based Generic Programming with Automatic Differentiation [AD] (**Sacado**)
 - Asynchronous dependency graphs for multiphysics complexity management (**Phalanx**)
- Fully Coupled Globalized Newton-Krylov Solver
 - Residuals are Programmed and AD generates Jacobian/derivatives for NK, JFNK, Sensitivities, Adoints, SGE -UQ, etc.
 - GMRES and Block Krylov (**AztecOO**, **Belos**)
 - Scalable Preconditioners: Fully-coupled system AMG (**ML**), Physics-based with AMG (**Teko**)
- Advanced Outer Loop Solvers
 - Direct-to-Steady-State (**NOX**),
 - Parameter Continuation, Linear Stability and Bifurcation (**LOCA**),
 - PDE Constrained Optimization & Parameter Inversion is Possible (**Moocho**)
- UQ Tools
 - Initial Adjoint formulations for Error Estimation and Sensitivity Analysis (**Panzer**)
 - Initial Stochastic Galerkin Expansions for UQ capability
 - Trikota blackbox interface to Dakota

[Drekar: Shadid, Pawlowski, Cyr, Smith, Wildey, Weber]

Why Newton-Krylov Methods?



Robustness, Convergence and Flexibility

- Strongly coupled multi-physics often requires a strongly coupled nonlinear solver
- Quadratic convergence near solutions
- Enables bifurcation, stability, optimization, integrated adjoint error estimation, sensitivity and UQ

Stability, Accuracy and Efficiency

- Stable (stiff systems)
- High order methods
- Variable order techniques
- Local and global error control possible
- Can be stable, accurate and efficient run at the dynamical time-scale of interest in multiple-time-scale systems (See e.g. Knoll et. al., Brown & Woodward., Chacon and Knoll, S. and Ober, S. and Ropp)

Equations of State (& e.g. HydroMagnetic Thermal Cavity)

Constant Density - Strictly incompressible

$$\rho = \rho_0 = \text{constant}$$

Boussinesq Approximation

$$\rho \approx \rho_0 + \frac{\partial \rho}{\partial T} \bigg|_0 (T - T_0) \text{ in momentum body force term}$$

$$\rho = \rho_0 \text{ and everywhere else}$$

Variable density Formulations

Low Flow Mach Number Approximation

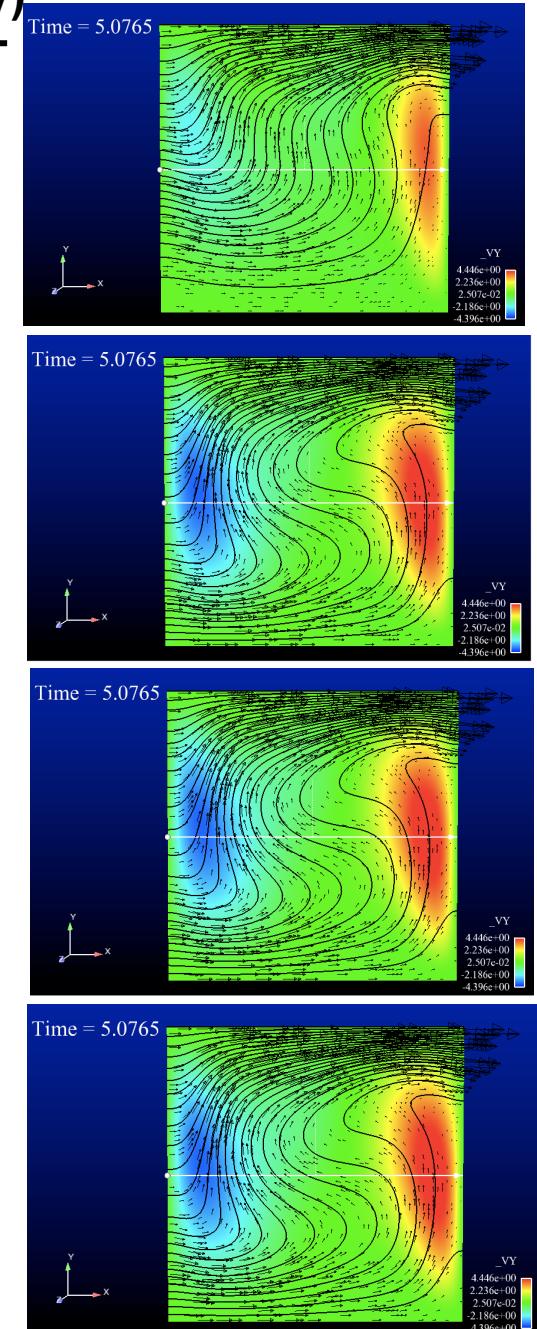
$$P_{th} = f(\rho, T, Y_i) \text{ where } P_{th} \text{ is thermodynamic not hydrodynamic pressure (P)}$$

Anelastic Approximation

$$P = f(\rho, T, Y_i) \text{ and } \frac{\partial \rho}{\partial t} = 0 \text{ in continuity eq.}$$

Compressible Fluid

$$P = f(\rho, T, Y_i)$$



Adjoint methods have been well studied and demonstrated for parabolic PDEs.
 [e.g. Rannacher, Oden, C. Johnson, Estep, Bangerth, Barth, Suli, Braack,]

1) E.g. Steady Navier-Stokes Re = 1000 channel flow (Analytic sol.). QoI point value of x-vel.

$$U_x = U_x^h + \text{err. est.}$$

$$U_x = 123.85 + 0.20833 \sim 124.05833$$

$$U_{\text{exact}} = 124.05896$$

QoI	Re	Estimated Value	Estimated Error	Effectivity Ratio
1	10	8.3125E-1	2.0833E-3	1.000
2	10	1.2385E+0	2.0779E-3	0.997
3	10	8.3125E-1	2.0833E-3	1.000
1	1000	8.3125E+1	2.0833E-1	1.000
2	1000	1.2385E+2	2.0779E-1	0.997
3	1000	8.3125E+1	2.0833E-1	1.000

Adjoint methods have been well studied and demonstrated for parabolic PDEs.
 [e.g. Rannacher, Oden, C. Johnson, Estep, Bangerth, Barth, Suli, Braack,]

1) E.g. Steady Navier-Stokes $Re = 1000$ channel flow (Analytic sol.). QoI point value of x-vel.

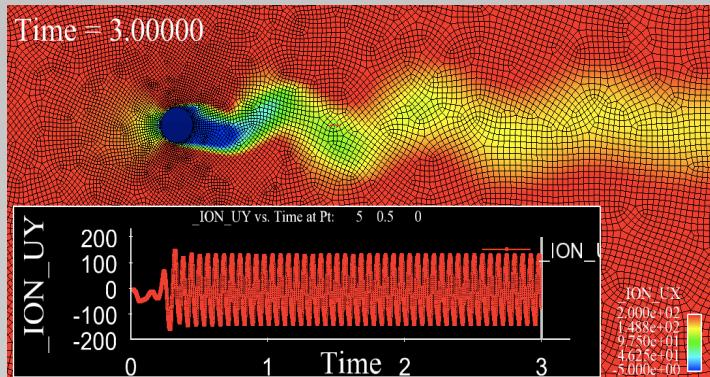
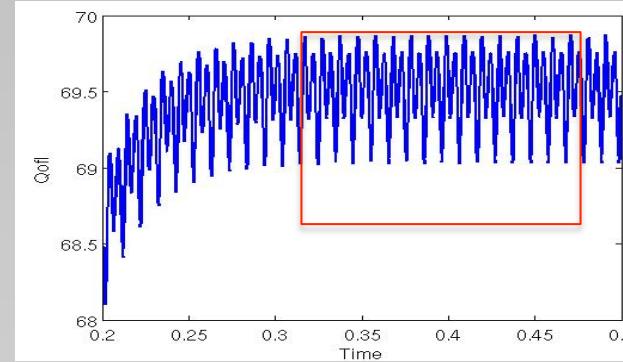
$$U_x = U_x^h + \text{err. est.}$$

$$U_x = 123.85 + 0.20833 \sim 124.05833$$

$$U_{\text{exact}} = 124.05896$$

QoI	Re	Estimated Value	Estimated Error	Effectivity Ratio
1	10	8.3125E-1	2.0833E-3	1.000
2	10	1.2385E+0	2.0779E-3	0.997
3	10	8.3125E-1	2.0833E-3	1.000
1	1000	8.3125E+1	2.0833E-1	1.000
2	1000	1.2385E+2	2.0779E-1	0.997
3	1000	8.3125E+1	2.0833E-1	1.000

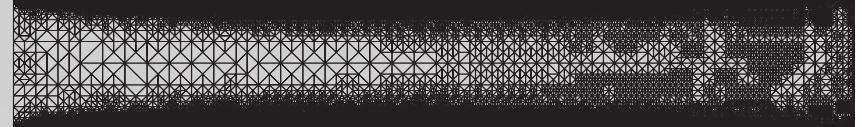
2) E.g Transient Navier-Stokes, vortex shedding behind Cylinder; QoI time-averaged drag



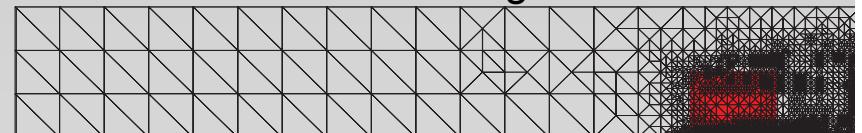
$$C_D^h = 69.4$$

$$\text{Error Est.} = 4.2\%$$

3) Useful for error est. leading to mesh refinement (Conv./Diff. example)

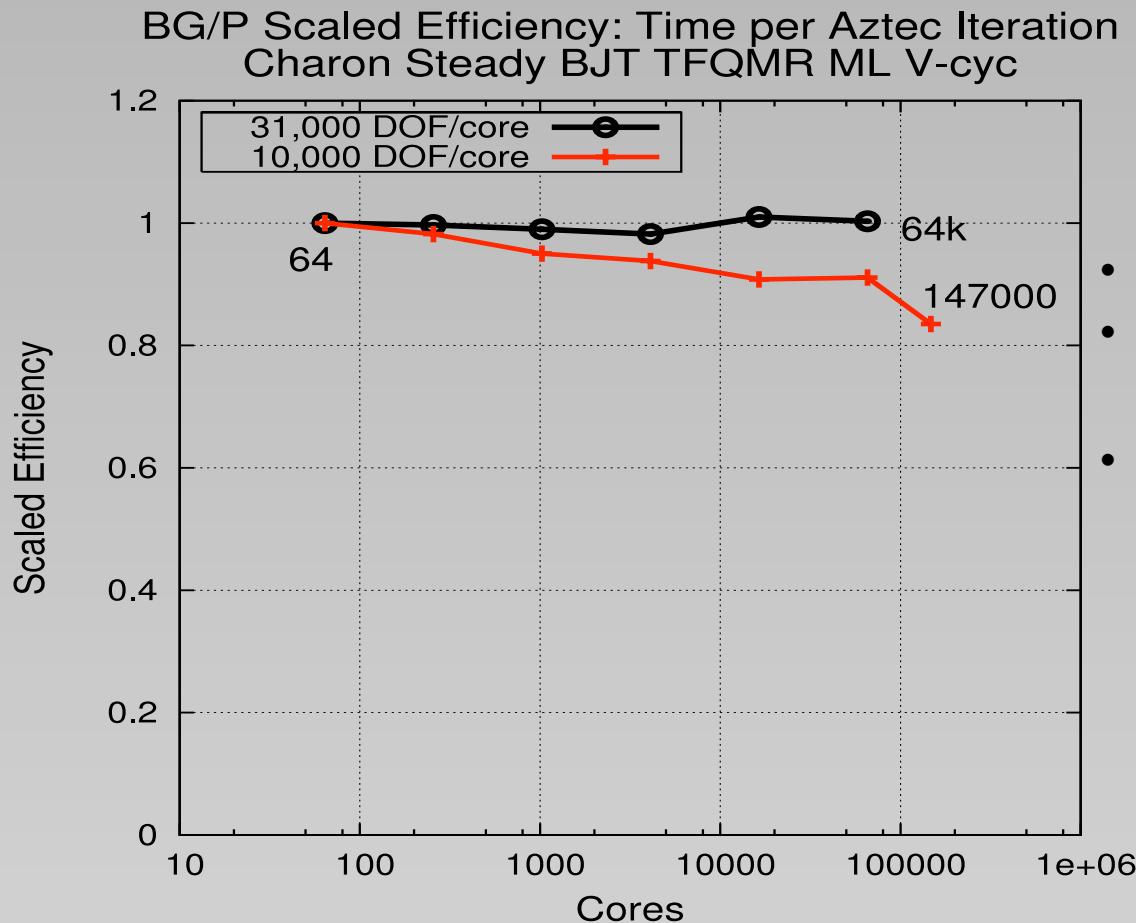


Refinement for 4% error in global domain



Refine for 4% error in localized region (QoI)

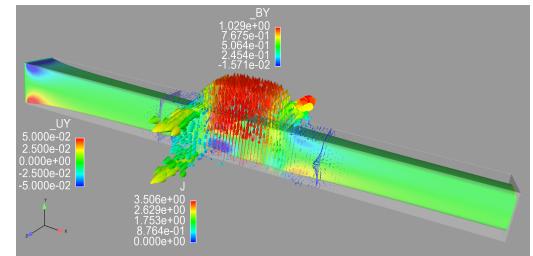
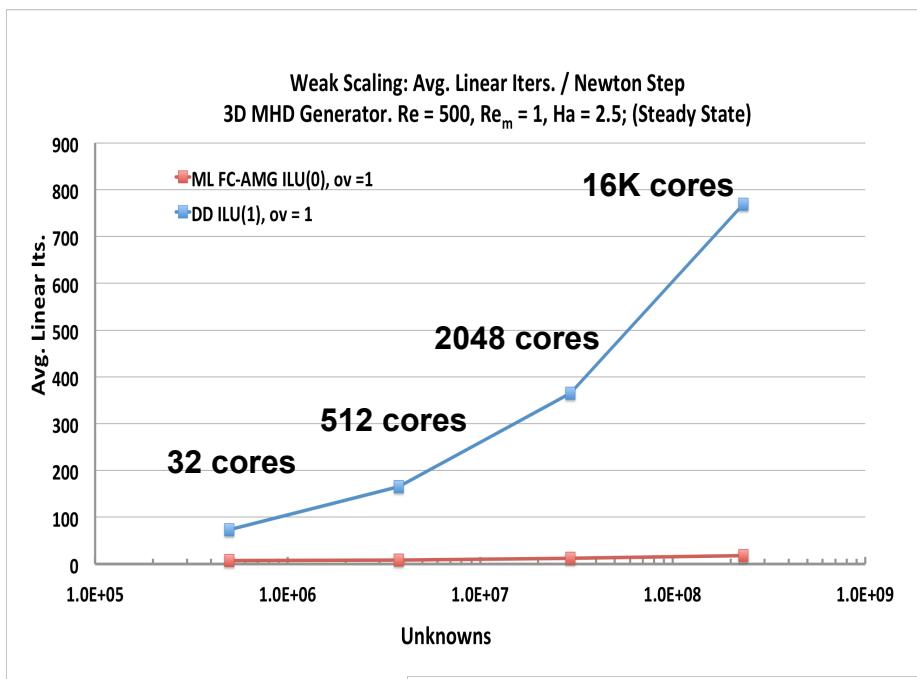
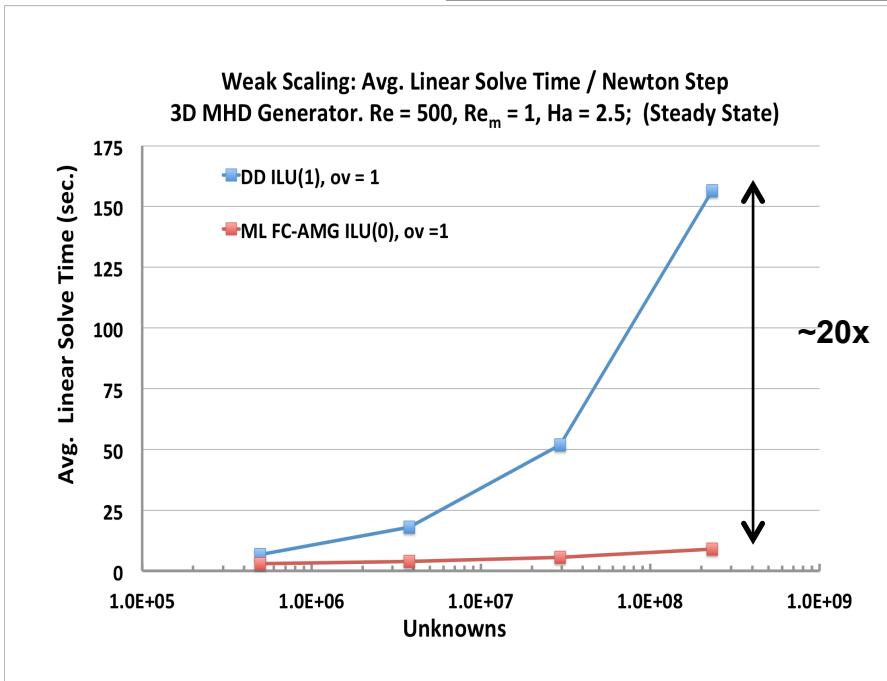
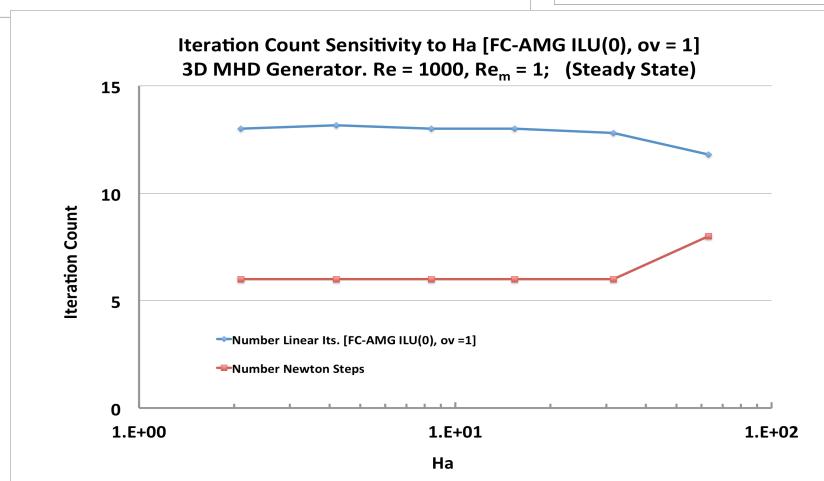
Comments on Formulations, Solution Algorithms and Underlying Software Arch.



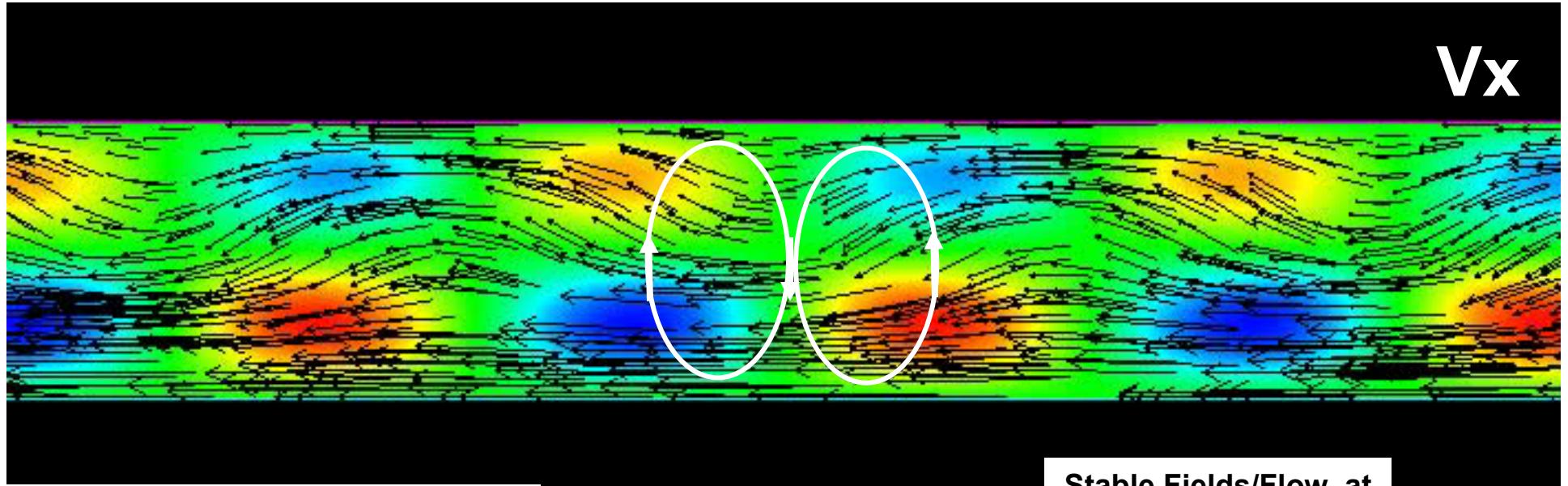
Scaling of Critical Solver Kernel used in Implicit FE MHD:
Krylov solver and AMG V-cycle (Drift-Diffusion application*)
[ML – Tuminaro, Hu, et. al.; *P.T. Lin IJNME, 91 (9) 2012]

- **V-cycle scaling is very good.**
- **Now working on preconditioner construction**
- **Overall efficiency ~50% at this point for 1K processor count increase > 64K cores.**

Weak Scaling Gmres/FC-AMG ILU(0), ov = 1; V(3,3) 3D MHD Generator Initial Titan (Cray XE7). [Re = 500, Ha = 2.4]



Scaling of
Avg. Linear Its with
Hartmann No.

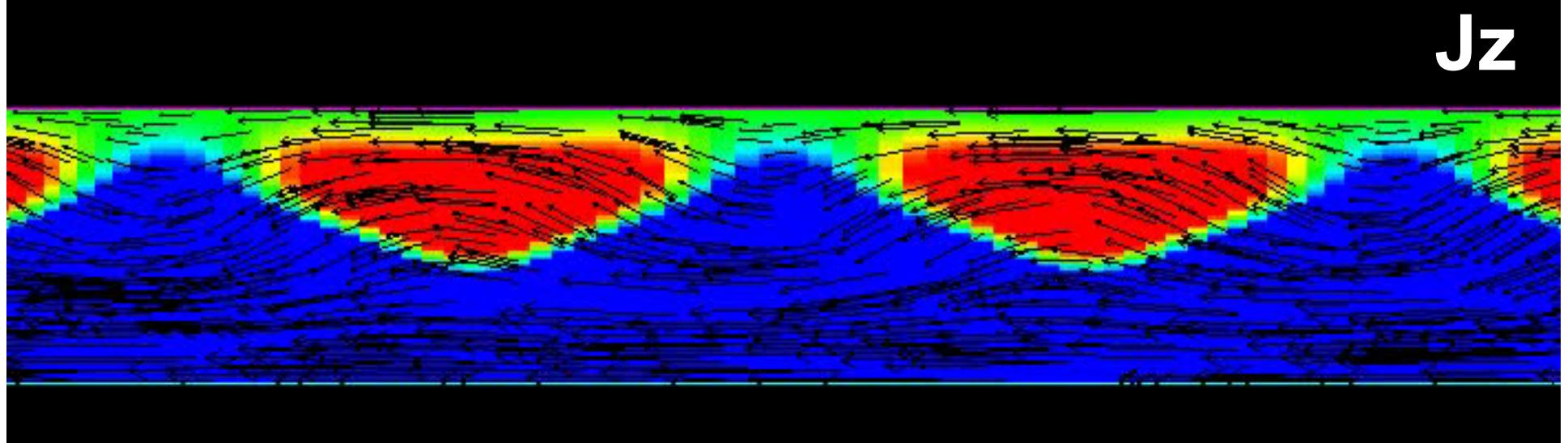


Hydro-Magnetic Rayleigh-Bernard Stability

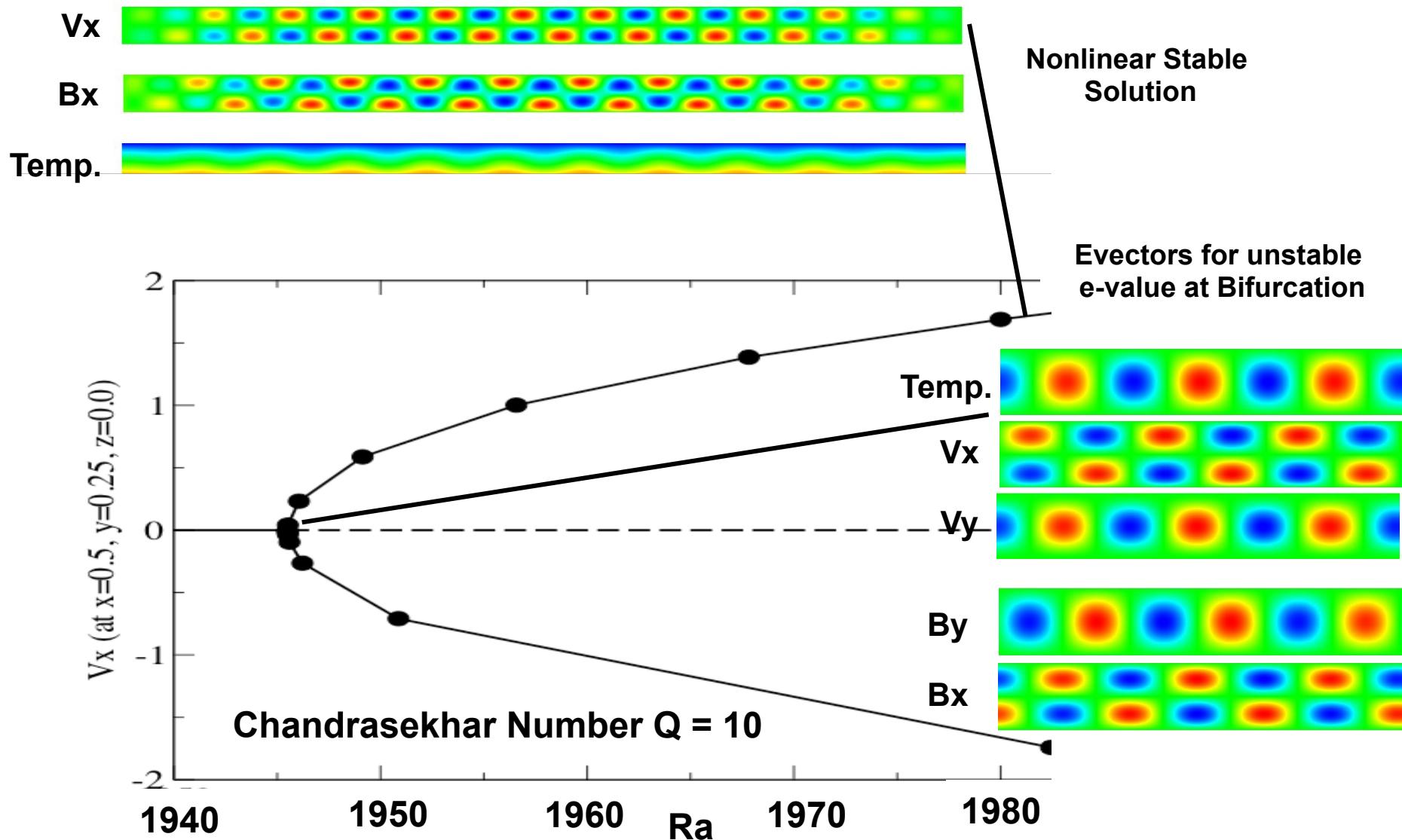
$$Ra = \frac{g\beta}{\nu\alpha} \Delta T d^3 \quad \text{and} \quad Q = \frac{B_0^2 d^2}{\mu_0 \rho \nu \eta} \quad Pr = \frac{\nu}{\alpha} \quad Pr_m = \frac{\nu}{\eta}$$

Stable Fields/Flow at
Ra = 4000, Q = 81

Unstable Flow at
Ra = 4000, Q = 144



Hydro-Magnetic Rayleigh-Bernard Stability: Direct Determination of Linear Stability and Nonlinear Equilibrium Solutions (Steady State Solves)

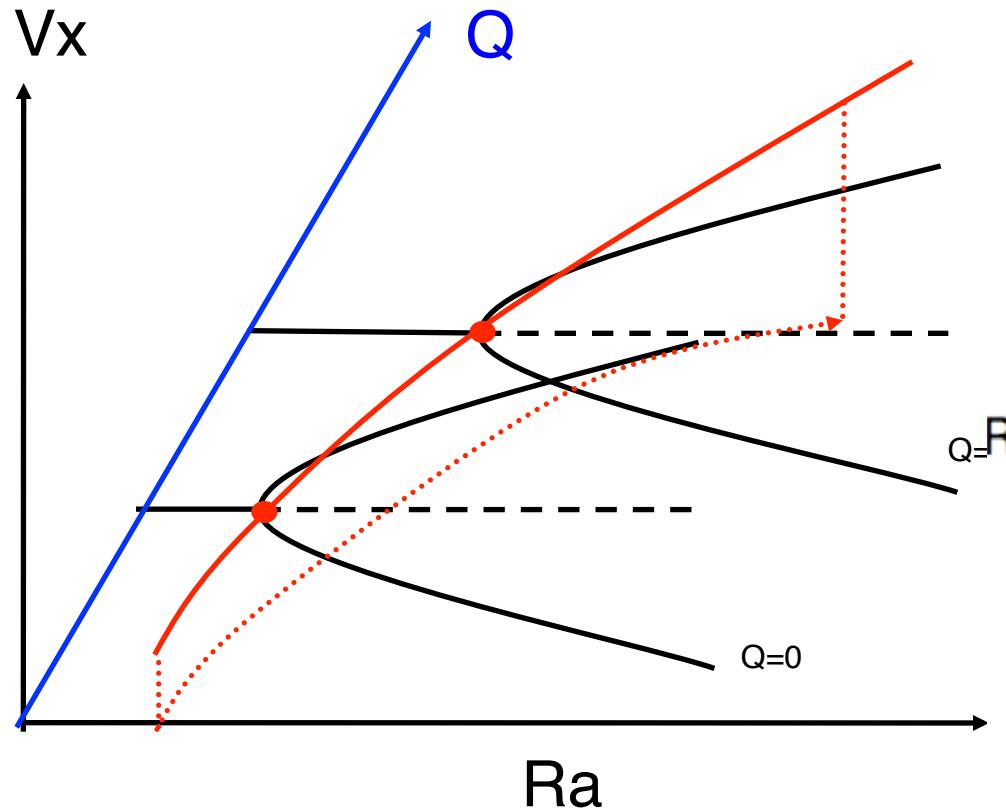


Hydro-Magnetic Rayleigh-Bernard Stability: Direct Determination of Linear Stability and Nonlinear Equilibrium Solutions (Steady State Solves)

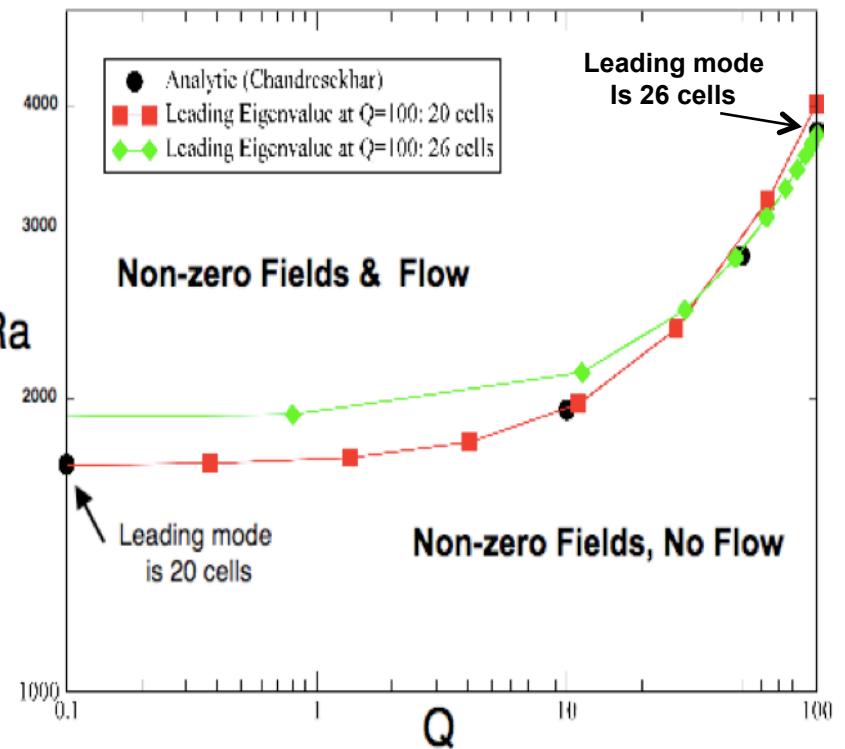
Q	Ra*	Ra_{cr} [Chandrasekhar[]]	% error
0	1707.77	1707.8	0.002
10^1	1945.78	1945.9	0.006
10^2	3756.68	3757.4	0.02

- 2 Direct-to-steady-state solves at a given Q
- Arnoldi method using Cayley transform to determine approximation to 2 eigenvalues with largest real part
- Simple linear interpolation to estimate Critical Ra*

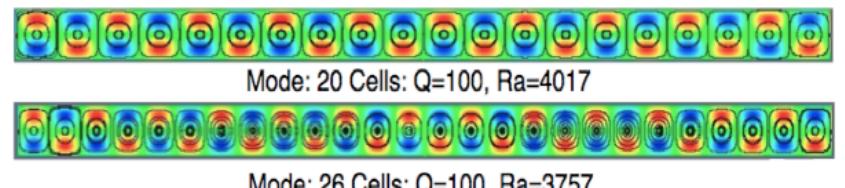
Bifurcation / Stability (Two-Parameter) Diagram



Most unstable mode compresses with increase in magnetic field strength

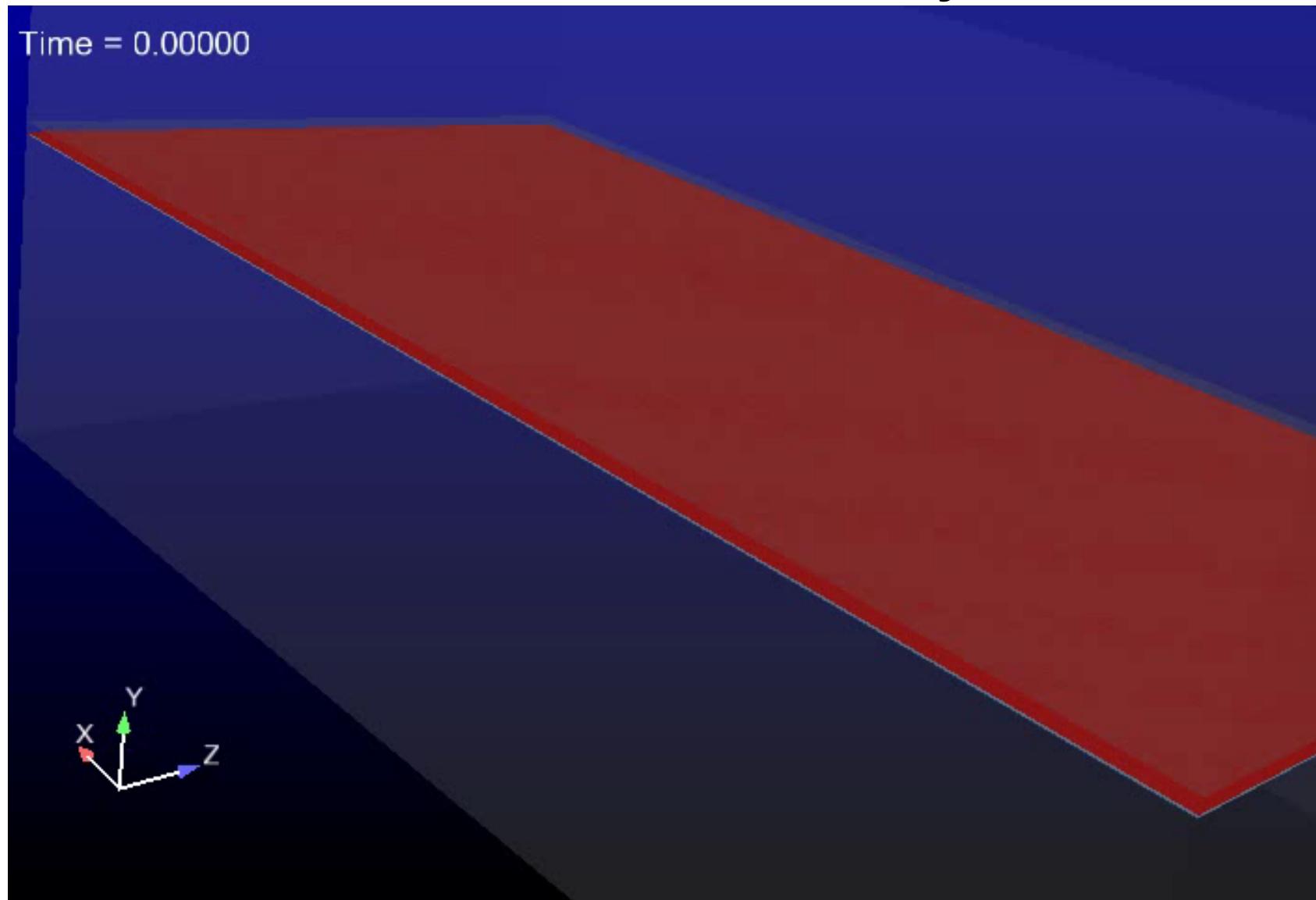


with Newton's method



Multi-parameter continuation can track critical points (pitchfork bifurcation, Hopf bifurcation, turning points, etc.) with NK solvers [LOCA - Salinger, Pawlowski, Phipps]

Kelvin-Helmholtz Unstable Shear Layer: $Re = 50,000$



E.g. Geodynamo Mechanisms and Simulations

Geodynamo Slides from J. Aurnou Talk (UCLA – Earth and Space Sciences Dept)

Necessary Ingredients

- A dynamo requires:
 1. An electrically-conducting material
 2. A sufficiently large body of material
 3. An energy source to drive motions of the material
 4. (Some net organization of the motions)

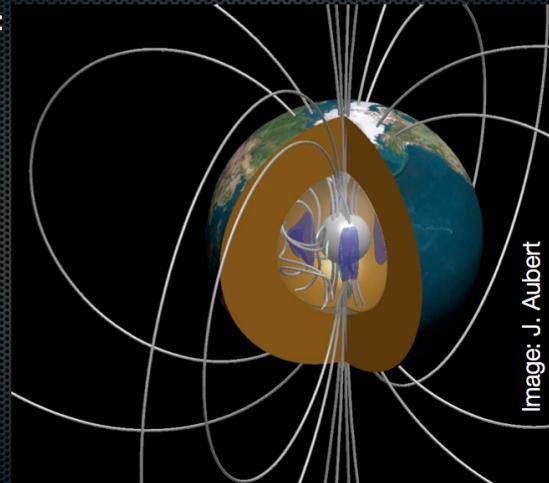


Image: J. Aubert

Where is the Field Generated?

- Crust has some magnetic materials
 - Cannot explain observed temporal variability
- Mantle is non-magnetic (too hot) & electrically insulating
- Core dynamo
 - Planetary dynamo converts Earth's internal energy into magnetic field energy
 - $Re_m \sim 10^2$ to 10^3

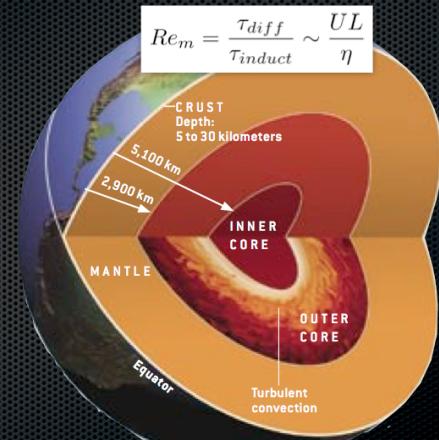


Image: Glatzmaier & Olson Sci/Am 05

Why is the Field Nearly Axial?

- Time averaged dipole field is closely aligned along the rotation axis
 - Geocentric axial dipole (GAD) hypothesis
- Axial alignment likely due to the aligned flows that generate it

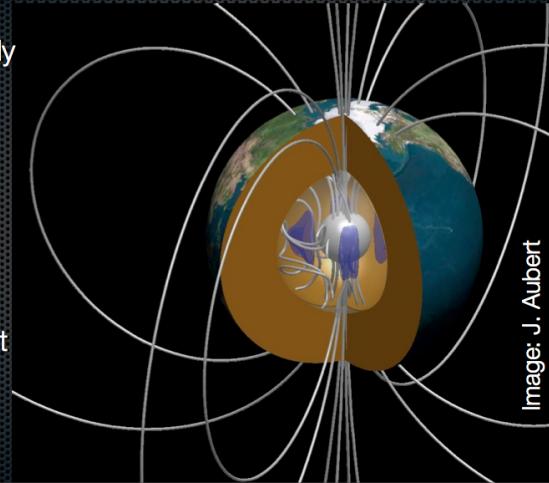
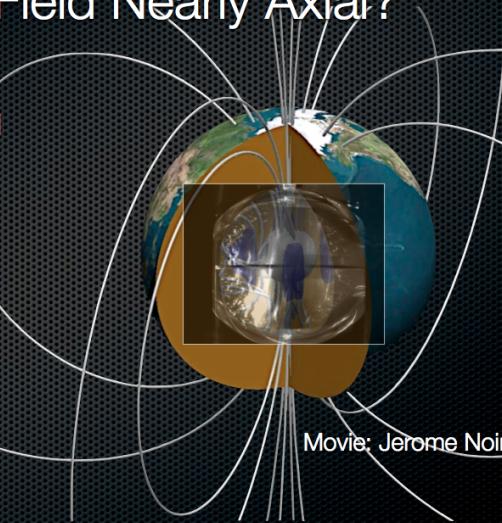


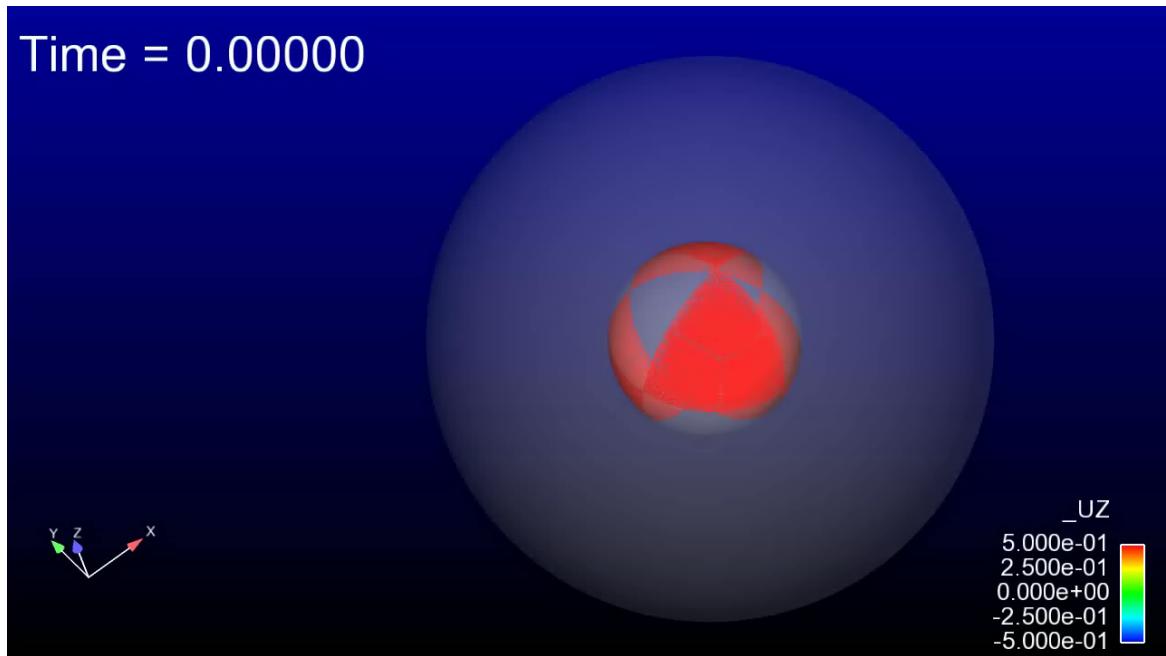
Image: J. Aubert

Why is the Field Nearly Axial?

- In rapidly rotating systems, flows tend to align along the rotation axis
- Long-lived idea:
 - Rotationally-controlled flows explain planetary observations



Movie: Jerome Noir



Christensen et. al.
Rotating Thermal Conv.
Benchmark
 $Ra = 1e5, E = 1e-3;$

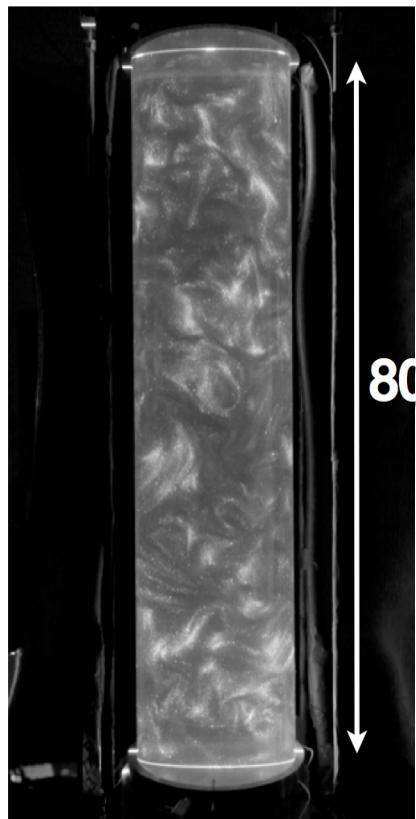
$E_{kin} = 58.348 \pm 0.050$

Preliminary
Drekar 1.3M elem. Soln.

$E_{kin} = 58.86462$
This is within .9%

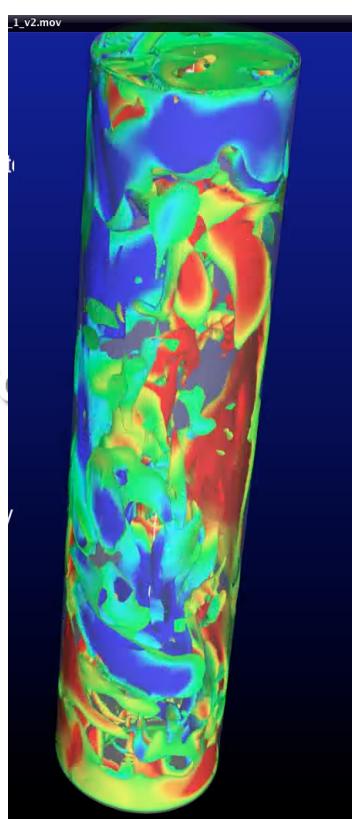
$Ra = 1.54e5, E = 1e-3;$

E.g. Geodynamo Mechanisms and Experiments
J. Aurnou - Spin Laboratory (UCLA – Earth and Space Sciences Dept.)



$\text{Ra} \sim 3\text{e}10$

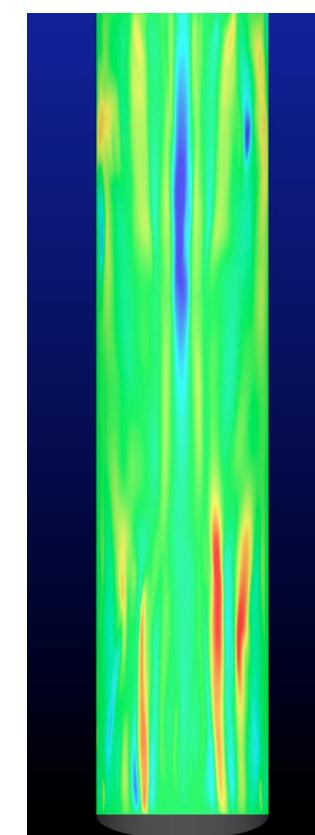
Aurnou
Lab Exp.



$\text{Ra} = 1\text{e}10$

Preliminary Drekar
Simulation

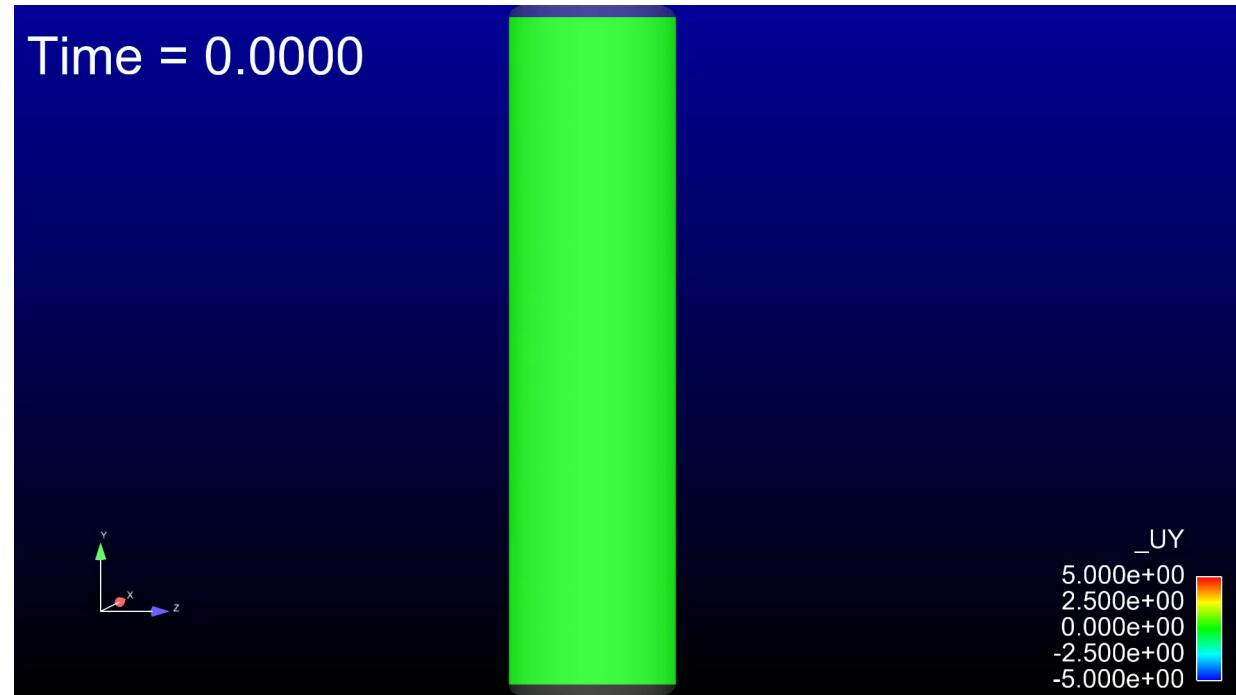
$\text{Ra} \sim 6\text{e}10; E \sim 1\text{e-}7$



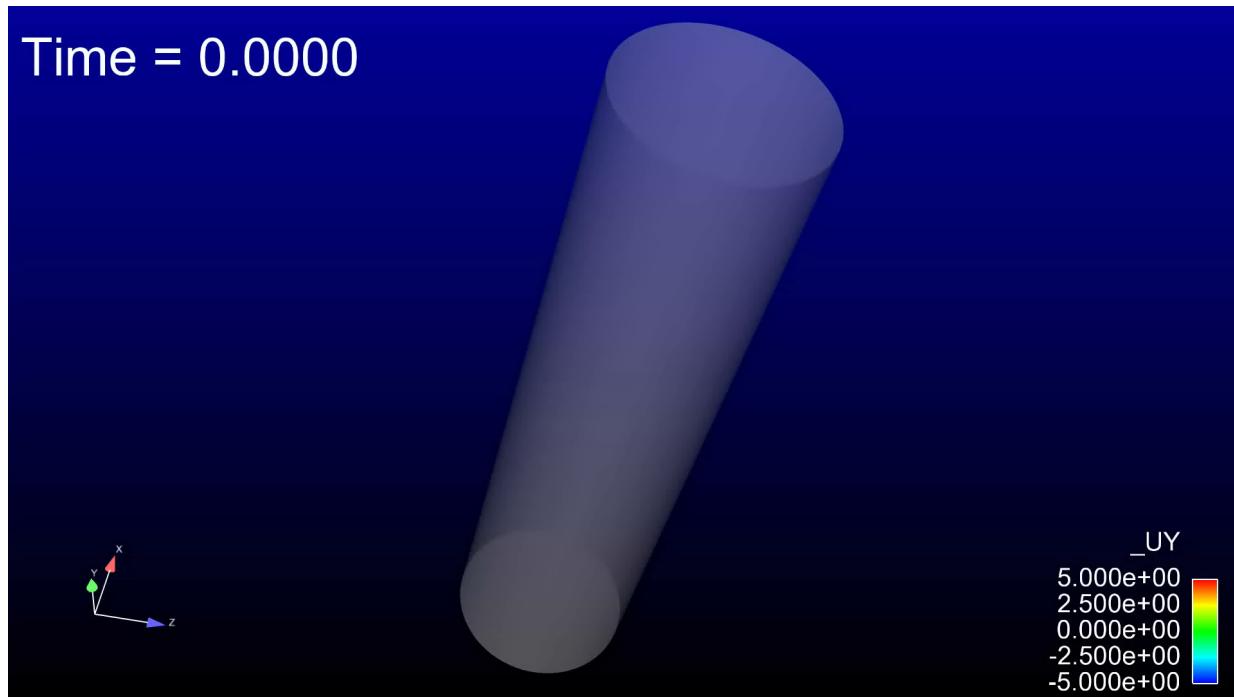
$\text{Ra} = 1\text{e}11; E = 1\text{e-}7$

Preliminary Drekar
Simulation

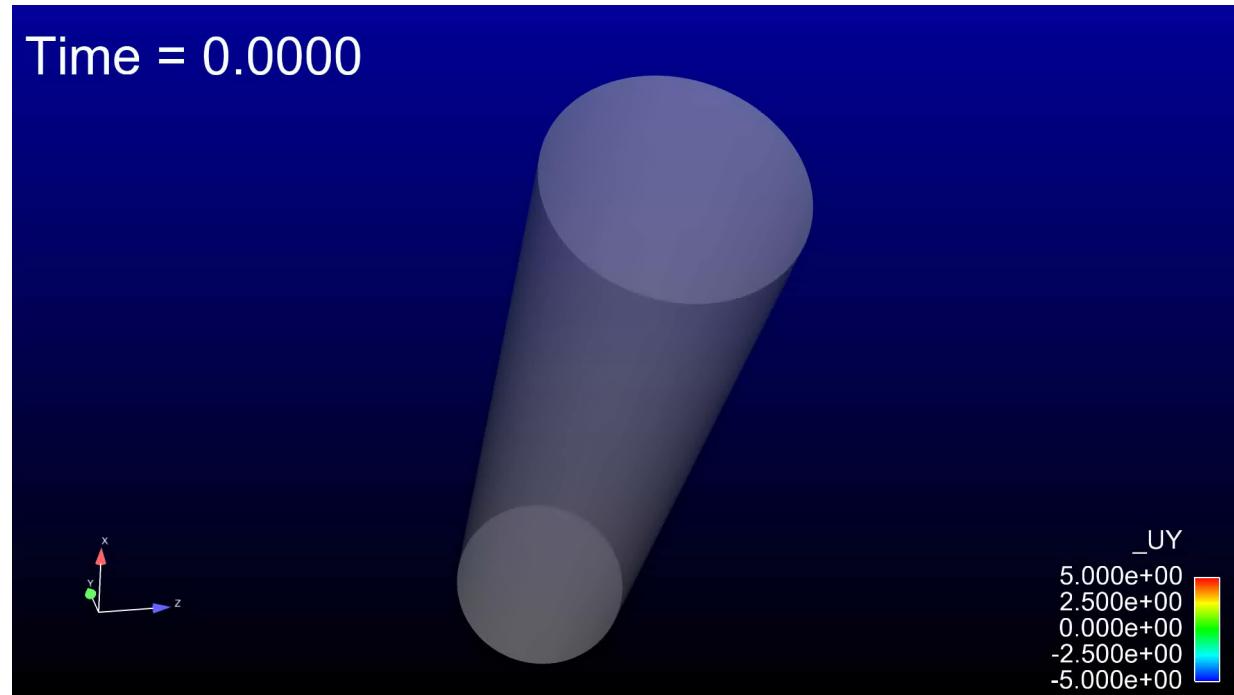
Ra = 1e11;
E = 0



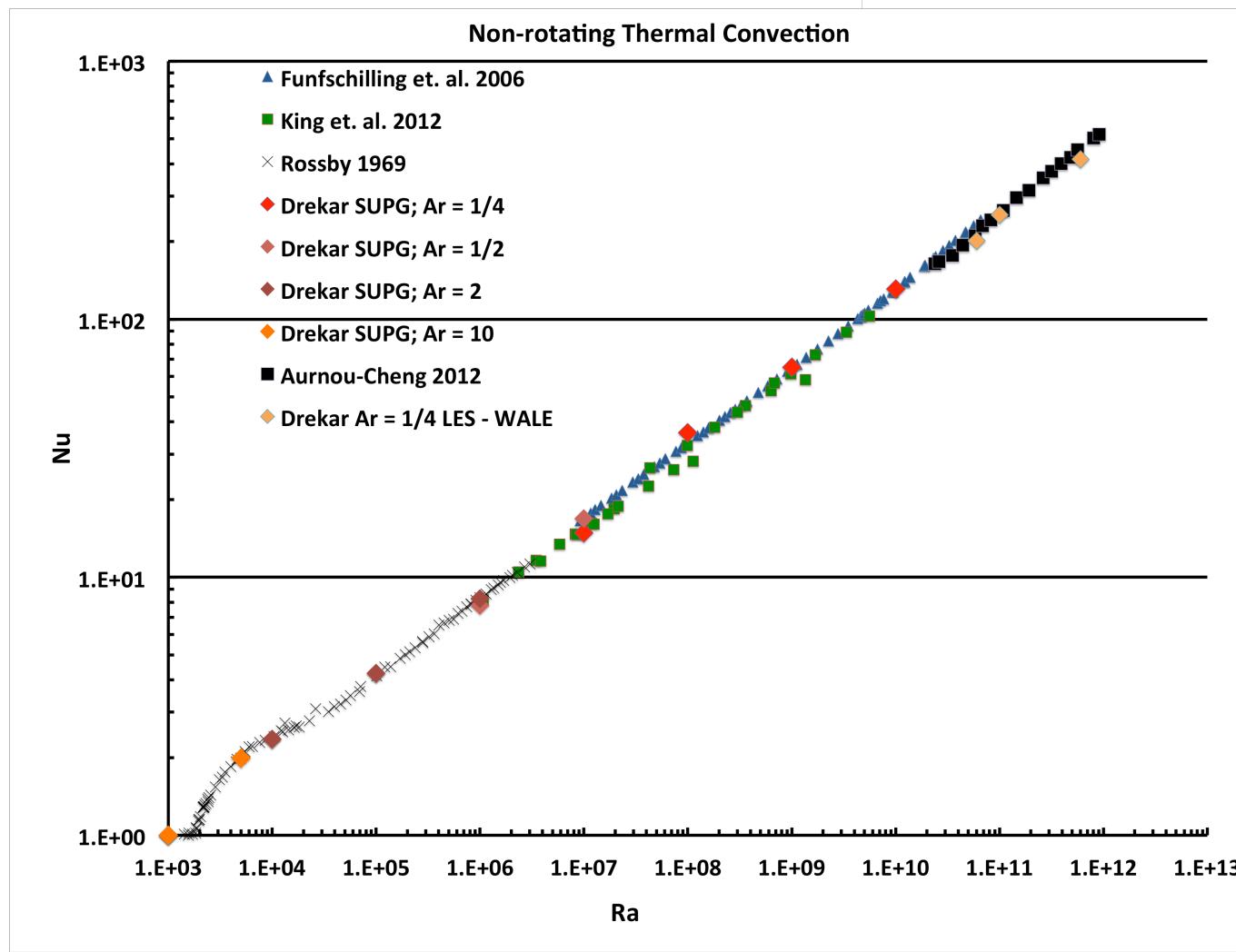
Ra = 1e11;
E = 0



Ra = 1e11;
E = 1e-7



Preliminary Comparison Non-rotating Thermal Convection Experiments and Drekar



Initial Exploration of Variational Multi-Scale LES for Resistive MHD

(with D. Sondak and A. Oberai)

VMS MHD Spectral Method

- Momentum and induction cross-correlation terms
- Periodic BCs \rightarrow only nonlinear terms
- VMS provides high wavenumber stability (cross-correlation and self-correlation terms, Hughes et. al.)
- Residual based models

(D. Sondak and A. Oberai to appear in
Phy. of Plasmas)

VMS FE MHD Method

- VMS for FE implementation
- Fully-implicit Newton-Krylov w/AMG prec.
- Residual based cross-terms, self-corr.
- $(\Delta x)^2, (\Delta x)^3, \dots$ high order possible
- MHD Studies Underway
 - Isotropic decay: Taylor – Green
 - Turbulent MHD channel flow

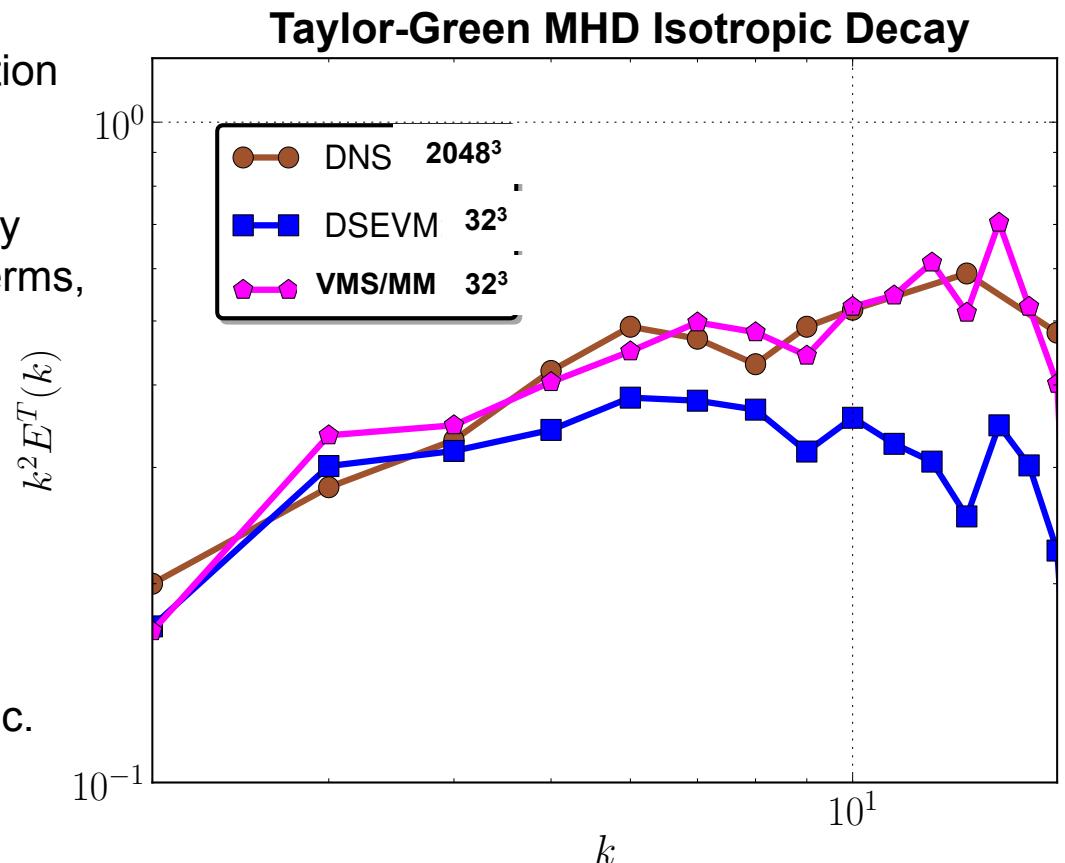


Figure: DNS: A. Pouquet et. al. Geo. Astro. Fluid Dyn. (2010); DSEVM after Germano (1991) & Theobald et. al. (1994);

The End