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A , Understanding the fundamental chemistry of
| CJ_,,‘]#?I, hydrocarbon oxidation

Directly probing key

+
- Atmosphere o . -
p reactive intermediates: (ﬁ
* Criegee intermediates R/C\R
R):=cn . " 7| Ketones * QOOH : ’
Alkene =0z0nelSESEAIceNYOE Gz ke Welz, Savee, Osborn, Vasu, Percival, Shallcross, Taatjes, Science 2012, 335, 204-207.

or ketone

Taatjes, Welz, Eskola, Savee, Scheer, Shallcross, Rotavera, Lee, Dyke, Mok, Osborn,
Percival, Science 2013, 340, 177-180

G. Marston, Science 335, 178 (2012)

Experiment Reactions of O(3P)
> Combustion + with unsaturated
Gasoline Engine Diesel Engine HCCl Engine Th €o ry hyd roca rbonS,
(Spark Ignition) (Compression Ignition) (Homogeneous Charge . .
: Compresongiion nonadiabatic effects

Low-temperature oxidation of

alkanes and novel biofuels:

* Mechanism

e pressure- and temperature
dependence

» effects of fuel structure

Hot-Flame Region: Hot-Flame Region: Low-Temperature Combustion:
NOx NOx & Soat Ultra-Low Emissions {<1900K)

Manley, Mcllroy, Taatjes, Physics Today, Nov. 2008
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’ % Advanced internal combustion engine concepts rely on
a L low-temperature autoignition
Gasoline Engine Diesel Engine HCCl Engine

(Spark Ignition) (Compression Ignition) (Homogeneous Charge
spark plug fuel injector Compression Ignition)

Hot-Flame Regicn: Hot-Flame Region: Low-Temperature Combustion:
NOx NOx & Soot Ultra-Low Emissions {<1900K)

Manley, Mcllroy, Taatjes, Physics Today, Nov. 2008

Ignition in an HCCI engine happens at low temperature (T < 1000 K) and is controlled
by fuel-specific chemistry in the gas phase
- Detailed knowledge of the underlying fundamental chemistry is important to
predict autoignition behaviour!
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Vil
A Peroxy radical (RO,) chemistry is central to
L CRE. low-temperature autoignition

Regimes of hydrocarbon oxidation ... and to atmospheric chemistry!

1400
Small radical chemistry
+
o Y v\ v v
[ photolysis OH reaction NOj; reaction 0; reaction
1200 . initiation carbonyls, all VOC and alkenes, dienes, alkenes, dienes,
ngh reactions ROOH, RC(0)00H aldehydes and and unsaturated
Temperature and RONO, oxygenated products ethers oxygenated products
= | | |
el . ‘ ‘ +
9 oxy: RO peroxy: RO, excited Criegee stabilised Criegee
2 1000 HO~ and H-O reactions of 0, reaction reaction with [RC(OO)R RC(OO)R
© 2 242 intermediates imzzg;t‘;n NO, NO,, NO,, dstabilisat.io.n Nr(‘)sa;t(i)on cvsgth ?:?6
) Ch . \ HO,, RO, / lecomposition , NO,, an A
emistry N
o N1~ | |
()] i g
- /// oxygenated products
P
800 /.// products 4 carbonyls, ROOH, ROH, RC{0)0OH, RC(O)OH, |
/,// RONO,, PANs, multifunctional and CO
— Peroxy L
/'/ .
_— Chemistry Atmos. Chem. Phys., 3, 161-180, 2003
////
_— Low
. Temperature
600
0.1 1 10 100

Miller, Pilling, Troe, Proc. Combust. Inst. 30 (2005) 43

Pressure [bar]
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#
| A\ Peroxy radical (RO,) chemistry forms a
CKRE; radical chain sequence

The branching into the different
channels depends on

N Fuel « temperature
l + X, -HX (often X = OH) * pressure
* chemical structure of the fuel
AN R molecule
1_,_ 0, 0, concentration

O ¢ RO, —> HO, + unsaturated

1 /y species N

chain termination

<, QO0OH ——> OH +cyclic eth%r chain propagation
1+ 0, 7
00-QOOH
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, N\ How do we learn about this chemistry?
1 % Time-Sensitive

Pulsed-photolytic Cl initiation Experiment:
Multiplexed photoionization mass
301 nm spectrometry (MPIMS)  some

o r 400 cm/s Tunable lonizing hv
— i (ALS or Discharge)

©coCl, 22" . 2c1+2C0

Quartz Reactor

° Reactants
/\ L
isopropyl|
-HCI O -—

o~ + Cl —— —=2 = Products 7

PN * Trange: 300 — 1000 K =
propane

n-propyl * Prange:1-10 Torr (low-pressure reactor)

H or up to 100 bar (high-pressure reactor)

* Mass spectra are taken in intervals of 20 us
- Time resolution
* Tunable VUV radiation from the Advanced

Light Source: Photoionization energy can
be varied

[Cl], << [O,], [propane]

- Isomeric resolution
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2
CRE,

3-D dataset

* m/z

* kinetic time

* photoionization
energy

How do we learn about this chemistry?
ot

-
B

\\

Photoionization spectrum (PIE)

Time ()

3
E’ 10.5
[10)
:‘E 10.0
Time-resolved mass spectrum S
30 & 9.5
25
m 40 60 80 100
g 20 miz
g 15
E
g 10 PIE of C;H, (m/z = 42)
¥ 5
0 T
- L
)
wn -
s L
m/z =42 $
T Good mass resolution: ¢
27 i} m/Am ~ 1500
E_ N . ((((I((((I(lllllIIIII|IIII|
g L ] em/z =42is CSHGI 9.5 10.0 105 11.0
not CZHZO Photon Energy (eV)
o 10 2 Isomer resolution!

Kinetic Time (ms)
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N Propane oxidation at 4 Torr
CRE
/ : 530 K:
isopropyl + O, ]
e N
Eneray (keal-mol) 6pRYE+s@rmed formally direct
10 * EnR@ (Kertelfmally stable
/1\ O, T ————— 10 AN 10,
Y . Fa\
10k 10 b
Xy + HO;
20 | 20 | \
_//\/OOH \:“ 0 .
_A_O0H QOOH-1 b M
30 | . 30 QOOH-2 T] 4o
00-
ol AN wl
Huang et al, Proc. Combust. Inst. 2009, 33, 293
Propyl peroxy (RO,) (sum of iso- and -) Propene (main stable product)
. 530K 1.0r 670K
= - <5 038
© ©
= i o 06 600K
5 600K g 04
s | S 02 530K
a 1 M 1 a 1 M 1 670K OO N M M M
0 10 20 30 0 10 20 30

time, ms
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S Propane oxidation at 4 Torr
CRE.

isopropyl + O, >30K: _ _
e y * Propene is formed formally direct
nergy (kcal-mol™) i
10 * RO, is thermally stable
A+ 0, — 600 K:
o * More propene is formed formally direct
0 * RO, becomes thermally unstable and
ol forms propene delayed (sequential
P pathway)
-30 |
4oL
Propyl peroxy (RO,) Propene (main stable product)
| 530K - 670K
% i - 0.8
= i 'q_>; 0.6 600K
5 600K g 04
e [ S 02 530K

time, ms
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CRE.

74

, isopropyl + O,
/ Ene_rgy (kcal-mol™)

10
A+ 0, I—

Propyl peroxy (RO,)

. 530K
0 L

&

Té i

S 600K
(7] -

[

2 670K

propene yield

Propane oxidation at 4 Torr

530 K:

* Propene is formed formally direct

* RO, is thermally stable

600 K:

* More propene is formed formally direct

* RO, becomes thermally unstable and
forms propene delayed (sequential
pathway)

670 K:

* RO, decomposes faster

* Timescales for formally direct and
sequential propene formation merge

Propene (main stable product)

1.0 670K
0.8
0.6 600K
04
0.2 530K

0.0}

time, ms
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N Propane oxidation at 4 Torr — Cyclic ether formation

n-propyl + 0,
. . . . -1
« Oxetane formation needs to be included in models 'fge_rgy (keal-mol)
N +0,
e Propanal and acetone are formed in comparable S N — A
amounts to methyloxirane. o
* Experimental evidence: They are primary i <+ o
. X} + HO2
products, and not formed in secondary ook oon
: N oo L9 + +OH
reactions (e.g., RO, + RO,) oo QOOH-1 ot
. . . - L tel 0]
« They were not included in previous propane 30 QOOH-2 [] + on
combustion models. 10 AN00 oxetane

- not included in

* Their formation pathways are still under .
previous models!

investigation = collaboration Sandia -
Argonne (Mike Burke, Stephen Klippenstein) = 530K —9

* Calculated barrier for formation from RO, is 0.02F

too high

0.01f

oo°
/\’< — ~° +0H 0.00
H

product yield

acetone oxetane
propanal methyloxirane
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, %ATR%F

Fuel
l + X, -HX (often X = OH)

R

1+o

——> HO, + unsaturated

1 /r species

QOOH ——> OH + cyclic ether

1+ 0,

00-QOOH

00°

k \H\><T+

Status of the current understanding of low-temperature
alkane oxidation

R + O, chemistry

Has been extensively studied
Main pathways are established

Advanced experiments reveal gaps in our
understanding

Chain-branching QOOH + O, chemistry

Much less well studied and understood
No QOOH has even been detected!

Until recently no direct study of QOOH +
O, kinetics existed!

Zador, Huang, Welz, Zetterberg, Osborn, Taatjes,
PCCP, 2013, 15, 10753
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£ 2\ Biofuels are explored as alternatives to fossil fuels
CRE.
- Reduce dependence on fossil oil - Unique opportunity: Design biofuels that meet
/ —> Cut CO, emissions requirements of advanced clean and efficient
engines: Engine/Biofuel co-development
Structural
motifs of fossil Medium-chain alcohols
fuels

= S
Very few fundamental studies on the R + O, chemistry of biofuels

- Fundamental studies needed! )
- Novel and major(!) pathways keep being revealed!

PN " on )io " Ketones

0]

Methylester (Biodiesel)

Mo/ \@/
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N The alcoholic —OH group influences
CRE. the C-H bond energies

n-Butane n-Butanol
97.3 96.6 93.7
100.2 99.9 97.9 OH

103.7

values are in kcal mol?! at 0 K (CBS-QB3)
Weak a C-H bond
— a site may play an important role

in the RO, chemistry of alcohols

—OH group itself might be involved in
RO, chemistry

0
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CRE

Pulsed-photolytic Cl initiation

alcohols

- /\/\
n-Butanol OH

I Products

Welz, Zador, Savee, Sheps, Osborn, Taatjes., JPC A, 2013, accepted

| 2\ Probing the low-temperature oxidation chemistry of
e

Experiment:
M U Iti p I exed Time-Sensitive

MCP Detector

photoionization mass T =T
spectrometry (MPIMS) '

Excimer
Photolysis

400 cm/s Tunable lonizing hv
— i (ALS or Discharge)

Quartz Reactor

Reactants

I
g tﬁfﬁﬁﬁ| L
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CRE.

./\/

m

n-butyl + O,

n-butanol oxidation:
4 different stable C,HgO co-products (m/z = 72) for HO, elimination

<" 0oH
a-R

+0,, -HO

—.

E—.

Alkane oxidation:

N oH

\ 1-Buten-1-ol

_—

SN0

\ 2-Buten-1-ol

—_—

/\/\
= OH
3-Buten-1-ol

Relative lon Signal

o H
O: OO\K/ — > )\/ + HO,

- HO, elimination is typically a major product channel

Product mass spectrum
(up to 10.5 eV)

B 550 K
L 72 _
| a4 _
. 58 —
42

II i ..-!\n nis 188
IIIII|IIII|IIII|IIIIIIIII|IIII|I‘I’II|IIII|IIII|IIII|
40 50 60 70 80 a0

miz
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1

Photoionization Cross Section

9.0 9.5 10.0 10.5
Photoionization Energy (eV)

n-Butanol:

Relative Photoion Signal

CRE. The co-products from HO, elimination can be distinguished

C,HgO photoionization product
spectrum from n-butanol oxidation

—O— mlz = 72 product

I I I LI I LI LI I LI I

9.0 9.5 10.0 10.5
Photoionization Energy (eV)
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1

Photoionization Cross Section

5 9.0 9.5 10.0
Photoionization Energy (eV)

n-Butanol:

CRE. The co-products from HO, elimination can be distinguished

C,HgO photoionization product
spectrum from n-butanol oxidation

Relative Photoion Signal

T2 aadaadaaadidadais .
‘\{((((’\\\\\\\\\\\\\\\\\\\\\\\\“ > _

> ‘lll‘l("(? o

9.0

LI I LI LI I LI I

9.5 10.0 10.5
Photoionization Energy (eV)
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n-Butanol:
The co-products from HO, elimination can be distinguished

C,HgO photoionization product
spectrum from n-butanol oxidation

16 -

8 —_—

P 14 — -

; o>

m B - —

P 12 S i

N ’

eNE or Ke)

O o S

c® 8 S

9 o 3 i

T = <

N ~™ 6 L

5 =

S “—

© 4 — = i

6 (0]

T x

o 2 -

) — — — — =
° r T T T PPt et i
| T [ T T T T [ T T T T [ T T T T

8.5 9.0 9.5 10.0 10.5 0.0 05 00 .

Photoionization Energy (eV) Photoionization Energy (eV)

S(E) e Y ilo/(E)

- isomer-resolved branching ratios
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2\ HO, elimination shows high selectivity
CRE. (550 K, 4 Torr)
Branching fraction (%) Product yield (%)
from Cl + n-butanol ([PrOdUCt]/[n'bUtandconsumed]
36 P T BN 44 + 12
a-R \ Butanal
20 AN Non e gy 04202
B-R \ 1-Buten-1-ol
27 e S R P 3.8+ 1.5
7-R \ 2-Buten-1-ol
27 N0 e N~y 0.8%0.2
o-R 3-Buten-1-ol

* HO, + butanal formation from a-R + O, has essentially unity yield
—> Alcohol-specific channel, a-R + O, is chain-terminating

* HO, elimination from B-, y-, and 6-R + O, is disfavored

* Mass balance for detected stable products is unity (within the uncertainty)
— Other product must exist for B-, y-, and 6-R + O, . The RO, radicals are unstable at the
time scale of the experiment (20 ms)

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories



czﬂ:-
A\ Theoretical characterization of the hydroxybutyl + O,

e reactions

' Quantum chemistry:

— Geometries and harmonic frequencies:
B3LYP/6-311G(d,p)

— Energies: CBS-QB3

Time-dependent master-equation calculations
(Variflex):

— VRC-TST for the barrierless R + O, entrance channel

— RRKM calculations for tight transition states
— Exponential-down model for collisional energy transfer

— Torsional modes treated as 1-D hindered internal
rotations

— Tunneling: Asymmetric Eckart potential

* The solution of the master equation gives concentration-time profiles for reactants,
intermediates and products 2 “simulation” of the experiment.
* Both formally direct and sequential pathways are accounted for.
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0_

— -50 4
O

- ]
-
X

5 -100 -

W _

-150

a-R + O, vs n-butyl + O,

N Exp: 0.4%
Theory: 0.02%
N oyt HO2

N\ +HO,

major channel

/\/\O
+ H02
Exp: 100%
Theory: 100%

/\)\ The RO, is not stabilized even at
CBS-QB3 OH

atmospheric conditions!
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| 2\ The 6-R + O, reaction is still influenced

CRE, by the alcoholic OH-group

Compare n-butyl + O, with 4-hydroxy-1-butyl (6-R) + O,

o/\/ + 02
04 »""on
major channel
)
—~  -50-
< ! N+ HO,
O — —
E Z"on * HO;
X -100 i 0
_ Exp: minor channel (< 10%)
ue 1.9 1| HOO -~ Theory: 3%
+ OH 1| Hoo

-150 3Z ! .

-240 - ’ OO\/\/

-280 - .OO\/\/\OH

- O
Exp: not quantified (but Q/?ZH
strong qualitative

evidence) What separation of alkyl radical center and —OH group is
Theory: 90% necessary to reduce the influence of the —OH group?
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2\ The “Waddington mechanism” is the major product
channel in the B-R + O, reaction

Product mass spectrum

- [~ 550 K| 7]
% L 72 _
n | _|
c
5 | _
[ 44
>
= 58 _
© 42
o [ _
£ | o
|IIII.IIIIIIIII|II\JI‘I IIIIIIII |lllll[IIlIIIIII|II‘II|
40 50 60 70 80 90
milz
m/z =58 (C;H,O)

photoionization spectrum

—O— Product signal
| |—— propanal calibration

Relative Photoion Signal
I

L T
9.6 9.8 10.0 10.2 10.4
Photoionization Energy (eV)

1 : 1
/\/O + CH,O + OH
Propanal (m/z = 58)

VA
/\g o

S“OH

Exp: 100% (550 K, 4 Torr)

Theory: 85%
04
-50 4
e
£ -1004
5
=
I3
w150
-2004.
300
-320 -
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CRE

4

Product mass spectrum

y-R + O,: Conventional RO, chemistry cannot account for

the amount of acetaldehyde observed

m/z = 44 (C,H,0) photoionization spectrum

!
2 F 550K - .
c 72 — 2
2 k=)
» | ] » [
o 44 e -
= L 58 - o
& 42 o
o L 2
« l II ] 88 % B
| TTT\ T ; TT | TTT I. |. T'TTT I TTTTTTTTT | TTTTTTTTT | TTTTTT I I T | x
40 50 60 70 80 90 K
mlz L | | |
9.0 9.5 10.0 10.5
Photoionization Energy (eV)
o ° ~30%
- ©2 )\/\
T
-R o
Y 3 1
@)
{%OH + 0
upper yield of 20%
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:W,_
, A\ Isopentanol: Excess of acetone over ethenol cannot be
CRE explained as well

isopentanol

o
).\/\ > )<O|/\
OH OH
V-R

Welz et al, PCCP 2012, 14, 3112

3 1
-
E e Lo
OH O

Clear evidence of missing pathways!

n-butanol
o ~30%
/\/\OH ©: )\/\ )\/\ —_— /\ /\OH + OH
v-R l 3 : 1

0

{%OH + OH

upper yield of 20%
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" /\ Water elimination — Unconventional peroxy radical
chemistry

/O.

0 .
)\/\ )</\ )</.\ HZO +)</\

e happens via a single saddle point
from QOOH

e concerted breaking of 2 bonds and
making of 2

e product is a weakly bound
alkoxyaldehyde

H
Welz, Klippenstein, Harding, Taatjes, Zador, J. Phys. Chem.

B3LYP/6-311G(d,p) Lett. 2013, 4, 350
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|
, 2\\\ The water elimination channel is the overall lowest-lying
CRE

pathway in the y-R + O, reaction

o
- OH
y Q o o
’ ).\/\ 02 )</\ )</.\ HZO +)</\
- OH — =~ OH OH ’ 0
v_

50 -
e
€ -100-
=
X
©
S 1501
W 07

250 4
-300 -
2350 -

CBS-QB3
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%‘:—
2N Decomposition of the alkoxyaldehyde produces acetone,

but no ethenol

O.
O/ O/OH —O—-miz=15 o) N
o) (O(BP) + propene) —
2 )</\ = |- miz=15
OH - = OH =4 (isopentanol oxidation) 4 —
V'R 1) - methyl reference
S
] 52.8 §
50 - P
2
[0)
0'e
- | 1 1 1 I | 1 I 1 1 | 1 I I 1 | 1 1 1 1 |
< 0 - 9.0 9.5 10.0 10.5 11.0
6 )<O/\ Photoionization Energy (eV)
£ o 226 vinoxy radical fragments to
g -32.9 m/z=15
— Savee et al., 2012, PCCP
Lle 50 - : +0 photoionization spectrum
2 proves the presence of
+0, vinoxy
| OH .,
o CH,O + OH + CO
-100 - 2

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories



/\‘
¢ 2N\
CRE

0 -
-50 4
S 100
S
-
<
[ -150
=)
Wy
y-RO2
-200 — oH
» + OH
080 )\/\o
1 channel yd
-300 —

o
O/
. 02 )\/\
N o OH

o

—~

channel yc
A

1738 A~ "

279.0 channelya
\ae
M
-309.4
\O

channel yb

P e
— >
D

n-butanol: Water elimination is the dominant product channel
in the y-R + O, reaction and forms acetaldehyde !

Exp: 50% yield!

ield!

Theory: 60%

/\O \i (+02)
+
We see vinoxy * X, _+0, - o
OH + CO + CH,

0
Exothermicity of 310 kJ/mol
— substantial heat release;

Associated with OH formation

Higher pressure further favors water
elimination
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A\ Implications and general relevance of the water
CRE. elimination channel

e Water elimination is very relevant in y-R + O, reactions, but no alcohol
combustion model contains this pathway yet!

e Itcanalso happenin B-R + O, and 6-R + O, systems, but is less important
there

e Inthe vicinity of the saddle point: weak interaction of radical and
zwitterionic states

Py
(\
OH OH HC\C/CO o
HC| é " > H('|3| o]
e TS N
Hy H,

reactant side HOMO
C-centered radical product side HOMO

B3LYP/6-311++G* 0-0¢’

e (Can water elimination happen in other QOOH systems? Alkanes? Other
oxygenates?
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Effect of unsaturation:

CRE Cl-initiated oxidation of isopentanol vs prenol
k )\/\ isopentanol )\/\ prenol
OH N OH
m/z = 88 m/z = 86

Time-resolved product mass spectra at 550 K

30 30

N
o
)
N
o

-
o

Kinetic time (ms)

Kinetic time (ms
>

40 50 60 70 80 90 100 40 50 60 70 80 0 100

m/z (amu) m/z (amu)
m/z = 84
)\/\

e Rich oxidation chemistry:
y * Gives essentially only prenal + HO,

multiple product channels

* QOOH chemistry is absent
* similar to n-butanol
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@f"
N Allylic radicals inhibit low-temperature chemistry

Cl + Prenol forms allylic radicals!

+Cl )\A )\/A

)\A -HCl OH
N"on

M N

OH

Resonance stabilization gets lost after O, addition

— Allylperoxy radicals have shallower wells which favor backdissociation
— Many barriers are above energy of the reactants

But: Barrier for HO, elimination of the a-OH radical is still below the
energy of the reactants

)\/\ i >
- HCI )\/.\ )\/\ + HO»
"o NSon T NN
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A\
@ Summary

Understanding the MPIMS in combination with ir
competition between channels quantum chemistry and :
in RO, chemistry is important theoretical kinetics is a

to predict low-T autoignition powerful tool to investigate

behavior ] low-T oxidation chemistry.

I+ 0,

RO, —> HO, + unsaturated

I / species

QOOH —> OH + cyclic ether

o

00-QOOH > 2 OH =+ oxygenates 0.0 e

1.2F

0.8}

ion signal

0.4}

photon energy, eV

The fuel structure has a substantial influence

We found that water elimination is on the oxidation pathways
an important pathway in alcohol
oxidation o1
¥
2 -150 >

240
280
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TJU"‘OH
o d
OH OH Y Ho
| " I 2
HC \ﬁ’/u ————— s = HC\C/O
2 Hy

TS
B3LYP/6-311++G*

: Ethanol
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CRE

74

RN
€)]

| 2\ In the single reference framework two weakly interacting
Lo

states can be found

Relative energies (kcal mol'1)
n

10 f—— MO06-2X
rad: zwit:
HF: —— —a—
MP2: - - - ==
5
O |

reactant side: radical character,
small dipole moment

- porduct side: zwitterion character,
larger dipole moment

N
o

-1.0 -0.5

0.0

S (amu“ZBohr)

1.0

Orbital character depends on where the calculation is started
HF solutions do not mix
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A\ In the single reference framework two weakly

CKE interacting states can be found

74

RN
€)]

N, reactant side: radical character,
v ; small dipole moment

[e

£ 10 e Ve - product side: zwitterion character,
S HF: SIS Vo ./ larger dipole moment

X MP2: - - - - - ) N

» 2 lecsp(ry:— — (VAR 7

o) T1M00: - -]\ Tl

2 \ |

S 0 \ | dipole moments (D)

qCJ radical zwitterion
o ROHF: 2.1 49

__; -5 ] RMP2: 1.3 4.9

% uccspb: 1.1 2.9

& 10 . | | UCCSD(T): 1.4 1.6

N
o

-0.5 0.0 0.5 1.0
s (amu"“Bohr)
UCCSD(T) energies become less dependent on initial orbital guesses

barriers for ethanol case: 18.2 and 17.2 kcal mol*
MO06-2X barrier: 16.9 kcal mol* =>» close (within uncertainty) to the UCCSD(T) barriers.

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories



A Wam— e G

A5 « . .
A\ The water elimination pathway —

_CRE. e lllustrated on ethanol

// o (.l';\ /C(L e happens via a single saddle point barrier
| | i i "® e concerted breaking of 2 bonds and making

of 2

long bonds @ TS, 1.75 A (0-0) e product is weakly bound alkoxy carbonyl
and 1.73 A (C-H) P e atthe saddle point interatomic distances

are larger than typical tight transition
states, but smaller than roaming

e the alternative 2-step cyclic ether +
roaming pathway is similar in energy, but
has small probability

e the ordinary, two-step version of the
above process does not play a role in the
TS TS experiments because of the small radical

B3LYP/6-311++G* and large precursor concentrations
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Slide 39

A5 See my next comment -- I'd probably introdice the water elimination pathway for the gamma-QOOH. That connects better

to the isopentanol and isobutanol systems.
Administrator, 7/5/2013



2N HOMOs
p CL on the two sides of the saddle point

reactant side HOMO
C-centered radical

product side HOMO
0-0 ¢*

The consecutive process (breaking O—O bond and then abstracting the H atom) involves a
doublet triradical, which is energetically unfavored.

The simultaneous pathway involves the mixing of weakly interacting,

spatially orthogonal orbitals.

Antibonding orbital being the HOMO = this is an electronic state with zwitterionic character
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N In the single reference framework two weakly

CREL interacting states can be found
/ — 15 ' . .
v \\ reactant side: radical character,
| g \ small dipole moment
=10 _MO6'2r;<d_ it \ ; . porduct side: zwitterion character,
8 HF: . v larger dipole moment
< MP2: - - - - - - \ )
N S \ B
Q
<X \
o 0r \ —
c
)
)
= -5 -
©
QO
@ -10 — | |
-1.0 -0.5 0.0 0.5 1.0

S (amu“ZBohr)

Orbital character depends on where the calculation is started
HF solutions do not mix
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A\ In the single reference framework two weakly

CKE interacting states can be found

74

RN
€)]

N, reactant side: radical character,
v ; small dipole moment

[e

£ 10 e Ve - prduct side: zwitterion character,
S HF: SIS Vo ./ larger dipole moment

X MP2: - - - - - ) N

» 2 lecsp(ry:— — (VAR 7

) T14100: -~~~ - el

= . |

S 0 \ | dipole moments (D)

qCJ radical zwitterion
o ROHF: 2.1 4.9

__; -5 ] RMP2: 1.3 4.9

% uccspb: 1.1 2.9

X 10 s | | UCCSD(T): 1.4 1.6

N
o

-0.5 0.0 0.5 1.0
s (amu"“Bohr)
UCCSD(T) energies become less dependent on initial orbital guesses

barriers for ethanol case: 18.2 and 17.2 kcal mol*
MO06-2X barrier: 16.9 kcal mol* =>» close (within uncertainty) to the UCCSD(T) barriers.
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