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Abstract

In March 2010, the U.S. Department of Energy (DOE) hosted a power tower technology roadmap
meeting attended by members of industry, laboratory, and government [1]. The meeting resulted in a list
of technology improvement opportunities (TIOs) which were categorized within four power tower
subsystems: solar collector field, solar receiver, thermal storage, and power block /balance of plant.
Baseline values and future goals for each TIO were identified. The roadmap also included a performance
model of a 100 MW, (540 MW,) central receiver power plant (molten salt) with thermal storage
developed in the System Advisor Model (SAM). Assuming all TIOs and other assumptions described in
[1] were successfully met, the model deterministically predicted the plant’s levelized cost of energy
(LCOE) would be less than 10¢/kWh H — down from the current-day baseline of nearly 16¢/kWh.

In this study, stochastic modeling results of the same central receiver power plant model are presented.
Levelized cost of electricity (LCOE) was treated as a function of uncertain input parameters. The
uncertain input parameters were the TIOs identified in the roadmap and were assigned uniform
uncertainty distributions between current values and agreed upon goals. In addition to the TIOs outlined
in the tower roadmap, investment tax credit (ITC) was treated as an uncertain input in the stochastic
model. The stochastic performance model showed that the LCOE for a 100 MWe molten salt power
tower with storage would have a 95% probability of falling between 9.5-17.6¢/kWh. Thermodynamic
cycle efficiency, investment tax credit, and heliostat field cost had the largest impacts on this result.

1. Introduction

Interest in power towers has increased over the past several years for many reasons. Power towers offer
high efficiencies which potentially translate into opportunities for low-cost electricity. In addition, power
towers can readily integrate thermal energy storage (TES) to achieve high capacity factors which can
enable cost-effective, dispatchable electricity to intermediate and baseload power markets [1].

With the aim of developing a plan to guide future research and development, the U.S. Department of
Energy (DOE) and Sandia National Laboratories hosted a workshop that included participants from
industry, DOE, and national laboratories. The workshop resulted in aggressive plant performance and
cost targets that, if realized, would make electricity generated by power towers (sized on the order of
100MWe) cost competitive with newly constructed conventional fossil-fired power plants. Figure 1 (next
page) illustrates the hypothetical molten-salt central receiver system (with storage) that is the focus of this
study.
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Figure 1. Ilustration of a hypothetical molten-salt central receiver system which includes thermal
storage (from Ho et. al., 2010)

To help organize the power tower research and development goals, the power tower plant was divided
into four subsystems: solar collector field, solar receiver, thermal storage, and power block/balance of
plant. Within each of the four subsystems, baseline cost and performance values were assessed for
present-day towers to facilitate discussion on future goals. Once baselines were agreed upon, technology
improvement opportunities (T10s) were identified. Discussions between attendees assessed the basis for
each TIO and set specific out-year targets and priorities for each which was then compiled in a multi-year
research and development portfolio. Table 1 below shows current-day and projected price estimates for
electrical power produced by a 100 MWe power tower plant. Projected price estimates reflect
incremental performance enhancements and cost savings garnered from successful implementation of
TIOs identified in the roadmap [1].

Table 1. Current and projected LCOEs detailed in the power tower roadmap

2013, 30% Investment | 2013, 10 % Investment | 2017, 10 % Investment | 2020, 10 % Investment
Tax Credit Tax Credit Tax Credit Tax Credit
I 12.9 | 15.7 | 11.8 | 8.1

Real LCOE
(¢/kWh)

As mentioned above, T1Os were compiled for each of four power tower subsystems — starting with solar
collector field. Solar collector field cost drivers are tied to heliostat size. For large heliostats, cost is
dominated by four major items: drives, manufacturing, mirror modules, and mirror support
structure/foundation. Cost for small heliostats, on the other hand, is dominated by drives, manufacturing,
field wiring/controls, and mirror modules. Since there is no consensus among power tower developers on
optimal heliostat size, the power tower roadmap identified TIOs that would benefit both small and large
heliostat development. Table 2 (next page) shows the improvement opportunities identified for the solar
collector field.

Solar receiver cost is driven by the tower and the receiver itself. TIOs identified for the solar receiver
subsystem included developing high-temperature receiver materials that would allow integration with a
higher-efficiency power block, developing solar selective absorbers and coatings, minimizing thermal
losses by developing rigorous flux measurement techniques, and working to minimize the cost of tall
towers (structural and permitting) as commercial power tower projects will need to employ towers taller
than 100 meters. Compiled T1Os for the solar receiver subsystem can also be seen in Table 2.



Table 2. Technical Improvement Opportunities (T10s) identified in the power tower roadmap [1]

Technical Improvement Generalized Performance Goal Current | Goal
Opportunity (TIO) From Roadmap Value Value
Heliostat Drives -10%
Wier Load Measurem.ent & Mitigation -10% ¢/m? 200 120
) Heliostat Manufacturing -10%
Solar Collector Field - —
Heliostat Structure Optimization -10%
Anti-Soiling/Cleanliness of Mirrors +2.5% reflectivity 0.935 0.96
Optical Methods and Testing -20% mrad optical error 1.53 1.25
High Temperature Receivers +13% efficiency 0.43 0.48
A Receiver Materials Testing & Database -10% S/kW, 200 150
Solar Receiver - .
Selective Absorbers -50% emissivity 0.88 0.44
Flux Measurements -20% mrad optical error 1.53 1.25
Valves and Non-Welded Flanges +4% plant availability 0.90 0.94
Thermal Storage High Temperature Storage -15%
& en TP 28 2 $/KWH, 30 20
Single Tank Thermocline Storage -15%
High-Efficiency Hybrid Configurations -25% S/kW, 1000 800
Power Block & Balance | Supercritical Steam Cycles +13% .
efficiency 0.43 0.48
of Plant Supercritical CO,/Advanced Cycles +13%
Parasitic Load Reduction -25% |Gross/Net Annual Production 1.10 1.075
o&M Cost Reduction Measures -23% S/kW-yr 65 50

The thermal storage subsystem cost is driven by salt media and tanks. TIOs identified for the thermal
storage subsystem include improved salt valves/hardware, high-temperature storage for increased
efficiency, high-temperature single tank storage to reduce tank costs, and high-temperature heat transfer
fluids to enable higher-efficiency power cycles. Thermal storage TIO specifics can also be seen above in
Table 2.

Power block/balance of plant TIOs revolved around integrating tower systems with advanced power
cycles and minimizing parasitic losses. Advanced power cycles provide higher-efficiency operation but
require high-temperature operation. This improvement need drove development goals in the other plant
subsystems as well. In addition to increased cycle efficiency and minimal parasitic losses, dry cooling
and natural gas hybridization were other development opportunities identified for this subsystem. Power
block/balance of plant T10 specifics are also included in Table 2.

Operation and maintenance (O&M) goals were also addressed in the roadmap. Due to the limited number
of power towers in operation in the world, limited O&M data for towers are available. Discussions with
industry operators of tower plants and trough plants indicated operational/maintenance costs for each
were very similar [1]. As such, O&M costs for existing tower and trough plants were analyzed to set a
reasonable baseline with future goals set as seen in Table 2.

2.  Modeling Approach

Table 1 above shows deterministic SAM modeling results from the roadmap for point design cases. The
2020 case represents a fully-successful implementation of all roadmap TIOs. As it is improbable to fully
realize every one of these aggressive goals in the short term, it is important to understand, in a
probabilistic sense, the affect each of these parameters has on LCOE. Understanding this end effect will
not only help set realistic performance expectations but, moreover, can help focus research and
development efforts.

To quantify the relationship between uncertain inputs and power tower LCOE, a probabilistic model,
based on the deterministic models used in the roadmap, was created. TIOs delineated in the roadmap
were mapped to appropriate SAM inputs and assigned uncertainty distributions. As mentioned above, the
inputs were conservatively assigned uniform distributions centered between present day values and
roadmap goals. Table 3 (next page) shows the SAM inputs and their distributions.



Table 3. The SAM embodiment of TIOs shown in Table 2. All inputs were assigned uniform
uncertainty distributions between present day and future goal values.

SAM Input (TIO) Present Day | Future Goal
Availability (%) 90 94
Balance of Plant (BOP) Cost (S/kwe) 350 250
Cycle Efficiency (%) 42.5 48
EPC and and Owner Cost (%) 25 15
Fixed Costs by Capacity (S/kW-yr) 65 50
Image Error (mrad) 1.53 1.25
Investment Tax Credit (ITC) (%) 30 10
Mirror Reflectance and Soiling (%) 89.3 92.6
Powerblock Cost (S/kwe) 1000 800
Receiver Emissivity (%) 88 a4
Receiver Cost Scaling Exponent - 0.7 0.53
Solar Collector Field Cost ($/m?) 200 120
Storage Cost ($/kwt) 30 20

Table 3 also includes investment tax credit as an uncertain input though it was not formally identified as
an opportunity in the roadmap. It is included here to gain a better understanding of its overall affect on
LCOE. Conversely, solar input is not included in Table 3. Previous studies [2] have already
demonstrated the affect an uncertain solar input has on plant performance and, as such, solar input
uncertainty is not included in this study.

Note that the inputs shown in Table 3 were the independent, uncorrelated inputs analyzed in the study.
However, SAM required other inputs that depended on the independent inputs shown here. Such
dependant inputs included initial salt temperatures (hot and cold), receiver fluid outlet temperature,
thermal energy storage hours, solar multiple, power block inlet temperature, and power block design
power rating. Since these dependant variables were not linearly independent of the SAM inputs included
in Table 3, they were not included in the sensitivity/uncertainty analysis presented later in the paper.

Once inputs were identified and assigned uncertainty distributions, Latin Hypercube Sampling
methodology was used to create input variable combinations. Latin Hypercube Sampling breaks each
input distribution into equally probable regions and then pulls equal numbers of samples from each region
[3]. Figure 2 below illustrates this concept for one random variable with a uniform probability density
function — like the inputs presented in this study.
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Figure 2. Equiprobable sampling regions for a uniformly distributed random variable: historgram
(left) and cumulative distribtion function (right) (from Wyss and Jorgensen, 1998)



One sample pulled from one input variable distribution and combined with one sample from every other
input variable distribution (and other calculated dependant inputs as mentioned above) resulted in one
input deck. This input deck was then entered into SAM and subsequently processed to produce one
output — an LCOE value. The combination of the input deck and output value is termed one model
realization. Though SAM does have statistical capabilities that would allow a set of inputs sampled via
Latin Hypercube to be batch processed, the particular study presented here required the heliostat field to
be re-optimized for every input deck — a feature not included in the GUI version of SAM. As such, a
SAM User Language script was written that read pre-sampled input decks from a file, optimized the
heliostat field layout, simulated the plant, and then wrote the LCOE value for the input deck to another
file.

The goal of stochastic modeling is to process uncertain input parameters through a representative model
and create a sample output distribution which, in this case, is LCOE. However, it is important to show
that sampled LCOE from the stochastic model closely matches its population distribution. To do this,
increasing numbers of model realizations were processed until it could be shown with 95% confidence
that the sample LCOE mean was within + 1% of its population mean per the method described in [2]. In
the study presented here, 1300 realizations provided 96.5% confidence that LCOE sample and population
means were with + 1% of each other.

Once all realizations had been processed, the LCOE output distribution was analyzed. Specifically, a
CDF of LCOE was produced which allowed confidence intervals to be assessed. Moreover, the CDF
allows one to appreciate the overall affect of input uncertainty on LCOE uncertainty.

After composite uncertainty was assessed, a sensitivity and uncertainty analysis was performed. To do
this, a multiple regression model was formed to fit the full set of SAM data. Specifically, a linear model
shown in (1) was used to fit modeled LCOE results to the inputs (x;) sampled above.

@ LCOE = b, + bx +Db,x, +...+bX,

The non-standardized regression coefficients (b;) shown in (1) were calculated by finding the least
squares fit of the output LCOE data to the input samples. Calculating standardized regression coefficients
(Bi) required a least-squares fit be applied to normalized inputs and outputs as seen in (2) and (3).

@ LCOE = B, + B& + % + ..+ B,

LCOE — mean(LCOE) ;g X = S .

(3 Where:  |LCOE =

Ol coe

The standardized regression coefficient (B) is a statistical measure that evaluates the relative contribution
(on a normalized basis) of each input parameter to the magnitude of the dependant variable (LCOE in this
case). The sign of each B also gives its direction of correlation with the output. In short, standardized
regression coefficients quantify the sensitivity of the output with respect to each input.

In addition to sensitivity, it is also good to know how much each input affects the uncertainty of LCOE.
The coefficient of determination (R?) describes how well a model, like the one shown above, fits
measured output data. Values for R? range from zero to one with one representing a “perfect” fit (though
not necessarily perfect in a causal sense). In order to assess how much each input contributes to the
overall output uncertainty, the change in coefficient of determination (AR?) is calculated between the best
fit model, which includes all of the input terms, and a series of models that incrementally drops one input
at atime. The importance ranking of the input variables using either AR? or B is typically the same.



3. Results

The results of uncertain TIO inputs on LCOE can be seen below in Figure 3. While deterministic
modeling results ranged from 8.1-15.7 ¢/kWh for point designs detailed in the tower roadmap,
probabilistic results shown here indicate a 95% confidence level for LCOE of 9.5-17.6 ¢/kWh.
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Figure 3. CDF of real LCOE resultant from uncertain input parameters (T10s)

Though LCOE results shown in Figure 3 are considerably higher than the ~8¢/kWh target presented in the
tower roadmap, it is important to keep in mind the assumptions this model is built on. This model
assumes all TIOs are uniformly distributed random variables meaning it is as likely for there to be no
progress on a particular goal (TIO) as there is to realize complete success on any particularly model
realization. This may appear to be an overly conservative approach but, in the absence of real data, it is a
good method to bound expected performance for an inherently uncertain development process.

Sensitivity (standardized regression coefficients), can be seen below in Figure 4. Not surprisingly, cycle
efficiency had the largest affect on LCOE and was positively correlated. Investment tax credit also had a
large effect and was negatively correlated with LCOE (e.g. bigger tax credits resulted in smaller LCOE
results). Solar collector field costs also had large positive impact on the magnitude of LCOE.

AR? results for LCOE are also displayed in Figure 4. AR? quanitifies how much each input affects the
uncertainty of LCOE. For this model, the sum of all AR? contributions equals 0.972. As such, cycle
efficiency uncertainty contributes 76% (0.74/0.972) of all LCOE uncertainty. Similarly, investment tax
credit (ITC) uncertainty contributes 12.6% and solar field cost uncertainty 7.5%. All other inputs were
minor contributors.



Standardized Regression Coefficients (p) AR?

Cycle Efficiency = 0.863 Cycle Efficiency = 0.740
ITC = -0.352 ITC=0.123
Solar Field Cost = 0.270 Solar Field Cost = 0.073
EPC Cost =0.119 EPC Cost = 0.014
Storage Cost = 0.096 1 Storage Cost = 0.009
Availability = -0.071 ] Availability = 0.005
Powerblock Cost = 0.063 Powerblock Cost = 0.004
Fixed Cost = 0.042 1 I Fixed Cost =0.002
BOP Cost = 0.032 : L BOP Cost =0.001
Mirror Reflectivity =-0.031 - |- Mirror Reflectivity = 0.001
Image Error = 0.012 + Image Error =0
Receiver Cost = 0.011 1 r Receiver Cost=10
Receiver Emissivity = 0.001 - r Receiver Emissivity =0
-0.5 0 0.5 1 0 0.2 0.4 0.6 0.8

Figure 4. Sensitivity analysis of uncertain parameters on simulated LCOE using standardized
regression coefficients (left) and AR? (right).

4. Conclusions

By assigning conservative uncertainty distributions to T1Os identified in the power tower roadmap, a
stochastic model was created to probabilistically determine the impact of uncertain TIOs on LCOE. The
uncertain TIOs were treated as random inputs into a modeled 100 MWe molten salt solar power with
thermal storage. The inputs were sampled according to Latin Hypercube methodology to ensure equal
numbers of samples were taken from equally probable regions of each input’s uncertainty distribution.
Results from the model showed that the 95% confidence interval for LCOE is 9.5-13.6¢/kWh which
assumes uniform distributions for all TIOs centered between current day values and future goals outlined
in the power tower roadmap. Cycle efficiency, investment tax credit, and solar field cost had the largest
affect on LCOE magnitude and, similarly, on LCOE uncertainty. Investment tax credit, unlike cycle
efficiency and solar field cost, was negatively correlated with power tower LCOE.
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