
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Scaling Challenges in Multigrid Solvers
Jonathan Hu

SIAM Annual Meeting, June 8-12, 2013

SAND2013-5548C

Outline

 Background / Motivation
 The Trilinos project

 Motivating application

 MueLu, a multigrid framework

 Challenges
 Multigrid setup costs

 Design flexibility versus performance

 Numerical Results

 Conclusions

2

Numerical math
Convert to models that
can be solved on digital
computers

Algorithms
Find faster and more
efficient ways to solve
numerical models

L(u)=f
Math. model

L(u)=f
Math. model

Lh(uh)=fh
Numerical model

Lh(uh)=fh
Numerical model

uh=Lh
-1fh

Algorithms

uh=Lh
-1fh

Algorithms

physicsphysics

computationcomputation

Linear
Nonlinear
Eigenvalues
Optimization

Linear
Nonlinear
Eigenvalues
Optimization

Automatic diff.

Domain dec.

Mortar methods

Automatic diff.

Domain dec.

Mortar methods

Time domain

Space domain

Time domain

Space domain

Sparse lin. alg.
Utilities
Interfaces
Load Balancing

Sparse lin. alg.
Utilities
Interfaces
Load Balancing

solvers

discretizations methods

core

 Open source numerical methods framework at Sandia

 Two sparse linear algebra solver stacks

 Epetra: hardened, heavily used internally,
externally

 Tpetra: templated, multicore support

The Trilinos project

Trilinos and Sierra integration

 Sierra is well-known Sandia engineering simulation framework
 Regularly uses the Trilinos Epetra stack
 Moving to Tpetra is opportunity to exploit multicore architectures

 Trilinos templated Tpetra stack includes:
 Sparse linear algebra, Krylov methods, multigrid methods, iterative

solvers, sparse direct methods, load balancing methods

 Sierra/Trilinos integration project:
 Deploy Trilinos templated Tpetra linear algebra/solver stack in Sierra
 Demonstrate that representative simulations with Tpetra stack are

competitive with hardened Epetra solvers

 Required significant effort throughout Tpetra stack
 This talk focuses on the algebraic multigrid part of the integration

4

Algebraic multigrid (AMG)
 Scalable method for preconditioning

elliptic systems

 Two main components
 Smoothers

 Approximate solves on each level

 “Cheaply” reduces particular error components

 On coarsest level, smoother = Ai
-1 (usually)

 Grid Transfers

 Moves data between levels

 Must represent error components that
smoothers can’t reduce

 Algebraic Multigrid (AMG)
 AMG generates grid transfers

 AMG generates coarse grid Ai’s

Au=f

A2e2=r2

A1e1=r1

MueLu multigrid framework
 Part of Tpetra templated solver stack

 Supports variety of scalar and ordinal types

 Support for modern many-core architectures
 Via Tpetra/Kokkos layers

 Extensible
 Smoothed aggregation AMG

 Energy minimization (AP talk)

 Helmholtz solvers (PT talk)

 Geometric multigrid for Navier Stokes

 PG-SA AMG for convection diffusion

 Supports preconditioner reuse to reduce setup
expense
 All or parts of preconditioner (AP talk)

Challenges in parallel AMG

 Nontrivial setup costs
 Aggregation (matrix graph coarsening)

 Galerkin triple matrix product to form coarse grid operators

 Matrix transpose

 Load balance and data movement
 Multigrid hierarchy consists of many sparse matrices of different sizes

and densities

 Setup and apply sensitive to data distribution and movement

 Tension between design flexibility and performance

7

 Coarsen matrix connectivity
graph
 Nodes = diagonal entries

 Edges = off-diagonal entries

 A coarse DOF is formed by set
of fine DOFs called aggregate

AMG coarsening by aggregation

8

 Two DOFs i and j are connected
if aij is nonzero

AMG coarsening by aggregation

9

i j

 Two DOFs i and j are connected
if aij is nonzero

 Graph is pruned by dropping
too-small connections

 Based on strength of
connection (SoC) measure, e.g.,
 |aij|

2 > ε |(aii)(ajj)|

AMG coarsening by aggregation

10

 Choose distance-3 points as
root nodes to seed aggregates

AMG coarsening by aggregation

11

 Add all immediate neighbors to
root point’s aggregate

AMG coarsening by aggregation

12

 Cleanup phase
 Add remaining nodes to

aggregates, or

 Create new aggregates

AMG coarsening by aggregation

13

Aggregation: parallel performance
considerations

 Initially considered scheme that allows aggregates to include
DOFs from multiple processors
 Pro: robust, avoids too-small aggregates

 Con: Requires global synchronizations that do not scale

 Current approach: aggregate only on core (local, no
communication)

14

Aggregation: parallel performance
considerations
 For scalar PDE and no dropping, aggregation can operate on

graph of existing matrix

 Existing graph is insufficient if
 SoC leads to dropped connections

 System of PDEs and want to keep DOFs @ mesh node together

 Requires coalescing multiple DOFs to single graph node

 Build a 2nd parallel graph?
 Just a few lines of code

 But almost as expensive as building matrix itself

15

Aggregation: parallel performance
considerations
 For scalar PDE and no dropping, aggregation can operate on

graph of existing matrix

 Existing graph is insufficient if
 SoC leads to dropped connections

 System of PDEs and want to keep DOFs @ mesh node together

 Requires coalescing multiple DOFs to single graph node

 Build a 2nd parallel graph?
 Just a few lines of code

 But almost as expensive as building matrix itself

 Solution
 Build local version of graph

 Dropping requires no communication

 If need global or off-core information, use original graph’s parallel
communicator 16

Work load and communication

 AMG hierarchy is sequence of sparse
operators

 Decreasing rows, #nonzeros

 Decreasing workloads per core during
setup and apply

 Increasing communication to
computation ratio in parallel

17

Work load and communication

 AMG hierarchy is sequence of sparse
operators

 Decreasing rows, #nonzeros

 Decreasing workloads per core during
setup and apply

 Increasing communication to
computation ratio in parallel

 Last two issues imply communication
can dominate on coarser levels.
 Leads to high preconditioner apply cost

18

Work load and communication

 Three options for dealing with decreasing workload/core,
increasing comm. to comp. ratio
1. Stop coarsening prematurely (must solve large parallel sparse

system)

2. Replicate coarse grid problem across cores (no idle cores)

3. Move coarse grid problem to core subset (leaving some cores idle)

19

Work load and communication

 Three options for dealing with decreasing workload/core,
increasing comm. to comp. ratio
1. Stop coarsening prematurely (must solve large parallel sparse

system)

2. Replicate coarse grid problem across cores (no idle cores)

3. Move coarse grid problem to core subset (leaving some cores idle)

 Our approach:
 Coarse grid matrices Ak moved to subset of cores if

 #nonzeros/core becomes sufficiently imbalanced or

 Work/core drops below given threshold

 Zoltan2 calculates new partition numbering, either by recursive
coordinate bisection (RCB) or multijagged (MJ) partitioning

 MueLu does data migration

20

Minimizing data movement between
cores

 Good load balance alone is insufficient, however
 RCB and MJ partitioning algorithms are not diffusive, meaning data

distribution may be very different on two consecutive AMG levels
cores

level k

level k+1

Minimizing data movement between
cores

 Good load balance alone is insufficient, however
 RCB and MJ partitioning algorithms are not diffusive, meaning data

distribution may be very different on two consecutive AMG levels

 Poor partition placement => unnecessary data movement in
 Rebalancing data (setup)

 Doing matrix matrix multiply (setup)

 Applying restriction (apply)

 Applying prolongation (apply)

cores

level k

level k+1

Minimizing data movement between
cores
 Our approach

 Zoltan2 calculates partition # that each DOF belongs to

 MueLu assigns partition to core that has most DOFs in that partition

 Phase 1
 Each core k creates vector of nonzero weights {wk(i)}, where

wk(i) = #DOFs on core k in partition i.

 Core k assigned partition i if wk(i) ≥ wj(i) over all cores j.

 Ties broken randomly.

 Repeat, with cores owning partitions dropped out.

 Phase 2
 Remaining partitions assigned to lowest free PIDs.

 In practice
 Often only a few rounds of Phase 1 necessary

 #rounds in Phase 1 is capped 23

Optimization of sparse linear algebra
kernels
 AMG setup requires

 Matrix matrix multiply

 Transpose

 Matrix matrix multiply
 Highly tuned parallel variant of Gustavson algorithm

 Forgoes transpose variants (e.g., ABT) for speed

 Short-circuits standard matrix fillComplete

 Global to local indexing, column maps, intercore comm. pattern

 Transpose
 For symmetric problems, R = PT

 Transpose local matrix first

 Short circuits standard matrix fillComplete

 Haven’t mentioned many other sparse linear algebra
performance improvements 24

Design versus performance

 Aggregation
 Using native Tpetra graph

 Cleaner design, faster development

 Setup too expensive for our needs

 SoC initially designed to be separate methods

 User can provide own custom SoC measures

 Issue – must be called for every DOF, which is slow

 Matrix matrix multiply
 Not fully general (no transpose mode)

 Supports just AB use case that we care about

25

Numerical results
 Strong scaling on Cray XE6

 3D pressure solve within Sierra simulation

 Semi-structured mesh, 140m DOF matrix

 GMRES preconditioned by aggregation-based AMG

 Stopping criterion |rfinal| / |r0| < 1e-4

26cores

ti
m

e
 (

se
co

n
d

s)

ti
m

e
 (

se
co

n
d

s)

cores

solve multigrid setup

256

16384

27

Run on 5184 cores of hopper.nersc.gov.
Plot courtesy of C. Siefert.

 Synthetic constant
coefficient 3D Poisson
system on structured
mesh.

 Weak scaling, ~100K
DOFs per core.

 NERSC Cray XE6

 Epetra (blue) version has
fully optimized MMM
and lightweight matrix
fillCompletes

MueLu Setup Performance Over Time

Ongoing and future work

 Translate improvements in Epetra matrix matrix multiply to
Tpetra library

 Deploy expert matrix fillComplete methods in solvers

 Further coarsening optimizations

 Reuse of information between setup phases when possible

 Refine application interfaces

28

Conclusions

 Important to reduce parallel communication through AMG
stack

 Heavy dependence on underlying sparse matrix kernels

 Tradeoffs between design and performance
 Graph representation in aggregation

 SoC criterion

 MMM

 Improvements required collaborative effort among Trilinos
and Sierra developers

 For more information on Trilinos project: trilinos.sandia.gov

29

Acknowledgements

 ASC program support

 Sandia staff involved in Sierra/Trilinos Tpetra solver stack
integration, including:
 Matt Bettencourt, Erik Boman, Karen Devine, Stefan Domino, Travis

Fischer, Mark Hoemmen, Paul Lin, Eric Phipps, Andrey Prokopenko,
Siva Rajamanickam, Chris Siefert

30

