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Resistive MHD Equations 

  

Resistive MHD Model in Residual Notation 

General Case a Strongly Coupled, Multiple Time- and Length-Scale, Nonlinear, 
Nonsymmetric System with Parabolic and Hyperbolic Character!

RP =
⇥�

⇥t
+� · (�u) = 0

RB =
⇥B
⇥t
�⇤⇥ (u⇥B) +⇤⇥ (

�

µ0
⇤⇥B) = 0.

TM =
1
µ0

B⇥B� 1
2µ0

⇤B⇤2I

Re =
⇤(⇥e)

⇤t
+⌅ · [⇥ve + q]�T : ⌅v � �⇤ 1

µ0
⌅⇥B⇤2 = 0

RAz =
⇥Az

⇥t
+ u ·⇥Az �

�

µ0
⇥2Az + E0

z = 0.

B = ⇥�A

2D 

Ru =
@(⇢u)

@t
+r · (⇢u⌦ u� (T+TM))� ⇢g = 0



B Field Lagrange Multiplier Formulation  
( Dedner et. al. 2002, Codina et. al. 2006, 2011; …)  

Remarks:!
•  Elliptic constraint used to enforce divergence involution.!

•  Only weakly divergence free in FE implementation (stabilization)!
•  Can show relationship with a projection method (e.g. Brackbill and Barnes 1980) 

when a 1st order-split integration is used.!
•  Issue for using C0 FE for domains with reentrant corners / soln singularities 

(Costabel et. al. 2000, 2002, Codina, 2011)!
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Summary of Initial Stabilized FE Weak form of Equations 
 for Low Mach Number MHD System;                                                                                                            

Governing 
Equation 

Stabilized FE Residual  (following Hughes et. al.,  
Shakib - Navier-Stokes; Salah et. al. 99 & 01, Codina et. al. 2006 -Magnetics ) 
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Summary of Structure of Linear Systems Generated in 
Newton’s Method 
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Stabilized Q1/Q1 V-P elements, SUPG like terms and  
Discontinuity Capturing type operators 
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Galerkin FE (e.g. Mixed Q2/Q1 interpolation FEM): 

v = (u, T, Az)



Comments on Formulations, Solution Algorithms and Underlying Software Arch. 
 Drekar: Low flow Mach number CFD & resistive MHD 

with coupled multiphysics!
•  Multiple Momentum, Energy, Mass Transport/reaction eqns.!
•  Fully-implicit: 1st-5th order BDF; IRK; MP; (Rythmos),!
     & Semi-implicit with BDF compatible extrapolation.!
•  2D & 3D  Unstructured FE (Intrepid)!

•  Stabilized FE (VMS),!
•  Mixed FE e.g. Q2/Q1,!
•  Physics Compatible Discretizations (edge, face, …)!
•  High-resolution Positivity-preserving in dev.  !

•  Software Arch.: !
•  Massively Parallel: Currently MPI-only (>128K cores); 

Exploring kernels on GPUs;!
•  Solvers/Linear Alg. tools based on Trilinos packages!
•  Template-based Generic Programming with Automatic 

Differentiation [AD] (Sacado)!
•  Asynchronous dependency graphs for        

multiphysics complexity management (Phalanx)!

•  Fully Coupled Globalized Newton-Krylov Solver!
•  Residuals are Programed and AD generates  

Jacobian/derivatives for NK, JFNK, Sensitivities, 
Adjoints, SGE -UQ, etc. !

•  GMRES and Block Krylov  (AztecOO, Belos)!
•  Scalable Preconditioners: Fully-coupled system 

AMG (ML), Physics-based with AMG (Teko)!

[Drekar: Shadid, Pawlowski, 
Cyr, Smith, Wildey, Weber]  

•  Advanced Outer Loop Solvers!
•  Direct-to-Steady-State (NOX), !
•  Parameter Continuation, Linear 

Stability and Bifurcation (LOCA ), !
•  PDE Constrained Optimization & 

Parameter Inversion is Possible 
(Moocho)!

•  UQ Tools!
•  Initial Adjoint formulations for 

Error Estimation and Sensitivity 
Analysis (Panzer) !

•  Initial Stochastic Galerkin 
Expansions for UQ capability!

•  Trikota blackbox interface to 
Dakota !



Why Newton-Krylov Methods? 
!

Newton-Krylov!

Fully-implicit transient!

Stability, Accuracy and Efficiency!
•  Stable (stiff systems)!

•  High order methods!

•  Variable order techniques!

•  Local and global error control possible!

•  Can be stable, accurate and efficient run 
at the dynamical time-scale of interest in 
multiple-time-scale systems (See e.g. Knoll et. al., 
Brown & Woodward., Chacon and Knoll, S. and Ober, S. and 
Ropp)!

Robustness, Convergence and Flexibility!

•  Strongly coupled multi-physics often 
requires a strongly coupled nonlinear 
solver!

•  Quadratic convergence near solutions!

•  Enables bifurcation, stability, 
optimization, integrated adjoint error 
estimation, sensitivity and UQ!

Direct-to-steady-state!



Equations of State (& e.g. HydroMagnetic Thermal Cavity) 

Constant Density - Strictly incompressible 

Variable density Formulations  
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Boussinesq Approximation 

� ⇥ �0 +
⇥�

⇥T

��
0
(T � T0) in momentum body force term

� = �0 and everywhere else

Low Flow Mach Number Approximation 

Pth = f(�, T, Yi) where Pth is thermodynamic
not hydrodynamic pressure (P)

Anelastic Approximation 

P = f(�, T, Yi) and
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= 0 in continuity eq.

Compressible Fluid 

P = f(�, T, Yi)



Adjoint methods have been well studied and demonstrated for parabolic PDEs. 
[e.g. Rannacher, Oden, C. Johnson, Estep, Bangerth, Barth, Suli, Braack, …..]   
 
1) E.g. Steady Navier-Stokes Re = 1000  channel flow (Analytic sol.). QoI point value of x-vel. 
 
 

Ux      = Ux
h + err. est.  

 

Ux      = 123.85 + 0.20833  ~ 124.05833 
 

Uexact =                                = 124.05896 
 
 

2) E.g Transient Navier-Stokes, vortex shedding behind Cylinder; QoI time-averaged drag 
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3) Useful for error est. leading to  
mesh refinement  (Conv./Diff. example) 
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1. The average value of the x-velocity for which

y = 1/5.

2. The value of the x-velocity at (4,1/2) for which

y = d(4,1/2) ⇡
400
p

exp(�400(x�4)2 �400(y�1/2)2).

3. The average value of the x-velocity over [3,4]⇥ [0,1] for which

y = c[3,4]⇥[0,1] =

(
1, (x,y) 2 [3,4]⇥ [0,1],
0, otherwise.

In Table 1, we provide the estimate of the functionals, the a posteriori error estimates, and the
effectivity ratios defined by

Effectivity Ratio =
Estimated Error

True Error
.

We observe that the effectivity ratios are nearly one for all three quantities of interest and both

QofI Re Estimated Value Estimated Error Effectivity Ratio
1 10 8.3125E-1 2.0833E-3 1.000
2 10 1.2385E+0 2.0779E-3 0.997
3 10 8.3125E-1 2.0833E-3 1.000
1 1000 8.3125E+1 2.0833E-1 1.000
2 1000 1.2385E+2 2.0779E-1 0.997
3 1000 8.3125E+1 2.0833E-1 1.000

Table 1. Error estimates and effectivity ratios for the three quan-
tities of interest with Re= 10 and Re=1000.

Reynolds numbers. We note that the functional values and error estimates depend on the viscocity
since the forward solution depends only the viscocity. However, the adjoint solutions may vary
drastically for different Reynolds numbers. For comparison, in Figure 2 we plot the magnitude of
the adjoint velocity corresponding to QofI 2 for Re= 10 (left) and for Re=1000 (right). We see
that for the lower Reynolds number the domain of dependence, indicated by the support of the
adjoint solution, is relatively close to the point (4,1/2). Meanwhile, the domain of dependence for
the higher Reynolds number is mainly along the top, bottom, and inflow boundaries.

For another comparison, in Figure 3 we plot the adjoint pressure corresponding to QofI 1 (left)
and QofI 3 (right) with Re= 10. Despite the fact that the two functional values are the same, the
adjoint solutions are again quite different.

4.2 Axisymmetric Expansion

15
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Error Est. = 4.2% 
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Comments on Formulations, Solution Algorithms and Underlying Software Arch. 
 

Scaling of Critical Solver Kernel used in Implicit FE MHD: 
Krylov solver and AMG V-cycle (Drift-Diffusion application*)                      

[ML – Tuminaro, Hu, et. al.; *P.T. Lin IJNME, 91 (9) 2012] 

•  V-cycle scaling is very good. 
•  Now working on preconditioner 

construction  
•  Overall efficiency ~50% at this 

point for 1K processor count 
increase > 64K cores.   



Weak Scaling Gmres/FC-AMG ILU(0), ov = 1; V(3,3)  
3D MHD Generator 

Initial Titan (Cray XE7).  [Re = 500, Ha = 2.4] 

32 cores 

16K cores 

2048 cores 

512 cores 

~20x 

Scaling of  
Avg. Linear Its with 
Hartmann No. 



  

Hydro-Magnetic Rayleigh-
Bernard Stability  

Stable Fields/Flow  at  
Ra = 4000, Q = 81 

Unstable Flow  at  
Ra = 4000, Q = 144 

Vx 

Jz 



1950 1960 1970 1980 1940 Ra 

Evectors for unstable  
e-value at Bifurcation 

Nonlinear Stable 
Solution 

Vx 

Bx 

Temp. 

Hydro-Magnetic Rayleigh-Bernard Stability: Direct Determination of Linear 
Stability and Nonlinear Equilibrium Solutions (Steady State Solves)  

Chandrasekhar Number Q = 10 

Temp. 

Vx 

Vy 

By 

Bx 



Hydro-Magnetic Rayleigh-Bernard Stability: Direct Determination of Linear 
Stability and Nonlinear Equilibrium Solutions (Steady State Solves) 

•  2 Direct-to-steady-state solves at a given Q!
• Arnoldi method using Cayley transform to determine 

approximation to 2 eigenvalues with largest real part!
• Simple linear interpolation to estimate Critical Ra*!

Linear Stability of Computational 
Solution by Normal Mode Analysis 

Approximately invert by ML 
preconditioned Krylov solve 



Q=10!

Q=0!

Bifurcation / Stability  (Two-Parameter) Diagram 

Vx!

Ra!

Q!

Multi-parameter continuation can track critical points!
(pitchfork bifurcation, Hopf bifurcation, turning points, etc.)!
with NK solvers [LOCA - Salinger, Pawlowski, Phipps]!

E.g. Turning point tracking 
Solution of extended system 
 
Solve extended system 
with Newton’s method 

F(x,Re*,Ra*) = 0
!F v = 0

ϒTv −1 = 0

Q 
Leading mode  

Is 26 cells 

Most unstable mode compresses with 
increase in magnetic field strength 



Kelvin-Helmholtz Unstable Shear Layer:  Re = 50,000 



E.g. Geodynamo Mechanisms and Simulations 
Geodynamo Slides from J. Aurnou Talk (UCLA – Earth and Space Sciences Dept.) 



Christensen et. al.  
Rotating Thermal Conv. 
Benchmark 
Ra = 1e5, E = 1e-3; 
 
E_kin = 58.348 +- 0.050 
 
Preliminary 
Drekar 1.3M elem. Soln. 
 
E_kin = 58.86462  
This is within .9% 

Ra = 1.54e5, E = 1e-3; 



E.g. Geodynamo Mechanisms and Experiments 
J. Aurnou - Spin Laboratory (UCLA – Earth and Space Sciences Dept.) 



Ra = 1e10 

Aurnou  
Lab Exp. Preliminary Drekar 

Simulation  

Ra = 1e11; E = 1e-7 

Preliminary Drekar 
Simulation  



Ra = 1e11;  
E = 1e-7 

Ra = 1e11;  
E = 0 



Ra = 1e11;  
E = 1e-7 

Ra = 1e11;  
E = 0 



Preliminary Comparison Non-rotating Thermal 
Convection  Experiments and Drekar 



Initial Exploration of Variational Multi-Scale LES for Resistive MHD!
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DNS: 20483

DSEVM: 323

MM

Taylor-Green MHD Isotropic Decay 

Figure: DNS: A. Pouquet et. al. Geo. Astro. Fluid 
Dyn. (2010); DSEVM after Germano (1991) & 
Theobald et. al. (1994); 
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323 

20483 

VMS MHD Spectral Method 
•  Momentum and induction cross-correlation 

terms 
•  Periodic BCs -> only nonlinear terms 
•  VMS provides high wavenumber stability 

(cross-correlation and self-correlation terms, 
Hughes et. al.) 

•  Residual based models 

(D. Sondak and A. Oberai to appear in 
Phy. of Plasmas) 

VMS FE MHD Method 
•  VMS for FE implementation 
•  Fully-implicit Newton-Krylov w/AMG prec. 
•  Residual based cross-terms, self-corr. 
•                          high order possible 
•  MHD Studies Underway 

•  Isotropic decay: Taylor – Green  
•  Turbulent MHD channel flow 

(�x)2 , (�x)3 , ...

(with D. Sondak and A. Oberai) 

VMS/MM 



The End 


