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¢! Introduction Direct Detection of Criegee Intermediates

e Alkenes are emitted into the troposphere from biogenic and anthropogenic sources in e Method to produce Cls rapidly and internally cold:
large amounts (~ 15% of the non-methane emissions)

, , , . . Arkke Eskola et al.3 found that 248 or 351 nm Similar strategy for CH;CHOO:
e Criegee intermediates (Cls) are formed in the ozonolysis of alkenes: CH,l + 0, (k = 1.4 x 102 cm3 s-1) CH,I, > |+ CH,l Ho—CHl,  edslm e
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e C(Cls are key species in the troposphere = non-photolytic source of OH, controlling the Gt * Mass resolution: m/Am = 1600 > distinguish
budgets of NO,, NO,, and secondary organic aerosols e CH, from O units (CH,0, <= C;He0)

* Mass spectra are recorded every 20 us

Time (s)

o Rate coefficients of Cls with key atmospheric species (H,0, NO, NO,, SO,, ...) are uncertain
by orders of magnitude - Significant uncertainty in the quantitative role of Cls in the

* Datais acquired as a function of
* mass-to-charge ratio m/z,

troposphere E G * kinetic time t relative to the photolysis
e No Cl has ever been detected in gas-phase ozonolysis: Ozonolysis forms Cls slowly, but laser pulse
they react away rapidly = low steady-state concentrations * photon energy E.
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3) Measured spectrum agrees well with Franck-Condon factor simulations

Direct Measurements of CH,00 Kinetics! (4 Torr, 300k) | Conformer-Dependent Kinetics* of CH,CHOO + H,O

Kinetics analysis: »
C H ZOO + SOZ . Addition of H,0 depletes the low-E part 9.37 eV: Only anti- is probed Determination of the rate coefficient
CH,00 + SO, = Products of the CH,CHO photoionization 10.5 eV: Mostly (~90%) syn- for anti-CH,CHOO + H,0
Addition of SO, makes the decay of [SO,] >> [CH,00],: k,., = k... + k(CH,00 + SO,) [SO,] spectrum arising from anti-CH;CHOO } : — 1400 Forr-cr.cO0 1o —
CH,00 faster: SO, reacts with CH,00! - B ~ MO1 =27 10 em 1 1900
— [CH,00] =[CH,00], exp(-k t) - I (G o x 937 oV _
B e - 180 =0 n ° E 1000
o,!"{ O O — [SO,] = 7.7 % 1012 cm_z T l @(ﬁ/ > ~ 800
I b moamses wtend Kinetics results for CH,00 reactions | & o E e
g CH,00 +S0,: k = (3.9 +0.7) x 1012 cm3 s % — | v 400 moreaction observed for
5 —> up to 10 000 times faster than what is used in models | & |y e : 200 | R R
2 : . . Franck-Condon (FC) ©
3 —> Cls might be major SO, oxidants spectrum anti- . - 0
: R R L L L L L [TTT T[T T T T[T T T T[T TTT[T1
LILEL! L | LI L LI | 0 2 4 6 8
CH,00 + NO,: k= (7 *3/,) x 10** cm?> s 00 92 o4 o8 08 100 Kinetic Time (ms) ¥ 1[H o (21016 c:{3) *
| — 50 times faster than what is used models Photoionization Energy (eV) ’
° —> Cls might play an important role in NO, chemistry - anti-CH,CHOO reacts with water! anti-CH;CHOO + H,0: — syn-CH;CHOO + H,0:
_ 14 ~m3 o1 15 ¢m3 sl
k=(1.0£0.4)x10**cm?s k<4x10*cm3s
Pseudo-first-order plot Reactions of CH,00 with NO and H,0 are too slow to be
2500 = measured - only upper limits could be obtained Conformer-dependent reactivity was predicted : :
+ °
CH,00 +NO: k<6 x 10 cm3s? ~ by Anglada et al. ,CH3CHOO >0, is rapid;
2000= | - > 100 times slower than literature estimates Ef s anti- reacts ~ 3 x faster than syn-
"o 1500 | CH,00 + H,0: k<4 x 105 cm3s? < " n ey R
£ — Tends to confirm values used in models 5 = 4 105ev - 2500
1000~ (CH.00+50,) s the The rate coefficients at 4 Torr are lower limits to the E ; _______________________________________________ 7 i . 209
500 slope of the linear fit _ values at atmospheric pressure! S o s | £ 1500
| | | | | | < 1000
0 10 20 30 40 50 . i
2 3 Why is CH,00 + SO, so fast?? How do the results . >
[SO,] (10 " cm™) ] o anti 0
at 4 Torr transfer to atmospheric conditions? | 1 A M A
k = (39 i07) X 10-11 Cm3 S-l _ _ Kinetic Time (ms) [SO,] (10" em”™)
o . . (a): syn-CH3HCOO + H,0 (b): anti-CH;HCOO + H,0 .
o O The CI + SO, reaction has a barrierless entrance | | syn-CH;CHOO + 50, : —) anti-CH;CHOO + 50, :
SO. is a di d AT T : — : e s B Resfonpth k=(2.4%+0.3)x 101 cm3s? k=(6.7%21.0)x 101 cm3s?
5 is a direct product at 4 Torr . )k 2 channel = Rapid association reaction
Rl RZ
~O- CH,00, [SO,] = 7.7 x 10'* cm” —O— S04, [SO,] =7.7x 102 cm™
- CH00, 1801 =3.1x10%cm?|  |[-o- 50, 100 =31 x 10" em?| | At low pressure and for small R, and R,, -
2 = - " mostofthefluxgoesto carboni/I+SO2 CO“CIUS'O“S and OUtIOOk
5 B ol I 28 eeites. 3 . . . . . . .
g I > Higher pressure and larger e The .reactlon of phf)tolytlcall}/ pI’Odl.JCEd a-lodoa!kyl rac.jlcal.s with O, forms Cls rapidly and with
g I ® R, and R, favor stabilization low internal energies. Combined with MPIMS, direct kinetics measurements of CH,00 and
5 Ll of the SOZ = What is the CH;CHOO with key atmospheric species were performed for the first time.
2 i 7 07N . : :
s X i R ?/O\S ¥ % ° | fateofthe SOZ? e Conformer-dependent reactivity of CH;CHOO with H,0 and SO, was observed and might
o Il.\\\’aﬂll‘l‘\(." il | —t’: 1 — 1 1 1 1 1
‘ '“”,::.}“u i | R>C\o/ O .« persist for reactions with other atmospheric species.
,««.m..«::gtgg«;mié;gaxgggﬁdgg‘; S0 é'." 2 . + SU; . . . . . . :
T ’ SRR AR AAAS RS RS SeCO”d(zg’Z‘;ZO”'de Rl)kRz e The reaction of CIs with SO, is rapid, suggesting that Cls are major oxidants of SO,.
Kinetic Time (ms)

SO, is a direct product of CH,00 and CH;CHOO + SO, at 4 Torr and 300 K.
e |nvestigations of larger Cls, measurements of rate coefficients and products of more reactions
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