
Photos placed in
horizontal position
with even amount

of white space
between photos

and header

Photos placed in horizontal
position

with even amount of white
space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Kokkos Library
Enabling performance portability

across manycore architectures

H. Carter Edwards (presenting)

Christian Trott and Daniel Sunderland

JOWOG-34 : August 8, 2013

Unclassified Unlimited Release

SAND2013-6631C

1

Manycore Performance Portability Challenge
Diversity of devices and associated performance requirements

Device Dependent Memory Access Patterns
 Performance heavily depends upon device specific

requirements for memory placement, blocking, striding, …

 CPUs with NUMA and vector units
 Core-data affinity: first touch and consistent access

 Alignment for cache-lines and vector units

 GPU Coalesced Access with cache-line alignment

 “Array of Structures” vs. “Structure of Arrays” ?

This has been the wrong question

Right question: Abstraction for Performance Portability ?

2

Programming Model Concept
Two foundational ideas

 Manycore Device
 Distinct execution and memory spaces (physical or logical)

 Dispatch parallel work to device : computation + data

 Classic Multidimensional Arrays, with a twist
 Map multi-index (i,j,k,...)  memory location on the device

 Efficient : index computation and memory use

 Map is derived from an array Layout

 Choose Layout for device-specific memory access pattern

 Make layout changes transparent to the user code;

 IF the user code honors the simple API: a(i,j,k,...)

Separate user’s index space from memory layout

3

Kokkos Library (libraries)

 Standard C++ Library, not a Language extension
 In spirit of Intel’s TBB, NVIDIA’s Thrust & CUSP, MS C++AMP, ...

 Not a language extension: OpenMP, OpenACC, OpenCL, CUDA

 Uses C++ template meta-programming
 Compile-time polymorphism for devices and array layouts

 C++1998 standard; would be nice to require C++2011 ...

 Kokkos is becoming a hierarchy of manycore-tuned libraries

 CORE: Arrays and Parallel Dispatch

 Containers: vector, unordered map, compressed sparse row

 Sparse linear algebra kernels

? Mesh or grid

4

Core : Array Allocation, Access, and Layout

 Allocation and access

View< double * * [3][8] , Device > a(“a”,N,M);

 Dimension [N][M][3][8] ; two runtime, two compile-time

 a(i,j,k,l) : access data via multi-index with device-specific map

 ‘View’ API is the same for both host and device code

 Access checks correctness
 Host ↔ device memory access – catch error before “seg fault”

 Runtime array bounds checking – in debug mode

 Capability on the GPU as well

 View semantics (shared pointer semantics)
 Multiple view objects reference the same array; a.k.a., shared ownership

 Last view deallocates array data

5

Core : Allocation, Access, and Layout

 Advanced : specify array layout

View<double**[3][8], Layout , Device> a(“a”,N,M);

 Override default layout; e.g., force row-major or column-major

 Multi-index access is unchanged in user code

 Layout is an extension point for blocking, tiling, etc.

 Advanced : specify memory access attributes

View< const double**[3][8], Device, RandomRead > x = a ;

 Use special hardware, if available

 E.g., access ‘x’ data through GPU texture cache

 Advanced : integrate aggregate ‘scalar’ types into the layout

 Stochastic variables

 Automatic differentiation variables

6

Core : Deep Copy
NEVER have a hidden, expensive deep-copy

 Deep-copy only when explicitly instructed by user code

 Basic : mirror the layout in Host memory space
 Avoid transpose or permutation of data: simple, fast deep-copy

typedef class View<...,Device> MyViewType ;

MyViewType a(“a”,...);

MyViewType::HostMirror a_host = create_mirror(a);

deep_copy(a , a_host); deep_copy(a_host , a);

 Advanced : avoid unnecessary deep-copy
MyViewType::HostMirror a_host = create_mirror_view(a);

 If Device uses host memory then ‘a_host’ is simply a view of ‘a’

 deep_copy becomes a no-op

7

Core : Parallel Dispatch
parallel_for(nwork , functor)

 Functor : Function + its calling arguments
template< class DeviceType > // template on device type

struct AXPY {

typedef DeviceType device_type ; // run on this device

void operator()(int iw) const { Y(iw) += A * X(iw); } // shared function

const double A ;

const View<const double*,device_type> X ;

const View< double*,device_type> Y ;

};

parallel_for(nwork , AXPY<device>(a , x , y)); // parallel dispatch

 Functor is shared and called by NP threads (NP ≤ nwork)

 Thread parallel call to ‘operator()(iw)’ : iw  [0,nwork)

 Access array data with ‘iw’ to avoid race conditions

8

Core : Parallel Dispatch
parallel_reduce(nwork , functor , result)

 Similar to parallel_for, with a Reduction Argument
template< class DeviceType >

struct DOT {

typedef DeviceType device_type ;

typedef double value_type ; // reduction value type

void operator()(int iw , value_type & contrib) const

{ contrib += y(iw) * x(iw); } // this thread’s contribution

const View<const double*,device_type> x , y ;

// ... to be continued ...

};

parallel_reduce(nwork , DOT<device>(x,y) , result); }

 Value type can be a scalar, ‘struct’, or dynamic array

 Result is a value or View to a value on the device

9

Core : Parallel Dispatch
parallel_reduce(nwork , functor , result)

 Initialize and join threads’ individual contributions
struct DOT { // ... continued ...

static void init(value_type & contrib) { contrib = 0 ; }

static void join(volatile value_type & contrib ,

volatile const value_type & input)

{ contrib = contrib + input ; }

};

 Join threads’ contrib via Functor::join

 ‘volatile’ to prevent compiler from optimizing away the join

 Deterministic result ← highly desirable
 Given the same device and # threads

 Aligned memory prevents variations from vectorization

10

Core : Advanced Parallel Dispatch
(under development)

template< class DeviceType >

struct MyFunctor {

void operator()(DeviceType dev) const ; // shared function

};

parallel_for(WorkRequest , MyFunctor<device>(...)); // parallel dispatch

 DeviceType abstracts thread hierarchy, shared memory, ...
 OpenMP 4.0 vocabulary: team of threads, league of teams

 Teams work cooperatively using transient team-shared memory

 Teams have synchronization primitives (e.g., barrier)

 E.g., Cuda’s grid-block-thread = league-team-thread

 WorkRequest requests league, team, shared memory sizes
 Actual sizes may vary according to device’s capabilities

 E.g., maximum team size limited by NUMA, #cores, #hyperthreads

11

Core : Atomic Operations
wrapper around ‘native’ atomic operations

 NOT the C++11 ‘atomic<T>’ functionality and interface

 Fundamental operations on intrinsic data types
 32 and 64 bit integer and floating point types,

 old_val = atomic_exchange(address, new_val);

 atomic_compare_exchange_strong(address, old_val , new_val);

 If *address == old_val then exchange

 old_val = atomic_fetch_add(address , value);

 old_val = *address ; *address += value ;

 Likely to have non-deterministic results ← warning!
 Non-deterministic ordering of atomic operations

 Floating point addition is NOT associative

12

Core : Devices

 ‘Threads’ Device : pthreads or C11 threads
• Pool of threads created once and pinned to cores

• Hardware detection and core pinning via hardware locality library (hwloc)

• Fan-in collective for deterministic reductions

• Teams cannot span NUMA regions

 ‘OpenMP’ Device : wrapper on OpenMP
• Attempt to pin to cores via hwloc

• Cannot use both ‘Threads’ and ‘OpenMP’ – compete for cores

 ‘Cuda’ Device : wrapper on NVidia’s CUDA 5.0 (or better)
• Currently require Fermi (or better); eventually require Kepler

• Unified Virtual Memory (UVM) capability will define more memory spaces

• Device resident and host accessible

• Host resident and device accessible

13

Performance Evaluation

 Using Sandia Computing Research Center Testbed Clusters
• Compton: 32nodes

• 2x Intel Xeon E5-2670 (Sandy Bridge), hyperthreading enabled

• 2x Intel Xeon Phi 57core (pre-production)

• ICC 13.1.2, Intel MPI 4.1.1.036

• Shannon: 32nodes

• 2x Intel Xeon E5-2670, hyperthreading disabled

• 2x NVidia K20x

• GCC 4.4.5, Cuda 5.5, MVAPICH2 v1.9 with GPU-Direct

 Absolute performance “unit” tests
• Evaluate parallel dispatch/synchronization efficiency

• Evaluate impact of array access patterns and capalities

 Mini-application : Kokkos vs. ‘native’ implementations
• Evaluate cost of portability

Performance Test: Modified Gram-Schmidt
Simple stress test for bandwidth and reduction efficiency

14

• Simple sequence of vector-reductions and vector-updates

• To orthonormalize 16 vectors

• Performance for vectors > L3 cache size

• NVDIA K20x : 174 GB/sec = ~78% of theoretical peak

• Intel Xeon : 78 GB/sec = ~71% of theoretical peak

• Intel Xeon Phi : 92 GB/sec = ~46% of achievable peak

0

20

40

60

80

100

120

140

160

180

200

1E+05 1E+06 1E+07

R
+W

 B
an

d
w

id
th

 G
B

/s
e

c

Double Precision Vector Length (16 vectors)

K20x (with ECC)

Xeon 1thread/core

Xeon Phi 56core x
4thread/core

Xeon Phi 56core x
1thread/core

Intel Xeon: E5-2670 w/HT
Intel Xeon Phi: 57c @ 1.1GHx
NVidia K20x

Results presented here are for
pre-production Intel Xeon Phi
co-processors (codenamed
Knights Corner) and pre-
production versions of Intel’s
Xeon Phi software stack.
Performance and configuration
of the co-processors may be
different in final production
releases.

Performance Test: Molecular Dynamics
Lennard Jones force model using atom neighbor list

15

 Solve Newton’s equations for N particles

 Simple Lennard Jones force model:

 Use atom neighbor list to avoid N2 computations

 Moderately compute bound computational kernel

 On average 77 neighbors with 55 inside of the cutoff radius

F i= ∑
j , r ij< r cut

6 ε[(ς

r ij)
7

− 2(
ς

r ij)
13

]
pos_i = pos(i);
for(jj = 0; jj < num_neighbors(i); jj++) {
j = neighbors(i,jj);
r_ij = pos_i – pos(j); //random read 3 floats
if (|r_ij| < r_cut)
f_i += 6*e*((s/r_ij)^7 – 2*(s/r_ij)^13)

}
f(i) = f_i;

Performance Test: Molecular Dynamics
Lennard Jones (LJ) force model using atom neighbor list

16

 Test Problem (#Atoms = 864k, ~77 neighbors/atom)
 Neighbor list array with correct vs. wrong layout

 Different layout between CPU and GPU

 Random read of neighbor coordinate via GPU texture fetch

 Large loss in performance with wrong layout
 Even when using GPU texture fetch

0

20

40

60

80

100

120

140

160

180

Xeon Xeon Phi K20x

G
Fl

o
p

/s

correct layout
(with texture)

correct layout
without texture

wrong layout
(with texture)

Intel Xeon: E5-2670 w/HT
Intel Xeon Phi: 57c @ 1.1GHx
NVidia K20x

Results presented here are for
pre-production Intel Xeon Phi
co-processors (codenamed
Knights Corner) and pre-
production versions of Intel’s
Xeon Phi software stack.
Performance and configuration
of the co-processors may be
different in final production
releases.

17

MPI+X Performance Test: MiniFE
Conjugate Gradient Solve of a Finite Element Matrix

 Comparing X = Kokkos, OpenMP, Cuda (GPU-direct via MVAPICH2)

 Weak scaling with one MPI process per device
• Except on Xeon: OpenMP requires one process/socket due to NUMA

• 8M elements/device

 Kokkos performance
• 90% or better of “native”

• Improvements ongoing

MPI+X Performance: MiniMD

18

 Comparing X = OpenMPI vs. Kokkos , one MPI process / device
• Using GPU-direct via MVAPICH2; no native Cuda version to compare

 Strong scaling test: 864k atoms, ~77 neighbors/atom

19

Incremental Migration Strategy
For C++ Applications & Libraries

 Replace array allocations with Views (in Host space)
• Specify layout(s) to match existing array layout(s)

• Extract pointers to allocated array data and use them in legacy code

 Replace array access with Views
• Replace legacy array data structure(s) with View

• Access data members via View API

 Replace functions with Functors, run in parallel on Host
• Hard part: finding and extracting your functions’ hidden states

 improve code quality

• Hard part: finding and fixing remaining thread-unsafe (race) conditions

most easily using atomic operations

 Set device to ‘Cuda’ and run on GPU
• Hard part: thread scalability, some functors may require redesign

20

Conclusion
Manycore Performance Portability

 Solved: “array of structs” vs. “struct of arrays” ?
• The right question: what abstractions are required ?

• Answer: multidimensional arrays with device-polymorphic layout

• and coordinated parallel dispatch of computational kernels

 Kokkos C++ core library, not a language extension
• Performance evaluation “unit tests” and mini-applications

• Multicore CPU, NVidia GPU, Intel Xeon Phi coprocessor

• 90% or better of device-specialized “native” implementation

 Plans : First release Sept’13 (next month)
• Enable Trilinos MPI+X through Tpetra

• Researching hierarchical task-data parallelism

• Applications are investigating Kokkos for MPI+X migration
 LAMMPS
 Climate modeling LDRD

