SAND2013- 5548C

Sandia

Exceptional service in the national interest @ National _
Laboratories

Scaling Challenges in Multigrid Solvers

Jonathan Hu
SIAM Annual Meeting, June 8-12, 2013

£ ia T AL =375
S8
‘\&g EN ERGY ///’VA D!“’g Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
s Corporatio f the U.S. D epartment of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Outline

= Background / Motivation

= The Trilinos project

= Motivating application

= Muelu, a multigrid framework
= Challenges

= Multigrid setup costs

= Design flexibility versus performance

= Numerical Results

= Conclusions

Sandia
National
Laboratories

The Trilin\os project

= Open source numerical methods framework at Sandia

discretizations methods
Numerical math
Convert to models that
can be solved on digital
computers

solvers core

Algorithms
Find faster and more
efficient ways to solve
numerical models /

» Two sparse linear algebra solver stacks

» Epetra: hardened, heavily used internally,
externally

= Tpetra: templated, multicore support

qidd

Trilinos and Sierra integration ii

= Sierrais well-known Sandia engineering simulation framework
= Regularly uses the Trilinos Epetra stack
= Moving to Tpetra is opportunity to exploit multicore architectures

= Trilinos templated Tpetra stack includes:

= Sparse linear algebra, Krylov methods, multigrid methods, iterative
solvers, sparse direct methods, load balancing methods

= Sierra/Trilinos integration project:
= Deploy Trilinos templated Tpetra linear algebra/solver stack in Sierra

= Demonstrate that representative simulations with Tpetra stack are
competitive with hardened Epetra solvers

= Required significant effort throughout Tpetra stack
= This talk focuses on the algebraic multigrid part of the integration

Sandia
National
Laboratories

Algebraic multigrid (AMG) 1) .

= Scalable method for preconditioning
elliptic systems

= Two main components

= Smoothers ® Ny Au= ®
= Approximate solves on each level
= “Cheaply” reduces particular error components \ /
= On coarsest level, smoother = A (usuall Qm _

= Grid Transfers

= Moves data between levels

= Must represent error components that
smoothers can’t reduce

= Algebraic Multigrid (AMG)

= AMG generates grid transfers

= AMG generates coarse grid A/’s ‘ ()\maxlevel]

MueLu multigrid framework T .

= Part of Tpetra templated solver stack

= Supports variety of scalar and ordinal types

= Support for modern many-core architectures
= Via Tpetra/Kokkos layers

= Extensible
= Smoothed aggregation AMG
= Energy minimization (AP talk)
= Helmholtz solvers (PT talk) [etchies)
= Geometric multigrid for Navier Stokes
= PG-SA AMG for convection diffusion

Tpetra / Kokkos
Epetra / EpetraExt

= Supports preconditioner reuse to reduce setup
expense

= All or parts of preconditioner (AP talk)

Challenges in parallel AMG) .

= Nontrivial setup costs
= Aggregation (matrix graph coarsening)
= Galerkin triple matrix product to form coarse grid operators
= Matrix transpose

= |Load balance and data movement

= Multigrid hierarchy consists of many sparse matrices of different sizes
and densities

= Setup and apply sensitive to data distribution and movement

= Tension between design flexibility and performance

AMG coarsening by aggregation @i

¢ . o ® e " Coarsen matrix connectivity
graph
= Nodes = diagonal entries
o - - - »

= Edges = off-diagonal entries

= A coarse DOF is formed by set
. - - - O of fine DOFs called aggregate

AMG coarsening by aggregation @i

® ® ® ® e " TwoDOFsiandjareconnected
if a; is nonzero

AMG coarsening by aggregation @i

® ® ® ® e " TwoDOFsiandjareconnected
if a; is nonzero

= Graphis pruned by dropping
too-small connections

= Based on strength of

. - s \ ¢ \ ¢ connection (SoC) measure, e.g.,

. |aij|2 > € |(aii)(ajj)|

AMG coarsening by aggregation @i

. ® ® ® e " Choosedistance-3 points as
root nodes to seed aggregates

AMG coarsening by aggregation ii

Q

)
Y

@

Sandia
National _
Laboratories

= Add all immediate neighbors to
root point’s aggregate

AMG coarsening by aggregation

@, O O)
O O O O—-o0
O O O ®
@ ®
@ @ J

= Cleanup phase

= Add remaining nodes to
aggregates, or

= Create new aggregates

Sandia
National
Laboratories

Aggregation: parallel performance
considerations

Sandia
m National

Laboratories

= |nitially considered scheme that allows aggregates to include
DOFs from multiple processors

= Pro: robust, avoids too-small aggregates

= Con: Requires global synchronizations that do not scale

= Current approach: aggregate only on core (local, no
communication)

Aggregation: parallel performance

h

considerations

= For scalar PDE and no dropping, aggregation can operate on
graph of existing matrix
= Existing graph is insufficient if
= SoC leads to dropped connections

= System of PDEs and want to keep DOFs @ mesh node together
= Requires coalescing multiple DOFs to single graph node

= Build a 2" parallel graph?

= Just a few lines of code

= But almost as expensive as building matrix itself

Sandia
National
Laboratories

Aggregation: parallel performance
considerations

Sandia
m National

Laboratories

= For scalar PDE and no dropping, aggregation can operate on
graph of existing matrix

= Existing graph is insufficient if
= SoC leads to dropped connections
= System of PDEs and want to keep DOFs @ mesh node together
= Requires coalescing multiple DOFs to single graph node
= Build a 2" parallel graph?
= Just a few lines of code

= But almost as expensive as building matrix itself

= Solution
= Build local version of graph
= Dropping requires no communication

= |f need global or off-core information, use original graph’s parallel
communicator 16

Work load and communication) &=,

= AMG hierarchy is sequence of sparse

operators
Ul Au=f
_ @ O

= Decreasing rows, #nonzeros /
= Decreasing workloads per core during .9[” Accr @

setup and apply gﬂ\ /éf

%

. . . . ’Q} Q[Q‘- C\’C'Q

Increasing communication to A

computation ratio in parallel

Work load and communication) &=,

= AMG hierarchy is sequence of sparse
operators

= Decreasing rows, #nonzeros

= Decreasing workloads per core during
setup and apply

= |ncreasing communication to
computation ratio in parallel

\ . ._Q [maxlevel]
= Last two issues imply communication
can dominate on coarser levels.

= Leads to high preconditioner apply cost

18

Work load and communication) &=,

*= Three options for dealing with decreasing workload/core,
increasing comm. to comp. ratio

1. Stop coarsening prematurely (must solve large parallel sparse
system)

Replicate coarse grid problem across cores (no idle cores)

Move coarse grid problem to core subset (leaving some cores idle)

\ . 0 [maxlevel]
19

Work load and communication) &=,

*= Three options for dealing with decreasing workload/core,
increasing comm. to comp. ratio

1. Stop coarsening prematurely (must solve large parallel sparse
system)

2. Replicate coarse grid problem across cores (no idle cores)
3. Move coarse grid problem to core subset (leaving some cores idle)

= Qur approach:

= Coarse grid matrices A, moved to subset of cores if
= #inonzeros/core becomes sufficiently imbalanced or
= Work/core drops below given threshold

= Zoltan2 calculates new partition numbering, either by recursive
coordinate bisection (RCB) or multijagged (MJ) partitioning

= Muelu does data migration

20

Minimizing data movement between.,...
cores

Laboratories

= Good load balance alone is insufficient, however

= RCB and MJ partitioning algorithms are not diffusive, meaning data
distribution may be very different on two consecutive AMG levels
cores

level k

level k+1

Minimizing data movement between.,...
cores

Laboratories

= Good load balance alone is insufficient, however

= RCB and MJ partitioning algorithms are not diffusive, meaning data
distribution may be very different on two consecutive AMG levels
cores

level k

level k+1

= Poor partition placement => unnecessary data movement in

= Rebalancing data (setup)
= Doing matrix matrix multiply (setup)
= Applying restriction (apply)

= Applying prolongation (apply)

Minimizing data movement between.
cores

= Qur approach
= Zoltan2 calculates partition # that each DOF belongs to

= Muelu assigns partition to core that has most DOFs in that partition

= Phasel
= Each core k creates vector of nonzero weights {w,(i)}, where
w, (i) = #DOFs on core k in partition i.

= Core k assigned partition i if w,(i) > w;(i) over all cores j.
= Ties broken randomly.
= Repeat, with cores owning partitions dropped out.

= Phase 2

= Remaining partitions assigned to lowest free PIDs.

= |n practice
= Often only a few rounds of Phase 1 necessary

= Hrounds in Phase 1 is capped ’3

Optimization of sparse linear algebrzzﬁj
kernels

Laboratories
= AMG setup requires

= Matrix matrix multiply

= Transpose

= Matrix matrix multiply

= Highly tuned parallel variant of Gustavson algorithm

= Forgoes transpose variants (e.g., AB') for speed

= Short-circuits standard matrix fillComplete

" Global to local indexing, column maps, intercore comm. pattern

= Transpose

= For symmetric problems, R = PT

= Transpose local matrix first

= Short circuits standard matrix fillComplete

= Haven’t mentioned many other sparse linear algebra
performance improvements 24

Design versus performance) 5.

= Aggregation
= Using native Tpetra graph
= Cleaner design, faster development
= Setup too expensive for our needs

= SoCinitially designed to be separate methods
= User can provide own custom SoC measures
= |ssue — must be called for every DOF, which is slow

= Matrix matrix multiply

= Not fully general (no transpose mode)

= Supports just AB use case that we care about

Sandia

Numerical results) .,
= Strong scaling on Cray XE6

= 3D pressure solve within Sierra simulation

= Semi-structured mesh, 140m DOF matrix

= GMRES preconditioned by aggregation-based AMG
= Stopping criterion |rs. | / |rg| < 1e-4

solve multigrid setup

20

n

time (seconds)
time (seconds)

Sandia

MueLu Setup Performance Over Tim@ 2.

30

= Synthetic constant :Es::::
coefficient 3D Poisson 25]
system on structured
g 201
mesh. =
= Weak scaling, ~100K 2 15

DOFs per core.

= NERSC Cray XE6 _’\

5 had 1
0 10 20 30 40 20 60 70

= Epetra (blue) version has Days since 3/11/2013
.. Run on 5184 cores of hopper.nersc.gov.
fully optimized MMM Plot courtesy of C. Siefert.

and lightweight matrix
fillCompletes

Sandia

Ongoing and future work) .

= Translate improvements in Epetra matrix matrix multiply to
Tpetra library

= Deploy expert matrix fillComplete methods in solvers
= Further coarsening optimizations
= Reuse of information between setup phases when possible

= Refine application interfaces

Conclusions)

= |mportant to reduce parallel communication through AMG
stack

= Heavy dependence on underlying sparse matrix kernels
= Tradeoffs between design and performance

= Graph representation in aggregation

= SoC criterion
= VIMM

= |mprovements required collaborative effort among Trilinos
and Sierra developers

= For more information on Trilinos project: trilinos.sandia.gov

Acknowledgements) &,

= ASC program support

= Sandia staff involved in Sierra/Trilinos Tpetra solver stack
integration, including:

= Matt Bettencourt, Erik Boman, Karen Devine, Stefan Domino, Travis
Fischer, Mark Hoemmen, Paul Lin, Eric Phipps, Andrey Prokopenko,
Siva Rajamanickam, Chris Siefert

