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Resistive MHD Equations

Resistive MHD Model in Residual Notation
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General Case a Strongly Coupled, Multiple Time- and Length-Scale, Nonlinear,
Nonsymmetric System with Parabolic and Hyperbolic Character
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B Field Lagrange Multiplier Formulation
( Dedner et. al. 2002, Codina et. al. 2006, 2011; ...)
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Remarks:

+ Elliptic constraint used to enforce divergence involution.
« Only weakly divergence free in FE implementation (stabilization)
« Can show relationship with a projection method (e.g. Brackbill and Barnes 1980)
when a 1st order-split integration is used.
« Issue for using C° FE for domains with reentrant corners / soln singularities
(Costabel et. al. 2000, 2002, Codina, 2011) Sondio
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Summary of Initial Stabilized FE Weak form of Equations
for Low Mach Number MHD System;

Governing Stabilized FE Residual (following Hughes et. al.,
Equation Shakib - Navier-Stokes; Salah et. al. 99 & 01, Codina et. al. 2006 -Magnetics )
Momentum
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Summary of Structure of Linear Systems Generated in

Newton’s Method

Galerkin FE (e.g. Mixed Q2/Q1 interpolation FEM):
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Comments on Formulations, Solution Algorithms and Underlying Software Arch.

Drekar: Low flow Mach number CFD & resistive MHD
with coupled multiphysics

* Multiple Momentum, Energy, Mass Transport/reaction egns.
Fully-implicit: 1s-5'" order BDF; IRK; MP; (Rythmos), . Direct-to-Steady-State (NOX)
& Semi-implicit with BDF compatible extrapolation. . Parameter Continuation. Linear

2D & 3D Unstructured FE (Intrepid) Stability and Bifurcation (LOCA ),
- Stabilized FE (VMS),

+ Advanced Outer Loop Solvers

+ PDE Constrained Optimization &

* Mixed FE e.g. Q2/Q1, Parameter Inversion is Possible
« Physics Compatible Discretizations (edge, face, ...) (Moocho)
« UQ Tools

+ High-resolution Positivity-preserving in dev.
) + Initial Adjoint formulations for
Software Arch.: Error Estimation and Sensitivity
+ Massively Parallel: Currently MPIl-only (>128K cores); Analysis (Panzer)
Exploring kernels on GPUs;

+ Solvers/Linear Alg. tools based on Trilinos packages

+ Template-based Generic Programming with Automatic
Differentiation [AD] (Sacado) + Trikota blackbox interface to

- Asynchronous dependency graphs for Dakota
multiphysics complexity management (Phalanx)

+ Initial Stochastic Galerkin
Expansions for UQ capability

Fully Coupled Globalized Newton-Krylov Solver

* Residuals are Programed and AD generates
Jacobian/derivatives for NK, JFNK, Sensitivities,

Adjoints, SGE -UQ, etc. [Drekar: Shadid, Pawlowski,

«  GMRES and Block Krylov (AztecOO, Belos) Cyr, Smith, Wildey, Weber]

« Scalable Preconditioners: Fully-coupled system Sondlo
AMG (ML), Physics-based with AMG (Teko National
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Why Newton-Krylov Methods?

/ Newton-Krylov \

Direct-to-steady-state Fully-implicit transient

Stability, Accuracy and Efficiency

Robustness, Convergence and Flexibility

- Stable (stiff systems)
 Strongly coupled multi-physics often

requires a strongly coupled nonlinear - High order methods

solver - Variable order techniques

- Quadratic convergence near solutions - Local and global error control possible

* Enables bifurcation, stability, . Can be stable, accurate and efficient run

optimization, integrated adjoint error at the dynamical time-scale of interest in

estimation, sensitivity and UQ multiple-time-scale systems (See e.g. Knoll et. al.,
Brown & Woodward., Chacon and Knoll, S. and Ober, S. and
Ropp)
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Equations of State (& e.g. HydroMagnetic Thermal Cavity

Time = 5.0765 ?ﬁ“f‘

Constant Density - Strictly incompressible

p = po = constant

Boussinesq Approximation

Time = 5.0765

0
p R po+ 6—; ’0(T — Tp) in momentum body force term

p = po and everywhere else

Variable density Formulations

Low Flow Mach Number Approximation Time - 5.0765 g

Pin = f(p,T,Y;) where Py, is thermodynamic
not hydrodynamic pressure (P)

Anelastic Approximation

0
P = f(p,T,Y;) and 8—§ = 0 in continuity eq.

Compressible Fluid

P=f(p,T,Y;)




Adjoint methods have been well studied and demonstrated for parabolic PDEs.
[e.g. Rannacher, Oden, C. Johnson, Estep, Bangerth, Barth, Suli, Braack, ..... ]

1) E.g. Steady Navier-Stokes Re = 1000 channel flow (Analytic sol.). Qol point value of x-vel.

‘ Qofl ‘ Re ‘ Estimated Value ‘ Estimated Error ‘ Effectivity Ratio ‘

= h +
UX UX err. est. 1 10 8.3125E-1 2.0833E-3 1.000
— _ 2 10 1.2385E+0 2.0779E-3 0.997
U, =123.85+0.20833 ~124.05833
3 10 8.3125E-1 2.0833E-3 1.000
Ut = = 124.05896 1 1000 | 83125E+l 2.0833E-1 1.000
2 1000 1.2385E+2 2.0779E-1 0.997
3 1000 8.3125E+1 2.0833E-1 1.000




Adjoint methods have been well studied and demonstrated for parabolic PDEs.
[e.g. Rannacher, Oden, C. Johnson, Estep, Bangerth, Barth, Suli, Braack, .....]

1) E.g. Steady Navier-Stokes Re = 1000 channel flow (Analytic sol.). Qol point value of x-vel.
U

] Qofl \ Re \ Estimated Value \ Estimated Error \ Effectivity Ratio \

= U + err. est.

X 1 | 10 | B83I125E1 2.0833E-3 1.000
_ - 2 | 10 | 1.2385B+0 2.0779E-3 0.997

U, =123.85+0.20833 ~ 124.05833
3 | 10 | 83125E1 2.0833E-3 1.000
Uy oet = = 124.05896 I [ 1000 | 8.3125E+l 2.0833E-1 1.000
2 | 1000 | 1.2385E+2 2.0779E-1 0.997
3 | 1000 | 83125E+] 2.0833E-1 1.000

2) E.g Transient Navier-Stokes, vortex shedding behind Cylinder; Qol time-averaged drag

HO000 Z
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3) Useful for error est. leading to
mesh refinement (Conv./Diff. example)

Refinement for 4% error in global domain

t

Refine for 4% error in localized region (Qol)



Comments on Formulations, Solution Algorithms and Underlying Software Arch.

Scaled Efficiency

BG/P Scaled Efficiency: Time per Aztec lteration
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Scaling of Critical Solver Kernel used in Implicit FE MHD:
Krylov solver and AMG V-cycle (Drift-Diffusion application*)
[ML — Tuminaro, Hu, et. al.; *P.T. Lin IUNME, 91 (9) 2012]

V-cycle scaling is very good.
Now working on preconditioner
construction

Overall efficiency ~50% at this
point for 1K processor count
increase > 64K cores.



Weak Scaling Gmres/FC-AMG ILU(0), ov =1; V(3,3)
3D MHD Generator e
Initial Titan (Cray XE7). [Re = 500, Ha = 2.4] A

| 2.629e+00
1.753e+00
8.764e-01

0.000e+00

Weak Scaling: Avg. Linear Solve Time / Newton Step

Weak Scaling: Avg. Linear Iters. / Newton Step 3D MHD Generator. Re = 500, Re,, = 1, Ha = 2.5; (Steady State)

3D MHD Generator. Re = 500, Re,, = 1, Ha = 2.5; (Steady State)
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Stable Fields/Flow at
Hydro-Magnetic Rayleigh- Ra = 4000, Q = 81
Bernard Stability

” % Unstable Flow at
a= ﬂATdE‘ and — Ra = 4000, Q = 144




Hydro-Magnetic Rayleigh-Bernard Stability: Direct Determination of Linear
Stability and Nonlinear Equilibrium Solutions (Steady State Solves)

Nonlinear Stable
Solution

Evectors for unstable
e-value at Bifurcation

Vx (at x=0.5, y=0.25,2z=00)
)

- Chandrasekhar Number Q =10

iy I = ] l L | ; ] ,
1940 1950 1960 R, 1970 1980
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Hydro-Magnetic Rayleigh-Bernard Stability: Direct Determination of Linear
Stability and Nonlinear Equilibrium Solutions (Steady State Solves)

Q Ra* | Ra.. [Chandrasekhar||]] | % error
0| 1707.77 1707.8 0.002
10! | 1945.78 1945.9 0.006
10% | 3756.68 3757.4 0.02
- 2 Direct-to-steady-state solves at a given Q
- Arnoldi method using Cayley transform to determine
approximation to 2 eigenvalues with largest real part
- Simple linear interpolation to estimate Critical Ra*
Sandia
National
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Bifurcation / Stability (Two-Parameter) Diagram

Ra

Multi-parameter continuation can track critical points
(pitchfork bifurcation, Hopf bifurcation, turning points, etc.)
with NK solvers [LOCA - Salinger, Pawlowski, Phipps]
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Most unstable mode compresses with
increase in magnetic field strength
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Kelvin-Helmholtz Unstable Shear Layer: Re = 50,000

Time = 0.00000




Necessary Ingredients

= A dynamo requires:

1.An electrically-
conducting
material

2.A sufficiently large
body of material

3.An energy source
to drive motions of
the material

4. (Some net
organization of the
motions)

= Time averaged
dipole field is closely
aligned along the
rotation axis

= Geocentric axial dipole
(GAD) hypothesis

= Axial alignment
likely due to the
aligned flows that
generate it

Image: J. Aubert

Image: J. Aubert

Where is the Field Generated?

UL
= Crust has some ~
magnetic materials
= Cannot explain observed
temporal variability

= Mantle is non-
magnetic (too hot) &
electrically insulating
= Core dynamo

= Planetary dynamo
converts Earth’s
internal energy into
magnetic field energy

»x Rem~ 10A2 10 1073

Why is the Field Nearly Axial?

= |n rapidly rotating
systems, flows tend
to align along the
rotation axis

= | ong-lived idea:

= Rotationally-
controlled flows
explain planetary
observations

Image: Glatzmaier & Olson SciAm 05




Time = 0.00000 Christensen et. al.
Rotating Thermal Conv.

Benchmark
Ra =1e5, E =1e-3;

E_kin = 58.348 +- 0.050

Preliminary

Drekar 1.3M elem. Soln.
Uz

Lt E_kin = 58.86462
_%%%%e;é’?! This is within .9%
-5.000e-01

Time = 0.00000 Ra = 1.54e5, E = 1e-3;

Uz

2.000e+00
1.000e+00
0.000e+00
1.000e+00

JE Ay
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o
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TEMPERATURE
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o
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5.000e-01 )
2.500e-01 Sandia
0.000e+00

Laboratories




E.g. Geodynamo Mechanisms and Experiments
J. Aurnou - Spin Laboratory (UCLA — Earth and Space Sciences Dept.)
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Ra~ 3e10 Ra=1e10 Ra~ 6e10; E ~1e-7 Ra = 1e11; E = 1e-7
Aurnou

Lab Exp. Preliminary Drekar Preliminary Drekar
Simulation Simulation
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Ra = 1e11; Time = 0.0000

E=0
Uy
5.0006+00
2.5006+00 !
0.0006+00
-2:5006+00
-5.0006+00
Time = 0.0000
Ra =1e11;
E=1e-7

Uy
5.000e+00

2.500e+00 i
0.000e+00 Sandia
-2.500e+00 National _
-5.000e+00 Laboratories




Ra =1e11;

Ra =1e11;
E=1e-7

Time = 0.0000

Time = 0.0000

Uy

5.000e+00
2.500e+00
0.000e+00

-2.500e+00
-5.000e+00

Uy

5.000e+00
2.500e+00
0.000e+00

-2.500e+00
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Time Series Data (Preliminary) Nusselt Number

Preliminary Comparison Non-rotating Thermal
Convection Experiments and Drekar |

Nusselt Number

Time

Non-rotating Thermal Convection

1.E+03 A Funfschilling et. al. 2006

H King et. al. 2012
X Rossby 1969 ‘.p’
¢ Drekar SUPG; Ar = 1/4 N

¢ Drekar SUPG; Ar = 1/2 ‘ﬁ‘{

¢ Drekar SUPG; Ar =2 ‘“

Y
1.E+02 - Drekar SUPG; Ar = 10 R

H Aurnou-Cheng 2012 ‘l

Drekar Ar = 1/4 LES - WALE }f

E:

1.E+01
x%g%
M ’
1.E+00
1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11 1.E+12 1.E+13 Sandi
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Initial Exploration of Variational Multi-Scale LES for Resistive MHD

VMS MHD Spectral Method
Momentum and induction cross-correlation
terms

« Periodic BCs -> only nonlinear terms

« VMS provides high wavenumber stability

(cross-correlation and self-correlation terms,

Hughes et. al.)
 Residual based models

K2ET (k)

(D. Sondak and A. Oberai to appear in
Phy. of Plasmas)

VMS FE MHD Method
VMS for FE implementation
* Fully-implicit Newton-Krylov w/AMG prec.
« Residual based cross-terms, self-corr.
« (Ax)*,(Ax)*,...high order possible
 MHD Studies Underway
» |sotropic decay: Taylor — Green

e Turbulent MHD channel flow

10V

1071

(with D. Sondak and A. Oberai)

Taylor-Green MHD Isotropic Decay

@—® DNS 20483

BB DSEVM 323
o—a VMS/MM 323

101
k

Figure: DNS: A. Pouquet et. al. Geo. Astro. Fluid
Dyn. (2010); DSEVM after Germano (1991) &
Theobald et. al. (1994);
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The End
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