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 Open source numerical methods framework at Sandia

 Two sparse linear algebra solver stacks

 Epetra: hardened, heavily used internally, 
externally

 Tpetra: templated, multicore support

The Trilinos project



Trilinos and Sierra integration

 Sierra is well-known Sandia engineering simulation framework 
 Regularly uses the Trilinos Epetra stack
 Moving to Tpetra is opportunity to exploit multicore architectures

 Trilinos templated Tpetra stack includes:
 Sparse linear algebra, Krylov methods, multigrid methods, iterative 

solvers, sparse direct methods, load balancing methods

 Sierra/Trilinos integration project:
 Deploy Trilinos templated Tpetra linear algebra/solver stack in Sierra
 Demonstrate that representative simulations with Tpetra stack are 

competitive with hardened Epetra solvers

 Required significant effort throughout Tpetra stack
 This talk focuses on the algebraic multigrid part of the integration
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Algebraic multigrid (AMG)
 Scalable method for preconditioning 

elliptic systems

 Two main components
 Smoothers

 Approximate solves on each level

 “Cheaply” reduces particular error components

 On coarsest level, smoother = Ai
-1 (usually)

 Grid Transfers

 Moves data between levels

 Must represent error components that 
smoothers can’t reduce

 Algebraic Multigrid (AMG)
 AMG generates grid transfers

 AMG generates coarse grid Ai’s

Au=f

A2e2=r2

A1e1=r1



MueLu multigrid framework
 Part of Tpetra templated solver stack

 Supports variety of scalar and ordinal types

 Support for modern many-core architectures
 Via Tpetra/Kokkos layers

 Extensible
 Smoothed aggregation AMG

 Energy minimization (AP talk)

 Helmholtz solvers (PT talk)

 Geometric multigrid for Navier Stokes

 PG-SA AMG for convection diffusion

 Supports preconditioner reuse to reduce setup 
expense
 All or parts of preconditioner (AP talk)



Challenges in parallel AMG

 Nontrivial setup costs
 Aggregation (matrix graph coarsening)

 Galerkin triple matrix product to form coarse grid operators

 Matrix transpose

 Load balance and data movement
 Multigrid hierarchy consists of many sparse matrices of different sizes 

and densities

 Setup and apply sensitive to data distribution and movement

 Tension between design flexibility and performance
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 Coarsen matrix connectivity 
graph
 Nodes = diagonal entries

 Edges = off-diagonal entries

 A coarse DOF is formed by set 
of fine DOFs called aggregate

AMG coarsening by aggregation
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 Two DOFs i and j are connected 
if aij is nonzero

AMG coarsening by aggregation
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 Two DOFs i and j are connected 
if aij is nonzero

 Graph is pruned by dropping 
too-small connections

 Based on strength of 
connection (SoC) measure, e.g.,
 |aij|

2 > ε |(aii)(ajj)|

AMG coarsening by aggregation
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 Choose distance-3 points as 
root nodes to seed aggregates

AMG coarsening by aggregation
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 Add all immediate neighbors to 
root point’s aggregate

AMG coarsening by aggregation
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 Cleanup phase
 Add remaining nodes to 

aggregates, or

 Create new aggregates

AMG coarsening by aggregation
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Aggregation: parallel performance 
considerations

 Initially considered scheme that allows aggregates to include 
DOFs from multiple processors
 Pro: robust, avoids too-small aggregates

 Con: Requires global synchronizations that do not scale

 Current approach: aggregate only on core (local, no 
communication)
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Aggregation: parallel performance 
considerations
 For scalar PDE and no dropping, aggregation can operate on 

graph of existing matrix

 Existing graph is insufficient if
 SoC leads to dropped connections

 System of PDEs and want to keep DOFs @ mesh node together

 Requires coalescing multiple DOFs to single graph node

 Build a 2nd parallel graph?
 Just a few lines of code

 But almost as expensive as building matrix itself
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Aggregation: parallel performance 
considerations
 For scalar PDE and no dropping, aggregation can operate on 

graph of existing matrix

 Existing graph is insufficient if
 SoC leads to dropped connections

 System of PDEs and want to keep DOFs @ mesh node together

 Requires coalescing multiple DOFs to single graph node

 Build a 2nd parallel graph?
 Just a few lines of code

 But almost as expensive as building matrix itself

 Solution
 Build local version of graph

 Dropping requires no communication

 If need global or off-core information, use original graph’s parallel 
communicator 16



Work load and communication

 AMG hierarchy is sequence of sparse 
operators

 Decreasing rows, #nonzeros

 Decreasing workloads per core during 
setup and apply

 Increasing communication to 
computation ratio in parallel
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Work load and communication

 AMG hierarchy is sequence of sparse 
operators

 Decreasing rows, #nonzeros

 Decreasing workloads per core during 
setup and apply

 Increasing communication to 
computation ratio in parallel

 Last two issues imply communication 
can dominate on coarser levels.
 Leads to high preconditioner apply cost
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Work load and communication

 Three options for dealing with decreasing workload/core, 
increasing comm. to comp. ratio
1. Stop coarsening prematurely (must solve large parallel sparse 

system)

2. Replicate coarse grid problem across cores (no idle cores)

3. Move coarse grid problem to core subset (leaving some cores idle)
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Work load and communication

 Three options for dealing with decreasing workload/core, 
increasing comm. to comp. ratio
1. Stop coarsening prematurely (must solve large parallel sparse 

system)

2. Replicate coarse grid problem across cores (no idle cores)

3. Move coarse grid problem to core subset (leaving some cores idle)

 Our approach:
 Coarse grid matrices Ak moved to subset of cores if

 #nonzeros/core becomes sufficiently imbalanced or

 Work/core drops below given threshold

 Zoltan2 calculates new partition numbering, either by recursive 
coordinate bisection (RCB) or multijagged (MJ) partitioning

 MueLu does data migration
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Minimizing data movement between 
cores

 Good load balance alone is insufficient, however
 RCB and MJ partitioning algorithms are not diffusive, meaning data 

distribution may be very different on two consecutive AMG levels
cores

level k

level k+1



Minimizing data movement between 
cores

 Good load balance alone is insufficient, however
 RCB and MJ partitioning algorithms are not diffusive, meaning data 

distribution may be very different on two consecutive AMG levels

 Poor partition placement => unnecessary data movement in
 Rebalancing data (setup)

 Doing matrix matrix multiply (setup)

 Applying restriction (apply)

 Applying prolongation (apply)

cores

level k

level k+1



Minimizing data movement between 
cores
 Our approach

 Zoltan2 calculates partition # that each DOF belongs to

 MueLu assigns partition to core that has most DOFs in that partition

 Phase 1
 Each core k creates vector of nonzero weights {wk(i)}, where              

wk(i) = #DOFs on core k in partition i.

 Core k assigned partition i if wk(i) ≥ wj(i) over all cores j.

 Ties broken randomly.

 Repeat, with cores owning partitions dropped out.

 Phase 2
 Remaining partitions assigned to lowest free PIDs.

 In practice
 Often only a few rounds of Phase 1 necessary

 #rounds in Phase 1 is capped 23



Optimization of sparse linear algebra 
kernels
 AMG setup requires 

 Matrix matrix multiply

 Transpose

 Matrix matrix multiply
 Highly tuned parallel variant of Gustavson algorithm

 Forgoes transpose variants (e.g., ABT) for speed

 Short-circuits standard matrix fillComplete

 Global to local indexing, column maps, intercore comm. pattern

 Transpose
 For symmetric problems, R = PT

 Transpose local matrix first

 Short circuits standard matrix fillComplete

 Haven’t mentioned many other sparse linear algebra  
performance improvements 24



Design versus performance

 Aggregation
 Using native Tpetra graph

 Cleaner design, faster development

 Setup too expensive for our needs

 SoC initially designed to be separate methods

 User can provide own custom SoC measures

 Issue – must be called for every DOF, which is slow

 Matrix matrix multiply
 Not fully general (no transpose mode)

 Supports just AB use case that we care about
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Numerical results
 Strong scaling on Cray XE6

 3D pressure solve within Sierra simulation

 Semi-structured mesh, 140m DOF matrix

 GMRES preconditioned by aggregation-based AMG

 Stopping criterion |rfinal| / |r0| < 1e-4
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Run on 5184 cores of hopper.nersc.gov.
Plot courtesy of C. Siefert.

 Synthetic constant 
coefficient 3D Poisson 
system on structured 
mesh.

 Weak scaling, ~100K 
DOFs per core.

 NERSC Cray XE6

 Epetra (blue) version has 
fully optimized MMM 
and lightweight matrix 
fillCompletes

MueLu Setup Performance Over Time



Ongoing and future work

 Translate improvements in Epetra matrix matrix multiply to 
Tpetra library

 Deploy expert matrix fillComplete methods in solvers

 Further coarsening optimizations

 Reuse of information between setup phases when possible

 Refine application interfaces
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Conclusions

 Important to reduce parallel communication through AMG 
stack

 Heavy dependence on underlying sparse matrix kernels

 Tradeoffs between design and performance
 Graph representation in aggregation

 SoC criterion

 MMM

 Improvements required collaborative effort among Trilinos 
and Sierra developers

 For more information on Trilinos project: trilinos.sandia.gov

29



Acknowledgements

 ASC program support

 Sandia staff involved in Sierra/Trilinos Tpetra solver stack 
integration, including:
 Matt Bettencourt, Erik Boman, Karen Devine, Stefan Domino, Travis 

Fischer, Mark Hoemmen, Paul Lin, Eric Phipps, Andrey Prokopenko, 
Siva Rajamanickam, Chris Siefert

30


