
STOCHASTIC MODELING OF POWER TOWERS AND 

EVALUATION OF TECHNICAL IMPROVEMENT 

OPPORTUNITIES 

Nolan S. Finch
1 
and Clifford K. Ho

2
 

1
 Sandia National Laboratories, Concentrating Solar Technologies Department, P.O. Box 5800, Albuquerque, NM   

87185-1127, USA, +1 (505) 284-5190, nsfinch@sandia.gov 
2
 Ph.D., Sandia National Laboratories, Concentrating Solar Technologies Department 

 

Abstract 

In March 2010, the U.S. Department of Energy (DOE) hosted a power tower technology roadmap 

meeting attended by members of industry, laboratory, and government [1].  The meeting resulted in a list 

of technology improvement opportunities (TIOs) which were categorized within four power tower 

subsystems: solar collector field, solar receiver, thermal storage, and power block /balance of plant.  

Baseline values and future goals for each TIO were identified.  The roadmap also included a performance 

model of a 100 MWe (540 MWt) central receiver power plant (molten salt) with thermal storage 

developed in the System Advisor Model (SAM).  Assuming all TIOs and other assumptions described in 

[1] were successfully met, the model deterministically predicted the plant’s levelized cost of energy 

(LCOE) would be less than 10¢/kWh H – down from the current-day baseline of nearly 16¢/kWh. 

In this study, stochastic modeling results of the same central receiver power plant model are presented.  

Levelized cost of electricity (LCOE) was treated as a function of uncertain input parameters.  The 

uncertain input parameters were the TIOs identified in the roadmap and were assigned uniform 

uncertainty distributions between current values and agreed upon goals.  In addition to the TIOs outlined 

in the tower roadmap, investment tax credit (ITC) was treated as an uncertain input in the stochastic 

model.  The stochastic performance model showed that the LCOE for a 100 MWe molten salt power 

tower with storage would have a 95% probability of falling between 9.5-17.6¢/kWh.  Thermodynamic 

cycle efficiency, investment tax credit, and heliostat field cost had the largest impacts on this result. 

1.  Introduction  

Interest in power towers has increased over the past several years for many reasons.  Power towers offer 

high efficiencies which potentially translate into opportunities for low-cost electricity.  In addition, power 

towers can readily integrate thermal energy storage (TES) to achieve high capacity factors which can 

enable cost-effective, dispatchable electricity to intermediate and baseload power markets [1].   

With the aim of developing a plan to guide future research and development, the U.S. Department of 

Energy (DOE) and Sandia National Laboratories hosted a workshop that included participants from 

industry, DOE, and national laboratories.  The workshop resulted in aggressive plant performance and 

cost targets that, if realized, would make electricity generated by power towers (sized on the order of 

100MWe) cost competitive with newly constructed conventional fossil-fired power plants.  Figure 1 (next 

page) illustrates the hypothetical molten-salt central receiver system (with storage) that is the focus of this 

study. 
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Figure 1.  Illustration of a hypothetical molten-salt central receiver system which includes thermal 

storage (from Ho et. al., 2010) 

To help organize the power tower research and development goals, the power tower plant was divided 

into four subsystems:  solar collector field, solar receiver, thermal storage, and power block/balance of 

plant.  Within each of the four subsystems, baseline cost and performance values were assessed for 

present-day towers to facilitate discussion on future goals.  Once baselines were agreed upon, technology 

improvement opportunities (TIOs) were identified.  Discussions between attendees assessed the basis for 

each TIO and set specific out-year targets and priorities for each which was then compiled in a multi-year 

research and development portfolio.  Table 1 below shows current-day and projected price estimates for 

electrical power produced by a 100 MWe power tower plant.  Projected price estimates reflect 

incremental performance enhancements and cost savings garnered from successful implementation of 

TIOs identified in the roadmap [1].   

Table 1.  Current and projected LCOEs detailed in the power tower roadmap 

12.9 15.7 11.8 8.1

Real LCOE 

(¢/kWh)

2013, 30 % Investment 

Tax Credit

2013, 10 % Investment 

Tax Credit

2017, 10 % Investment 

Tax Credit

2020, 10 % Investment 

Tax Credit

 

As mentioned above, TIOs were compiled for each of four power tower subsystems – starting with solar 

collector field.  Solar collector field cost drivers are tied to heliostat size.  For large heliostats, cost is 

dominated by four major items: drives, manufacturing, mirror modules, and mirror support 

structure/foundation.  Cost for small heliostats, on the other hand, is dominated by drives, manufacturing, 

field wiring/controls, and mirror modules.  Since there is no consensus among power tower developers on 

optimal heliostat size, the power tower roadmap identified TIOs that would benefit both small and large 

heliostat development.  Table 2 (next page) shows the improvement opportunities identified for the solar 

collector field. 

Solar receiver cost is driven by the tower and the receiver itself.  TIOs identified for the solar receiver 

subsystem included developing high-temperature receiver materials that would allow integration with a 

higher-efficiency power block, developing solar selective absorbers and coatings, minimizing thermal 

losses by developing rigorous flux measurement techniques, and working to minimize the cost of tall 

towers (structural and permitting) as commercial power tower projects will need to employ towers taller 

than 100 meters.  Compiled TIOs for the solar receiver subsystem can also be seen in Table 2. 



Table 2.  Technical Improvement Opportunities (TIOs) identified in the power tower roadmap [1] 

Heliostat Drives -10%

Wind Load Measurement & Mitigation -10%

Heliostat Manufacturing -10%

Heliostat Structure Optimization -10%

Anti-Soiling/Cleanliness of Mirrors +2.5% reflectivity 0.935 0.96

Optical Methods and Testing -20% mrad optical error 1.53 1.25

High Temperature Receivers +13% efficiency 0.43 0.48

Receiver Materials Testing & Database -10% $/kWt 200 150

Selective Absorbers -50% emissivity 0.88 0.44

Flux Measurements -20% mrad optical error 1.53 1.25

Valves and Non-Welded Flanges +4% plant availability 0.90 0.94

High Temperature Storage -15%

Single Tank Thermocline Storage -15%

High-Efficiency Hybrid Configurations -25% $/kWe 1000 800

Supercritical Steam Cycles +13%

Supercritical CO2/Advanced Cycles +13%

Parasitic Load Reduction -25% Gross/Net Annual Production 1.10 1.075

O&M Cost Reduction Measures -23% $/kW-yr 65 50

Technical Improvement 

Opportunity (TIO)

Current 

Value

Generalized Performance Goal 

From Roadmap

$/m2 200

$/kWHt

Solar Collector Field

Solar Receiver

Thermal Storage

Power Block & Balance 

of Plant

Goal 

Value

120

0.480.43efficiency

2030

 

The thermal storage subsystem cost is driven by salt media and tanks.  TIOs identified for the thermal 

storage subsystem include improved salt valves/hardware, high-temperature storage for increased 

efficiency, high-temperature single tank storage to reduce tank costs, and high-temperature heat transfer 

fluids to enable higher-efficiency power cycles.  Thermal storage TIO specifics can also be seen above in 

Table 2. 

Power block/balance of plant TIOs revolved around integrating tower systems with advanced power 

cycles and minimizing parasitic losses. Advanced power cycles provide higher-efficiency operation but 

require high-temperature operation.  This improvement need drove development goals in the other plant 

subsystems as well.  In addition to increased cycle efficiency and minimal parasitic losses, dry cooling 

and natural gas hybridization were other development opportunities identified for this subsystem.  Power 

block/balance of plant TIO specifics are also included in Table 2. 

Operation and maintenance (O&M) goals were also addressed in the roadmap.  Due to the limited number 

of power towers in operation in the world, limited O&M data for towers are available.  Discussions with 

industry operators of tower plants and trough plants indicated operational/maintenance costs for each 

were very similar [1].  As such, O&M costs for existing tower and trough plants were analyzed to set a 

reasonable baseline with future goals set as seen in Table 2. 

2. Modeling Approach 

Table 1 above shows deterministic SAM modeling results from the roadmap for point design cases.  The 

2020 case represents a fully-successful implementation of all roadmap TIOs.  As it is improbable to fully 

realize every one of these aggressive goals in the short term, it is important to understand, in a 

probabilistic sense, the affect each of these parameters has on LCOE.  Understanding this end effect will 

not only help set realistic performance expectations but, moreover, can help focus research and 

development efforts. 

To quantify the relationship between uncertain inputs and power tower LCOE, a probabilistic model, 

based on the deterministic models used in the roadmap, was created.  TIOs delineated in the roadmap 

were mapped to appropriate SAM inputs and assigned uncertainty distributions.  As mentioned above, the 

inputs were conservatively assigned uniform distributions centered between present day values and 

roadmap goals.  Table 3 (next page) shows the SAM inputs and their distributions.   



Table 3.  The SAM embodiment of TIOs shown in Table 2.  All inputs were assigned uniform 

uncertainty distributions between present day and future goal values. 

Present Day Future Goal

Availability (%) 90 94

Balance of Plant (BOP) Cost ($/kWe) 350 250

Cycle Efficiency (%) 42.5 48

EPC and and Owner Cost (%) 25 15

Fixed Costs by Capacity ($/kW-yr) 65 50

Image Error (mrad) 1.53 1.25

Investment Tax Credit (ITC) (%) 30 10

Mirror Reflectance and Soiling (%) 89.3 92.6

Powerblock Cost ($/kWe) 1000 800

Receiver Emissivity (%) 88 44

Receiver Cost Scaling Exponent - 0.7 0.53

Solar Collector Field Cost ($/m2) 200 120

Storage Cost ($/kWt) 30 20

SAM Input (TIO)

 

Table 3 also includes investment tax credit as an uncertain input though it was not formally identified as 

an opportunity in the roadmap.  It is included here to gain a better understanding of its overall affect on 

LCOE.  Conversely, solar input is not included in Table 3.  Previous studies [2] have already 

demonstrated the affect an uncertain solar input has on plant performance and, as such, solar input 

uncertainty is not included in this study. 

Note that the inputs shown in Table 3 were the independent, uncorrelated inputs analyzed in the study.  

However, SAM required other inputs that depended on the independent inputs shown here.  Such 

dependant inputs included initial salt temperatures (hot and cold), receiver fluid outlet temperature, 

thermal energy storage hours, solar multiple, power block inlet temperature, and power block design 

power rating.  Since these dependant variables were not linearly independent of the SAM inputs included 

in Table 3, they were not included in the sensitivity/uncertainty analysis presented later in the paper. 

Once inputs were identified and assigned uncertainty distributions, Latin Hypercube Sampling 

methodology was used to create input variable combinations.  Latin Hypercube Sampling breaks each 

input distribution into equally probable regions and then pulls equal numbers of samples from each region 

[3].  Figure 2 below illustrates this concept for one random variable with a uniform probability density 

function – like the inputs presented in this study. 

 

Figure 2.  Equiprobable sampling regions for a uniformly distributed random variable: historgram 

(left) and cumulative distribtion function (right) (from Wyss and Jorgensen, 1998) 

 



One sample pulled from one input variable distribution and combined with one sample from every other 

input variable distribution (and other calculated dependant inputs as mentioned above) resulted in one 

input deck.  This input deck was then entered into SAM and subsequently processed to produce one 

output – an LCOE value.  The combination of the input deck and output value is termed one model 

realization.  Though SAM does have statistical capabilities that would allow a set of inputs sampled via 

Latin Hypercube to be batch processed, the particular study presented here required the heliostat field to 

be re-optimized for every input deck – a feature not included in the GUI version of SAM.  As such, a 

SAM User Language script was written that read pre-sampled input decks from a file, optimized the 

heliostat field layout, simulated the plant, and then wrote the LCOE value for the input deck to another 

file. 

The goal of stochastic modeling is to process uncertain input parameters through a representative model 

and create a sample output distribution which, in this case, is LCOE.  However, it is important to show 

that sampled LCOE from the stochastic model closely matches its population distribution.  To do this, 

increasing numbers of model realizations were processed until it could be shown with 95% confidence 

that the sample LCOE mean was within ± 1% of its population mean per the method described in [2].  In 

the study presented here, 1300 realizations provided 96.5% confidence that LCOE sample and population 

means were with ± 1% of each other. 

Once all realizations had been processed, the LCOE output distribution was analyzed.  Specifically, a 

CDF of LCOE was produced which allowed confidence intervals to be assessed.  Moreover, the CDF 

allows one to appreciate the overall affect of input uncertainty on LCOE uncertainty. 

After composite uncertainty was assessed, a sensitivity and uncertainty analysis was performed.  To do 

this, a multiple regression model was formed to fit the full set of SAM data.  Specifically, a linear model 

shown in (1) was used to fit modeled LCOE results to the inputs (xi) sampled above. 

(1) nnxb...xbxbbLCOE  22110    

The non-standardized regression coefficients (bi) shown in (1) were calculated by finding the least 

squares fit of the output LCOE data to the input samples.  Calculating standardized regression coefficients 

(i) required a least-squares fit be applied to normalized inputs and outputs as seen in (2) and (3). 

(2) nnxxxEOLC ˆ...ˆˆˆ
22110    

(3) Where:      
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The standardized regression coefficient () is a statistical measure that evaluates the relative contribution 

(on a normalized basis) of each input parameter to the magnitude of the dependant variable (LCOE in this 

case). The sign of each  also gives its direction of correlation with the output.  In short, standardized 

regression coefficients quantify the sensitivity of the output with respect to each input. 

In addition to sensitivity, it is also good to know how much each input affects the uncertainty of LCOE.  

The coefficient of determination (R2) describes how well a model, like the one shown above, fits 

measured output data. Values for R2 range from zero to one with one representing a “perfect” fit (though 

not necessarily perfect in a causal sense).  In order to assess how much each input contributes to the 

overall output uncertainty, the change in coefficient of determination (R2) is calculated between the best 

fit model, which includes all of the input terms, and a series of models that incrementally drops one input 

at a time.  The importance ranking of the input variables using either R2 or  is typically the same. 

 



3. Results 

The results of uncertain TIO inputs on LCOE can be seen below in Figure 3.  While deterministic 

modeling results ranged from 8.1-15.7 ¢/kWh for point designs detailed in the tower roadmap, 

probabilistic results shown here indicate a 95% confidence level for LCOE of 9.5-17.6 ¢/kWh. 

 

 

Figure 3.   CDF of real LCOE resultant from uncertain input parameters (TIOs) 

 
Though LCOE results shown in Figure 3 are considerably higher than the ~8¢/kWh target presented in the 

tower roadmap, it is important to keep in mind the assumptions this model is built on.  This model 

assumes all TIOs are uniformly distributed random variables meaning it is as likely for there to be no 

progress on a particular goal (TIO) as there is to realize complete success on any particularly model 

realization.  This may appear to be an overly conservative approach but, in the absence of real data, it is a 

good method to bound expected performance for an inherently uncertain development process. 

Sensitivity (standardized regression coefficients), can be seen below in Figure 4.  Not surprisingly, cycle 

efficiency had the largest affect on LCOE and was positively correlated.  Investment tax credit also had a 

large effect and was negatively correlated with LCOE (e.g. bigger tax credits resulted in smaller LCOE 

results).  Solar collector field costs also had large positive impact on the magnitude of LCOE. 

R2 results for LCOE are also displayed in Figure 4.  R2 quanitifies how much each input affects the 

uncertainty of LCOE.  For this model, the sum of all R2 contributions equals 0.972.  As such, cycle 

efficiency uncertainty contributes 76% (0.74/0.972) of all LCOE uncertainty.  Similarly, investment tax 

credit (ITC) uncertainty contributes 12.6% and solar field cost uncertainty 7.5%.  All other inputs were 

minor contributors. 



 

Figure 4.  Sensitivity analysis of uncertain parameters on simulated LCOE using standardized 

regression coefficients (left) and R
2
 (right). 

4. Conclusions 

By assigning conservative uncertainty distributions to TIOs identified in the power tower roadmap, a 

stochastic model was created to probabilistically determine the impact of uncertain TIOs on LCOE.  The 

uncertain TIOs were treated as random inputs into a modeled 100 MWe molten salt solar power with 

thermal storage.  The inputs were sampled according to Latin Hypercube methodology to ensure equal 

numbers of samples were taken from equally probable regions of each input’s uncertainty distribution.  

Results from the model showed that the 95% confidence interval for LCOE is 9.5-13.6¢/kWh which 

assumes uniform distributions for all TIOs centered between current day values and future goals outlined 

in the power tower roadmap.  Cycle efficiency, investment tax credit, and solar field cost had the largest 

affect on LCOE magnitude and, similarly, on LCOE uncertainty.  Investment tax credit, unlike cycle 

efficiency and solar field cost, was negatively correlated with power tower LCOE.  
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