SAND2013- 6555C

Streaming Malware Classification in the Presence of
Concept Drift and Class Imbalance

W. Philip Kegelmeyer and Ken Chiang
Sandia National Laboratories
Livermore, CA 94551-0969, USA
Email: {wpk, kchiang} @sandia.gov

Abstract—Malware, or malicious software, is capable of per-
forming any action or command that can be expressed in code
and is typically used for illicit activities, such as e-mail spamming,
corporate espionage, and identity theft.

Most organizations rely on anti-virus software to identify
malware, which typically utilize signatures that can only identify
previously-seen malware instances. We consider the detection of
malware executables that are downloaded in streaming network
data as a supervised machine learning problem. Using malware
data collected over multiple years, we characterize the effect
of concept drift and class imbalance on batch and streaming
decision tree ensembles. In particular, we illustrate a surprising
vulnerability generated by precisely the aspect of streaming
methods that seemed most likely to help them, when compared
to batch methods.

I. INTRODUCTION

Malware, or malicious software, has been around since
the early 1970’s and is capable of performing any action or
command that can be expressed in code. It is typically used for
illicit activities, such as e-mail spamming, corporate espionage,
and identity theft. It has been regarded as one of the most
prevalent cybersecurity threats and is increasingly becoming
more difficult to detect and avoid [8].

Symantec, a leading software security company, estimates
that over 60 percent of websites used to distribute malware
in 2012 were legitimate websites that had been compromised.
Websites were not the only delivery mechanism for infection;
it was also estimated that one in every 291 e-mails contained
exploits. Furthermore, targeted attacks, which combine social
engineering and malware to target individual employees at
specific companies, increased by over 40% from the previous
year. These targeted attacks are commonly used for industrial
espionage and lead to exfiltration of confidential information,
such as customer data [1].

Most organizations rely on anti-virus software to identify
malware, which typically utilize signatures. Signature-based
detection only allows anti-virus software to detect known
malware; they typically cannot generalize to unseen instances,
such as zero-day exploits [8]. In addition, as this software is
publicly available, malware authors also have access, which
allows them to ensure that their exploits circumvent detection.

Signature detection can be seen as an example of crisp rule-
based detection, one where the rules are hand-crafted to match
specific experience. Such rules are often brittle as data changes
over time. Supervised machine learning provides a mechanism

Joe Ingram
Sandia National Laboratories
Albuquerque, NM 87185-0932, USA
Email: jbingra@sandia.gov

for learning rules from the data at hand; rules that come to
understand what counts as normal as well as the “signatures” of
malware. Such rules are typically more robust, partly because
they are easy to automatically re-learn as new data arrives.

Supervised machine learning can be regarded as function
approximation and estimation. That is, given a set of labeled
data instances £ = {(z,y)W}N |, where (r,y) denotes an
instance z and its associated label y, the goal is to generate a
hypothesis (or model) h : X —), which maps the input to
its associated output. The resulting model can then be used to
label future instances.

II. DATA ACQUISITION AND LABELING

We consider the detection of malware executables that
are downloaded in streaming network data as a supervised
machine learning problem. That is, we will start with a set
of executables for which we have

e A label, “goodware” or “malware”, and

e A vector of attributes, or features, whose length and
organization is constant across all of the executables.

A common issue when employing machine learning in
practice is obtaining labeled training data, as well as defining
relevant features. We briefly describe our process for collecting
and labeling malware and goodware samples and also what
features were used in the learning problem.

A. Data Collection

We utilized three batches of data in our experiments, which
were collected over the course of three years. Each set consists
of about three months of data. Each dataset is characterized in
TABLE L.

The goodware samples were collected from live feeds of all
files that crossed a corporate network border. However, there
could potentially be malware in these feeds. We mitigate this
risk by filtering the feed through anti-virus scanners before
labeling the data stream as “good”. An alternative source
of goodware data could have been to use known software
included in the Windows operating system, or to download
the various versions of browser and PDF reader applications.
Using actual goodware executables as they arrive at a corporate
network, however, allows us a more accurate, temporally-
nuanced perspective of the data we might expect in the future.

TABLE 1. DATA SOURCES AND MAGNITUDE

ID Dates Goodware count Malware count
2010 10-2010 to 01-2011 10260 8501
2011 11-2011 to 02-2012 3409 13011
2012 | 01-2012 to 03-2012 54153 16911

For malware, we used a daily feed from Arbor Networks!,
a security company that collects malicious software from the
many network sensors that they own.

B. Feature Extraction

The features used for our supervised machine learning
problem are based on Portable Executable (PE) headers, which
specify the layout of executable files for the Windows op-
erating system. The PE header resides at the beginning of
a Windows executable file and is marked by the signature
bytes ‘MZ’. As examples, PE headers indicate where the code
sections are on file and where they should be mapped in
memory during execution, what imported dynamically linked
libraries (DLLs) are loaded and which of their library functions
to use in the software, checksums, etc. For a good introduction
to the PE format, see [11]. We also compute a few additional
features based on group properties of the PE headers, such as
the entropy of the different sections in the file.

A Python script based on the pe fi1le? library was used to
extract header features from each file. Since the executables
that we collected were all Windows-formatted files, the fea-
tures we extracted are all based on parsing and characterizing
the PE headers. Therefore, collecting these features does not
require a complete and non-corrupted file, but only a complete
and non-corrupted header.

III. SUPERVISED LEARNING METHODOLOGY

The current state of the art method for practical, robust,
accurate supervised machine learning, in a fixed data set,
is ensembles of decision trees [2]. The malware detection
problem, however, presents a streaming data problem, in that
data is constantly arriving.

If we take “streaming data” to mean that we are constrained
to examine each executable and its vector of attributes only
once, we note that traditional ensembles are ill-suited for
streaming data, for three reasons:

e The standard method of building an individual de-
cision tree requires repeatedly revisiting each data
point’s attribute vector.

e The standard method of building an ensemble requires
repeatedly resampling from the training data to make
a specialized training set for each tree.

e The “streaming” nature of the arrival of executables
is not solely a processor or storage resource concern.
The executables arrive over time, and so their nature
can change over time, as malware methods change,
and fall into or out of favor. A static ensemble of
trees that does not adjust to the temporal nature of the

Uhttp://www.arbornetworks.com/
Zhttp://code.google.com/p/pefile/

1 First

i

R Yes /
Third R !

I

1 R Second

/

(More Splits)

o

0
00 50

(a) Feature space partitioned (b) Decision tree representation

Fig. 1. A 2D Feature Space and its Decision Tree Partitioning

data, to the “concept drift” inherent in the data, will
be useful, at best, only shortly after the ensemble is
trained.

A. Batch Trees

To understand how a batch decision tree is built (and
ultimately how it is inappropriate for streaming data), take the
geometric view of imagining each data point as existing in an
N-dimensional space, where N is the number of attributes.
To determine the optimal partitioning of the data, the tree
induction algorithm defines an objective function (generally
called a “purity” function) that measures how much better the
classes are separated in the children of any proposed split.
Then it considers all possible splits, and picks the one which
maximizes the objective function.

Fig. 1(a) illustrates a very simple case, with only two
features (x and y), 16 data points, and two classes, Blue I and
Red R. What the decision tree algorithm does is figure the best
way to incrementally partition the feature space, giving each
partition a unique label. Then to figure out the label of a new
point, you figure out which partition it fell into, and look up
its label. Or, equivalently, you march down the decision tree
representation of the partition (as in Fig. 1(b)) and look up the
label associated with the leaf node of the tree.

B. Batch Ensembles

The previous section describes the process for building
a single batch decision tree. There are many methods for
building ensembles of classifiers. They can all be illustrated
well enough by considering the “bagging” method.

The core idea behind ensembles via bagging is to generate
many variants of a data set from an original baseline data set.
Each variant is used to train a single machine learning model,
and since each model is based on slightly varying data, the
models will vary as well. Fig. 2 illustrates the core idea for a
toy example which has only 10 training data points, labeled 0—
9. Each of the four bagging examples depict picking randomly
from those ten data points, with replacement, until ten points
have been picked. Since the selection is done with replacement,
any one data point might be picked more than once. Also, since
a data point can be picked more than once, but the resultant

@0 © 0 © 0 © ©
©o0 00 OO0 O 0
@0 © 0 © 0 © 0
OO © 0 ©0 © o
©O ©_0 00 0_0
T OT® 070 07
©®O ©® 0 © 0 ©® ©
o 00 © 0 0 ©
©® O ©® 0 © 0 © o
> ¢ Y °9

M. B B m

7

Vote

Sampling with replacement
—

Fig. 2. Bagging Seems to Require Revisiting Data

data set is the same size, some points will be omitted. The
result is a skewed, variant version of the original data. As an
example, in Fig. 2, the first bag has selected multiple copies
of data points 5 and 9, but has omitted data points 4 and 6.

The point of ensemble methods is that simple majority
voting of the resulting variant machine learning models is,
nearly inevitably, more accurate than consulting a single model
learned from the unmodified data [9].

C. Streaming Trees

As was mentioned in Section III-A, the standard decision
tree algorithm must constantly revisit every data point, as each
data point must be sorted along every attribute dimension and
every possible threshold investigated in order to determine the
best split. This process is obviously incompatible with the
streaming constraint of examining each data point only once.

However, if we relax the requirement that we are required
to find the best split, a streaming approach becomes possible.
The basic idea is to recognize that, quite frequently, only a
small subset of the data may be needed to find the best attribute
at a given node. So the initial core of a streaming tree algorithm
is to:

e Maintain a list of leaves in the current tree.

e Filter an example from the stream into the appropriate
leaf.

e Extract statistics (its class and its contribution to
histograms on each attribute) from the example, and
discard.

e Spilt a leaf into two new children only when it contains
enough examples to “reliably” pick the “best” attribute
for splitting.

To reliably pick the best attribute, we make use of the
Hoeffding bound [6]. Let r be a real-valued random variable
with range RR. After n observations the computed mean is 7.
The Hoeffding bound says that, with probability 1— 46, the true
mean of r is at least 7 — €, where

This holds regardless of the probability distribution of r.

To make use of this with decision trees, let G(A) be the
quality (the overall increase in purity) that comes from splitting
a leaf using the best threshold on attribute A. Suppose that A,
and A, are the first and second best attributes with respect to
G(-), so far. Then, define

AG = G(A1) — G(A3) > 0.

AG is thus how much better attribute A; is than its closest
competitor, As, at splitting the data in the current leaf. It makes
some intuitive sense that if this delta is large enough, we could
go ahead and split on attribute A; and be fairly confident that
this would be the split chosen if we waited to see all the data
and did the full exhaustive search.

And in fact, letting AG be the random variable 7 mentioned
above, the Hoeffding bound lets us assert that if AG > ¢, then
A is the best attribute to split on, with probability 1 — §.

To make a tree growing procedure out of this:

1) Pick 6, such as 0.05. (Remember: ¢ is a function of
6 and m.) When ¢ is smaller, it is more likely that
the Hoeffding tree will match the batch tree, but it
is also the case that much more data will be needed
before the node can split.

2) Accumulate samples at each node (that is, increase n
for that node) until the best split is € better than the
second best split.

3) Then make that best split, set the initial n of each
child leaf to the number of points that fall into that
leaf, and recurse on the children.

4) (Handling continuous data is a tricky special case, but
one which has been addressed [7].)

If, for instance, 6 = 0.05, the result is a decision tree where
each node is 95% likely to have the same threshold and
attribute that would have been selected at that node by a batch
tree growing algorithm.

This procedure has a number of nice properties in the
context of streaming data:

e Each example is examined only once.

e FEach leaf requires a fixed and known amount of
memory.

o The resulting tree is asymptotically arbitrarily close to
the tree produced by a batch learner.

“Asymptotically arbitrarily close” means, of course, that
the Hoeffding trees are not identical to the batch trees that
would have been generated from the same data. But as we
plan to use these Hoeffding trees in ensembles of deliberately
variant trees, the small deltas turn out to not matter much.

D. Streaming Ensembles

Adapting bagging to the streaming context turns out to be
much simpler than adapting tree induction. The first publica-
tion on the topic was from Nikuj Oza [10], and so the method
is popularly called “Oza bagging”.

The key insight is that the bagging process (sampling with
replacement from a data set of size N to make a another data

Accuracy, averaged over available time deltas

2 4 6 s 10 12 14

Time delta, in weeks

Fig. 3. Malware Detection Accuracy Degrades over Time

set of size V), means that each bag has K copies of a sample,
where K turns out to be binomial:

e - ()G (=)

The binomial distribution has the useful properly that, as IV
gets large,

6_1

K

That is, K tends towards a random variable with a Poisson(1)
distribution. Furthermore, this is a very robust approximation,
one that is nearly perfect for N as small as thirty.

As N — o0, P(K = k)

So to build a set of E Hoeffding trees while still only
handling each data point only once, consider each sample
x;. For each individual Hoeffding tree, t;, pick K;; from a
Poisson(1) distribution and give K;; copies of x; to t;. The
tree will use those copies (if K;; > 0 for this sample) to
update the tree, and then discard them. Once every tree has
been updated, the sample is discarded for the entire ensemble,
and the next sample is considered.

The result is that Oza bagging achieves a data distribution
which converges to that of standard bagging, yet is perfectly
compatible with considering each data point only once, as is
required by the streaming context.

IV. INVESTIGATION OF CONCEPT DRIFT

In real-world applications, the underlying concepts that
machine learning algorithms try to learn are often not static but
change over time. That is, with concept drift, the underlying
data distribution changes with time, which typically results in a
decrease in performance of a static model. There are typically
two main types of drift, gradual and sudden [12].

A. Gradual Concept Drift

An early version of the data collection described in Sec-
tion II resulted in fifteen weeks of malware and goodware data,
all time stamped at day resolution. Each week of data was
aggregated into a single dataset, yielding twelve temporally
arranged datasets, where dataset ten was, for instance, collected
nine weeks after dataset one.

Accuracy

Spoofed CheckSum, starting in week 6

o 2 4 6 8 10 12 14 16

Time Delta, in weeks, from initial training of the model

Fig. 4. Result of a Suddenly Invalidated Malware Detector

A batch ensemble was built on every week and tested on
every week that followed. Thus there were fourteen tests of a
one week gap between training and testing, thirteen tests of a
two week gap, and one test of a fourteen week gap. Further,
every model could be tested on its own training data in a fair
way using 10-fold cross-validation, resulting in fifteen tests of
no gap.

The results are in Fig. 3, which illustrates that the malware
detection accuracy started at about 95% but degraded to about
85% after 12 weeks. Further, the degradation is not smooth.
In this case this could be because each subsequent data point
is being averaged over fewer experiments and so should have
higher variance, but in general it should not be expected that
degradation will be smooth, as performance could depend on
the day of the week, on the re-discovery of some specific
exploit, or on the sudden patch of an exploit.

B. Sudden Concept Drift

One of the benefits of working with ensembles of decision
trees is that they permit easy assessment of the importance
of each of the features. When we investigated the results
above, and the executable attributes were quantitatively as-
sessed via the “Path” metric [4], we realized that the PE header
“CheckSum” was the single strongest indicator of malware.
For general applications CheckSum is an optional field, and
so it might be zero in goodware. However, it is required of
all system executables; all executables in the Windows 7 base
install (the system32 directory) have a non-zero value. The
reason it seems to be useful here may be that malware, in
our data, was observed to be much more likely to have a zero
CheckSum. Week 1 is typical: 12% of the goodware had a
CheckSum of zero, but 43% of the malware had a CheckSum
of zero.

So perhaps the model has learned that malware developers
were lazy or ill-informed about CheckSum’s significance. To
illustrate what that could mean, if true, Fig. 4 illustrates what
would happen if malware developers suddenly caught on and
were careful about setting CheckSum. It should be noted that
the ability to set this value is easily available to malware
authors as the Windows SDK provides an API for legitimate
software to set it, and as far back as 1999, the W32/Kriz virus
computed the checksum of files that it infected to mask its
tampering.

TABLE II. BASELINE PERFORMANCE WITHOUT CONCEPT DRIFT

Data Batch Ensemble Streaming Ensemble
2010 98.80 96.77
2011 98.45 96.51
2012 98.60 96.73

The blue curve is the actual result of building a model
on week O and testing on weeks 1 through 14. (This is not
averaged delta performance, as in Fig. 3; this is the result of
working with a single model.) The red line is a simulation
of what would happen if, in week 6, malware writers started
inserting non-zero checksum values into the PE header. We
generated this simulated data by looking at the non-zero
goodware checksums for a given week and inserting one, at
random, to replace every malware checksum that had a value
of zero.

The point of this figure, of the roughly 10% loss of
accuracy, is to illustrate that we need to be vigilant toward
sudden concept change as well as concept drift, particularly in
the context of adversarial machine learning.

V. EXPERIMENTS AND RESULTS

As discussed in Section II, we are working with three
data sets, the “2010”, “2011”, and the “2012” data. Each
set represents three months of executables, each classified as
goodware or malware.

For the implementation of batch decision tree ensembles,
we used a custom C implementation called “Avatar Tools”.
For the implementation of Oza Bagging with incremental
Hoeffding trees, we modified Massive Online Analysis (MOA),
an open-source Java library developed at the University of
Waikato [3].

A. Baseline Performance with No Drift

The whole point of having acquired temporally separated
data sets is to explore the impact of concept drift, but in order
to assess that impact, we must start from an understanding of
the baseline performance in the case where concept drift is not
an issue.

So, the baseline accuracies in TABLE II indicate the result
of 10-fold cross-validated bagged ensemble analysis of each
year individually, where the ensemble size is automatically
selected for both batch and streaming ensembles, and Oza
bagging is used with Hoeffding trees.

One conclusion is that both batch and streaming decision
tree ensembles are pretty good at distinguishing between
malware and goodware, although the streaming ensemble is
somewhat less accurate than its batch counterpart. This result
makes intuitive sense as the decision trees constructed in a
batch setting do not have to start making commitments to their
structure until they have seen all of their training data.

Hoeffding trees, on the other hand, begin to build the upper
levels of their trees after they have seen only a fraction of the
data. On one hand, this means they are always ready to classify
an unlabeled sample, no matter how little data they have seen;
batch trees cannot do this. On the other hand, since Hoeffding
trees have to commit early, each individual tree will be less

TABLE III. ACCURACY WITH CONCEPT DRIFT AND COPIUS
MALWARE
Train | Test Type Batch Ensemble | Streaming Ensemble
2010 2011 Standard 90.97 91.87
2010 2011 Interleaved — 95.69
2010 2012 Standard 90.03 85.80
2010 2012 Interleaved — 92.82
2011 2012 | Standard 91.25 81.36
2011 2012 Interleaved — 93.32

accurate than the average batch tree, and so it makes sense
that the ensemble might be less accurate as well. Next we
compare the baseline performance in TABLE II with a variety
of concept drift experiments.

B. Performance with Concept Drift and Copius Malware

As discussed in Section II, we have daily access, via Arbor
Networks, to much more malware data than we could collect
ourselves. We first investigate the impact of concept drift in the
context where all of that additional malware data is available
for both training and testing.

See TABLE III for the results. To interpret this table, note:

Train/Test:
All of the experiments involve building a model
on the training year’s data, and testing on a
subsequent year.

Standard/Interleaved:
There are two possible ways to evaluate the per-
formance of the test data. In the “standard” mode,
once the ensemble model is built on the training
year it remains fixed and unchanged, and the test
year data is evaluated against that model all at
once.
In the “interleaved” mode, the test data is pre-
sented to the model one sample at a time. The
sample is tested, the accuracy on the sample is
recorded, and then the same sample is used to
update the model.
Note that the “interleaved” process is available
only to the streaming methods, as they have the
ability to be incrementally updated. The decision
trees trained in a batch setting do not share this
property; they cannot be incrementally updated:
at best you would have to start over and rebuild
the tree from scratch on the updated data.

Batch Ensemble:
This indicates using an automatically sized
bagged ensemble of batch decision trees as the
model.

Streaming Ensemble:
This indicates using one hundred Hoeffding trees
with Oza bagging as the model.

The main conclusion suggested by TABLE III is that the
interleaved streaming model always out-performs the batch
ensemble, which, remember, was not true when there was no
concept drift. This is very satisfying, as it means that no accu-
racy is lost even though we are using a streaming-compatible
machine learning algorithm. However, it also makes sense, as
interleaving means the model is able to make use of new data

TABLE IV. CLASS AVERAGED ACCURACY WITH CONCEPT DRIFT

AND CLASS IMBALANCE

Train Test Type Batch Ensemble Streaming Ensemble
2010 2011 Standard 91.96 90.63
2010 2011 Interleaved — 90.70
2010 2012 | Standard 87.46 86.77
2010 2012 Interleaved — 82.09
2011 2012 | Standard 93.63 84.38
2011 2012 Interleaved — 75.60

not available to the batch model. One might thus conclude
that one should always add in new data as it arrives. The next
section issues a caution around that conclusion.

C. Performance with Concept Drift and Class Imbalance

The previous section investigated the context where mal-
ware continues to populate the test data at roughly the same
rate as the training data. The incidence rate of malware
actually arriving in most organizations would be much lower.
Quantifying that arrival rate is complex, but one measure
would be to note that the intrusion detection specialists at our
corporate partner spot roughly two malware samples per day
that they consider worthy of investigation.

So we conducted another round of experiments in which we
trained on the full set of malware and goodware, but thinned
the test malware to only two samples per day, or 180 samples
per test set. In order to ensure stable results, given that not all
of the malware is tested each time, the tests were repeated ten
times, and the average performance was reported.

Further, for this experiment we report class averaged accu-
racy. That is, we compute accuracy when testing on goodware
only, and accuracy when testing on malware only, and then
average them together. This is a more sensitive test of accuracy
when one of the test classes is rare. For instance, if there
are 180 malware samples in the test set, but 5000 goodware
samples, then a machine learning model that calls everything
goodware would have a standard accuracy of 96.4%, but a
class averaged accuracy of 50% (100% accurate on goodware,
0% accurate on malware), which is a more useful indication
of how well the classifier discriminates between the classes.

TABLE IV indicates the results of the experiments, using
the same notation as in TABLE III. Note that in the presence
of both concept drift and class imbalance, the interleaved
streaming model did worse than batch analysis (and generally
worse than non-interleaved streaming analysis), despite the fact
that interleaved analysis provides fresh data input.

It turns out this fresh data input is exactly the source of
the degradation. It is not caused by the samples themselves,
but by their proportion. There are so few malware samples in
the new data that the interleaved model quickly learns it can
do best by predicting that nothing is malware.

VI. CONCLUSION AND FUTURE WORK

We have characterized the effect of concept drift and class
imbalance on batch and streaming decision tree ensembles
using a malware dataset collected from live feeds. We have
demonstrated how bagged ensembles of decisions trees can
be well-adapted to the streaming data case, and illustrated

a perhaps surprising vulnerability stemming from updating a
model based on new data.

Future work would be to investigate the efficacy of al-
gorithms specifically designed to handle concept drift when
coupled with class imbalance. A first step will be to integrate
the SMOTE [5] algorithm for generating data-conditional
synthetic training samples of the minority class.

ACKNOWLEDGMENT

Funding for this work came from the Laboratory Directed
Research and Development program at Sandia National Lab-
oratories.

Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. De-
partment of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

REFERENCES

[1] “Internet security threat report 2013,” Symantec, Tech. Rep., 2013.
[Online]. Available: http://www.symantec.com/content/en/us/enterprise/
other_resources/b-istr_main_report_v18_2012_21291018.en-us.pdf

[2] R. E. Banfield, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer,
“A comparison of decision tree ensemble creation techniques,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 29, no. 1, pp. 173-180, Jan.
2007. [Online]. Available: http://dx.doi.org/10.1109/TPAMI.2007.2

[3] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “MOA: Massive
online analysis,” J. Mach. Learn. Res., vol. 99, pp. 1601-1604, August
2010, software at: http://moa.cs.waikato.ac.nz. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1859890.1859903

[4] R. Caruana, M. Elhawary, A. Munson, M. Riedewald, and D. Sorokina,
“Mining citizen science data to predict prevalence of wild bird species,”
in Proceedings of the International Conference on Knowledge Discovery
and Data Mining, 2006.

[S] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” Journal of
Artificial Intelligence Research, vol. 16, pp. 321-357, 2002. [Online].
Available: http://adsabs.harvard.edu/abs/2011arXiv1106.1813B

[6] P. Domingos and G. Hulten, “Mining high-speed data streams,” in
Proceedings of the sixth ACM SIGKDD international conference
on Knowledge discovery and data mining, ser. KDD ’00. New
York, NY, USA: ACM, 2000, pp. 71-80. [Online]. Available:
http://doi.acm.org/10.1145/347090.347107

[7]1 J. Gama, R. Fernandes, and R. Rocha, “Decision trees for mining data
streams,” Intell. Data Anal., vol. 10, pp. 23—45, January 2006. [Online].
Available: http://dl.acm.org/citation.cfm?id=1239076.1239079

[8] I. Kirillov, D. Beck, P. Chase, and R. Martin, “Malware
attribute enumeration and characterization,” MITRE Corporation,
Tech. Rep., 2010. [Online]. Available: http://maec.mitre.org/about/
docs/Introduction_to_MAEC_white_paper.pdf

[91 L. Kuncheva, Combining pattern classifiers: methods and algorithms.
Wiley-Interscience, 2004.

[10] N. Oza, “Online bagging and boosting,” in Systems, Man and Cyber-
netics, 2005 IEEE International Conference on, vol. 3, oct. 2005, pp.
2340 — 2345 Vol. 3.

[11] M. Pietrek, “An in-depth look into the Win32 portable executable
file format,” MSDN Magazine, 2002. [Online]. Available: http:
//msdn.microsoft.com/en-us/magazine/cc301805.aspx

[12] A. Tsymbal, “The problem of concept drift: Definitions and related
work,” Trinity College, Tech. Rep., 2004.

