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Yield strength and microstructure control slow crack growth
susceptibility in stainless steels and superalloys.
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Purpose

Define the role of environment on crack growth susceptibility in
austenitic superalloys.

Approach

Combine results of previous studies and of unpublished work on the
high strength iron based austenitic superalloy IN903.

Outline

Describe the microstructure and modes of deformation as they
establish the modes of failure.

Discuss the effects of internal and external hydrogen on toughness,
thresholds, and fracture processes.

Describe how hydrogen environment affects crack growth rates and
fracture processes.

Show how microstructure interacts with hydrogen to establish crack
growth behavior.




The microstructure of IN903 consists of equiaxed grains, annealing twins,
grain boundary and large matrix carbides. This alloy is strengthened by
20-nm-diameter gamma’ precipitates
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Deformation in IN903 occurs by coplanar slip resulting in the
dislocation cutting of gamma’ precipitates.




Hydrogen-induced crack growth often exhibits three stages of behavior
with each stage defined by the mechanisms controlling fracture.

Suscepitibility to crack growth
depends on many factors.
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Increasing hydrogen concentration markedly reduced the fracture
toughness of IN903.
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Slow crack growth thresholds in hydrogen charged samples are
significantly lower than fracture toughness of hydrogen charged

samples.
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Slow crack growth thresholds for samples tested in hydrogen gas
fall between the fracture toughness and slow crack growth

thresholds in hydrogen charged samples.
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Fracture modes exhibit a nominal progression from microvoid
coalescence to slip band failure and finally intergranular failure with
increasing hydrogen concentration.
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Comparing void growth at failure indicates that crack tip hydrogen
concentrations increase during slow crack growth.
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A strong interaction between hydrogen and the crack tip stress field
alters diffusion paths and enhances hydrogen concentration.
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The effect is through lattice concentration.

Ciotal(0) = Clattice (0) + Ctrap (0)

where

N Ciattice (0) = Ciattice (0) €Xp(0,Vy / RT)



Crack tip stresses significantly enhance hydrogen concentrations in

the near crack tip regions.
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Thresholds in charged samples are lower than toughness and threshold
values in hydrogen gas even when crack tip stress effects are included
in the hydrogen concentration calculations.
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Results show that additional factors affect crack growth.



Transition from critical strain to critical stress control as hydrogen
pressure (concentration) increases
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A ratio of V2 exists between slow crack growth thresholds and the
stage I/Il transitions in IN903 and bcc steels, charged with hydrogen
and tested in hydrogen gas.
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This behavior observed with slip band, quasi-cleavage and intergranular
fracture modes.



For IN903, slip band fracture is a strain controlled process with
fracture toughness governed by average matrix carbide spacing and
slow crack growth thresholds by nearest neighbor carbide spacing.
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Fracture changes from lateral growth along the main crack front to
forward growth as the characteristic fracture distance changes from
nearest neighbor to average carbide spacing.
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This behavior occurs with slip band, quasi-cleavage and intergranular
fracture modes.



Thresholds and toughness vary monotonically with hydrogen
concentration when normalized to the controlling fracture distances and
crack tip stress effects are included in the concentration calculations.
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The superposition of slip band and intergranular fracture modes indicates there
are differences due to hydrogen environment.



Crack growth rates and fracture processes vary markedly with pressure
(concentration) in a hydrogen gas environment.
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Crack growth rates exhibit markedly different behaviors with respect
to hydrogen concentration and hydrogen environment.
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Unlike toughness and thresholds, crack growth rates and fracture
modes do not vary in a predictable manner.



Fracture initiates at matrix carbides and proceeds along coplanar
slip bands.




Intersecting slip bands create offsets which block dislocation
motion. The high dislocation density within these intersections and
destruction of order promotes void formation.




Trap site energies show that significant trapping of hydrogen can

occur at an a/2[110] Lomer-Cottrell Lock.
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Void formation at intersecting slip bands is followed by failure
of inter-connecting slip band segments.

The intersecting slip bands create high energy trap sites (0.3 eV) where
hydrogen segregates leading to void formation.



Hydrogen-induced stage |l crack growth occurs by a sequence
of two distinct fracture processes.
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Crack growth begins with fracture of matrix carbides ahead of the
main crack forming microcracks.

The microcracks then trigger void formation at slip band inter-
sections and failure of inter-connecting slip band segments.



We have developed a model based on Fick's Second Law for diffusion,
trapping at dislocation intersections, and a critical strain criterion for fracture.

(6]

Fracture of matrix carbides:

yy
Diffusion and Accumulation:
1_()_0_ V(cVV)
Dot A0t T

Stress Field Interactions:
V=_8rc(1 +V)W8r1365|n ©/2)

— & > 3 "

Y Trapping:

N Y E

S C__c,ex —b)

y>’ 1-C~ °7TM\RT
Y Fracture:
Y .

Y gt =g¢ -oClf*



The maximum normal stress ahead of the main crack front causes the
matrix carbides to fracture. These fractured carbides then act as

microcracks.

The conditions along theta=0 are a
good approximation for all theta of
interest.
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Lyubov and Vlasov modeled the interaction between hydrogen
and stresses at the head of a slip band using a blocked array of
edge dislocations.

Lyubov and Vlasov

The interaction energy between an impurity atom and a dislocation pile-up is described by:
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10c_,., VW) _Do-L, y[Sin(8/2)dc  cos(8/2) ac
D ot C+ KT T rr ar r27r 90

To a first approximation with terms for trapping, this reduces to:

oot ol ol et )

onlgy



The effect of hydrogen on the critical strain for fracture along slip band
segments can be determined from fracture toughness values and finite
strain distributions.
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Predicted stage lla crack growth rates are in reasonably good
agreement with measured values at room temperature.
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Predicted stage lla crack growth rates are in reasonably good
agreement with measured values at room temperature.
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The apparent activation energy for stage lla crack growth at low
temperatures correlates to diffusion through the IN903 lattice with

trapping at gamma’ precipitates.
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Stage lla slip band fracture in hydrogen charged samples is controlled by the
diffusion of hydrogen.



Model provides a good fit to crack growth data in charged samples
when fracture occurs by slip band failure.
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Predicted crack growth rates are in good agreement with measured values
at room temperature.



Slip band fracture crack growth in hydrogen gas occurs at much
lower rates than from redistribution of internal hydrogen.
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The agreement between experimental values and model predictions indicates
that matrix diffusion controls stage Il crack growth in hydrogen gas.



Intergranular fracture initiates by decohesion/void formation at grain
boundary carbides.
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Tensile fracture cross sections show that intergranular fracture is
stress controlled.



Crack growth at high hydrogen pressures occurs at much higher
rates than at low pressures with a change in fracture from along
slip bands to grain boundaries.
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The effective diffusivity is three orders of magnitude greater than the matrix
diffusivity, suggesting that grain boundary diffusion controls crack growth.



Crack growth rates exhibit vastly different behaviors with respect to
hydrogen concentration and hydrogen source.

da/dt, m/s

10
107
107

10°

108
16"
10710
107"

=

Slip Band Fracture

-

7/
7/

Intergranular Fracture

20

30 40 50

K, MPa-m /2

60

70

80

90

Slow Crack Growth Charged Samples
Slip Band Fracture

D=4.2e-15m°/s

X; = 0.75um

Xq =75b

da/dt ~ 10e - 5m?s

Slow Crack Growth Hydrogen Gas
Intergranular Fracture

da/dt = 2x1 O_7m/s
Xf =28um
Xd =56um

D=4.6e—12m2/s

Slow Crack Growth Hydrogen Gas
Slip Band Fracture
D=4.2e-15m?/s
Xf = 35um
Xg =35um
da/dt=4.8e-10m/s

Microstructure, hydrogen source, and mode of transport interact to establish
fracture processes and crack growth suscepitibility.




Summary

Hydrogen reduces toughness and threshold values while fracture modes
progress from microvoid coalescence to slip band failure and intergranular
failure with increasing hydrogen concentration.

When normalized on crack tip concentrations and controlling fracture distance
thresholds and toughness decrease monotonically with hydrogen
concentration.

Crack growth rates exhibit markedly different behaviors with respect to
hydrogen concentration and hydrogen environment.
- matrix diffusion controls crack growth in precharged samples
- matrix diffusion crack growth at low pressures in hydrogen gas
- grain boundary diffusion controls crack growth at high pressures in
hydrogen gas.

Microstructure, hydrogen source, and mode of transport interact to establish
fracture processes and crack growth susceptibility.
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The hydrostatic stress is determined from the maximum tensile stress
at the characteristic distance for fracture at threshold.

o, = (2011 - oys)(1 +v)/3

with o, defined by

0,y =0, [0.3/(X+0.1)][0.04/ X] "t

n+1)

where

2
X=11/(Kpy!o,)

with | =17.5 um, 0= 1080 MPa, and n = 0.075

VH ~ 2.2 cc/mole





