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Manycore Performance Portability Challenge
Diversity of devices and associated performance requirements

Device Dependent Memory Access Patterns
 Performance heavily depends upon device specific 

requirements for memory placement, blocking, striding, …

 CPUs with NUMA and vector units
 Core-data affinity: first touch and consistent access

 Alignment for cache-lines and vector units

 GPU Coalesced Access with cache-line alignment

 “Array of Structures” vs. “Structure of Arrays” ?

This has been the wrong question

Right question: Abstraction for Performance Portability ?
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Programming Model Concept
Two foundational ideas

 Manycore Device
 Distinct execution and memory spaces (physical or logical)

 Dispatch parallel work to device : computation + data

 Classic Multidimensional Arrays, with a twist
 Map multi-index (i,j,k,...)  memory location on the device

 Efficient : index computation and memory use

 Map is derived from an array Layout

 Choose Layout for device-specific memory access pattern

 Make layout changes transparent to the user code;

 IF the user code honors the simple API: a(i,j,k,...)

Separate user’s index space from memory layout
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Kokkos Library (libraries)

 Standard C++ Library, not a Language extension
 In spirit of Intel’s TBB, NVIDIA’s Thrust & CUSP, MS C++AMP, ...

 Not a language extension: OpenMP, OpenACC, OpenCL, CUDA

 Uses C++ template meta-programming
 Compile-time polymorphism for devices and array layouts 

 C++1998 standard; would be nice to require C++2011 ...

 Kokkos is becoming a hierarchy of manycore-tuned libraries

 CORE: Arrays and Parallel Dispatch

 Containers: vector, unordered map, compressed sparse row

 Sparse linear algebra kernels

? Mesh or grid
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Core : Array Allocation, Access, and Layout

 Allocation and access

View< double * * [3][8] , Device > a(“a”,N,M); 

 Dimension [N][M][3][8] ; two runtime, two compile-time

 a(i,j,k,l)  : access data via multi-index with device-specific map

 ‘View’ API is the same for both host and device code

 Access checks correctness 
 Host ↔ device memory access – catch error before “seg fault”

 Runtime array bounds checking – in debug mode

 Capability on the GPU as well

 View semantics (shared pointer semantics)
 Multiple view objects reference the same array; a.k.a., shared ownership

 Last view deallocates array data
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Core : Allocation, Access, and Layout

 Advanced : specify array layout

View<double**[3][8], Layout , Device> a(“a”,N,M); 

 Override default layout; e.g., force row-major or column-major

 Multi-index access is unchanged in user code

 Layout is an extension point for blocking, tiling, etc.

 Advanced : specify memory access attributes

View< const double**[3][8], Device, RandomRead > x = a ;

 Use special hardware, if available

 E.g., access ‘x’ data through GPU texture cache

 Advanced : integrate aggregate ‘scalar’ types into the layout

 Stochastic variables

 Automatic differentiation variables
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Core : Deep Copy
NEVER have a hidden, expensive deep-copy

 Deep-copy only when explicitly instructed by user code

 Basic : mirror the layout in Host memory space
 Avoid transpose or permutation of data: simple, fast deep-copy

typedef class View<...,Device> MyViewType ;

MyViewType a(“a”,...); 

MyViewType::HostMirror a_host = create_mirror( a );

deep_copy( a , a_host ); deep_copy( a_host , a ); 

 Advanced : avoid unnecessary deep-copy
MyViewType::HostMirror a_host = create_mirror_view( a );

 If Device uses host memory then ‘a_host’ is simply a view of ‘a’

 deep_copy becomes a no-op
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Core : Parallel Dispatch
parallel_for( nwork , functor )

 Functor : Function + its calling arguments
template< class DeviceType > // template on device type

struct AXPY {

typedef DeviceType device_type ; // run on this device

void operator()(int iw) const { Y(iw) += A * X(iw); } // shared function

const double A ;

const View<const double*,device_type> X ;

const View<           double*,device_type> Y ;

};

parallel_for( nwork , AXPY<device>( a , x , y ) ); // parallel dispatch

 Functor is shared and called by NP threads (NP ≤ nwork)

 Thread parallel call to ‘operator()(iw)’ : iw  [0,nwork)

 Access array data with ‘iw’ to avoid race conditions
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Core : Parallel Dispatch
parallel_reduce( nwork , functor , result )

 Similar to parallel_for, with a Reduction Argument
template< class DeviceType >

struct DOT {

typedef DeviceType device_type ;

typedef double value_type ;  // reduction value type

void operator()( int iw , value_type & contrib ) const

{ contrib += y(iw) * x(iw); } // this thread’s contribution

const View<const double*,device_type> x , y ;

// ... to be continued ...

};

parallel_reduce( nwork , DOT<device>(x,y) , result ); }

 Value type can be a scalar, ‘struct’, or dynamic array

 Result is a value or View to a value on the device
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Core : Parallel Dispatch
parallel_reduce( nwork , functor , result )

 Initialize and join threads’ individual contributions
struct DOT { // ... continued ...

static void init( value_type & contrib ) { contrib = 0 ; }

static void join( volatile value_type & contrib , 

volatile const value_type & input )

{ contrib = contrib + input ; }

};

 Join threads’ contrib via Functor::join

 ‘volatile’ to prevent compiler from optimizing away the join

 Deterministic result ← highly desirable
 Given the same device and # threads

 Aligned memory prevents variations from vectorization
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Core : Advanced Parallel Dispatch
(under development) 

template< class DeviceType >

struct MyFunctor {

void operator()( DeviceType dev ) const ; // shared function

};

parallel_for( WorkRequest , MyFunctor<device>( ... ) ); // parallel dispatch

 DeviceType abstracts thread hierarchy, shared memory, ...
 OpenMP 4.0 vocabulary: team of threads, league of teams

 Teams work cooperatively using transient team-shared memory

 Teams have synchronization primitives (e.g., barrier)

 E.g., Cuda’s grid-block-thread = league-team-thread

 WorkRequest requests league, team, shared memory sizes
 Actual sizes may vary according to device’s capabilities

 E.g., maximum team size limited by NUMA, #cores, #hyperthreads
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Core : Atomic Operations
wrapper around ‘native’ atomic operations

 NOT the C++11 ‘atomic<T>’ functionality and interface

 Fundamental operations on intrinsic data types
 32 and 64 bit integer and floating point types, 

 old_val = atomic_exchange( address, new_val );

 atomic_compare_exchange_strong( address, old_val , new_val );

 If *address == old_val then exchange

 old_val = atomic_fetch_add( address , value );

 old_val = *address ; *address += value ;

 Likely to have non-deterministic results ← warning!
 Non-deterministic ordering of atomic operations

 Floating point addition is NOT associative
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Core : Devices

 ‘Threads’ Device : pthreads or C11 threads
• Pool of threads created once and pinned to cores

• Hardware detection and core pinning via hardware locality library (hwloc)

• Fan-in collective for deterministic reductions

• Teams cannot span NUMA regions

 ‘OpenMP’ Device : wrapper on OpenMP
• Attempt to pin to cores via hwloc

• Cannot use both ‘Threads’ and ‘OpenMP’ – compete for cores

 ‘Cuda’ Device : wrapper on NVidia’s CUDA 5.0 (or better)
• Currently require Fermi (or better); eventually require Kepler

• Unified Virtual Memory (UVM) capability will define more memory spaces

• Device resident and host accessible

• Host resident and device accessible
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Performance Evaluation

 Using Sandia Computing Research Center Testbed Clusters
• Compton: 32nodes

• 2x Intel Xeon E5-2670 (Sandy Bridge), hyperthreading enabled

• 2x Intel Xeon Phi 57core (pre-production)

• ICC 13.1.2, Intel MPI 4.1.1.036

• Shannon: 32nodes

• 2x Intel Xeon E5-2670, hyperthreading disabled

• 2x NVidia K20x

• GCC 4.4.5, Cuda 5.5, MVAPICH2 v1.9 with GPU-Direct

 Absolute performance “unit” tests
• Evaluate parallel dispatch/synchronization efficiency

• Evaluate impact of array access patterns and capalities

 Mini-application : Kokkos vs. ‘native’ implementations
• Evaluate cost of portability



Performance Test: Modified Gram-Schmidt
Simple stress test for bandwidth and reduction efficiency
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• Simple sequence of vector-reductions and vector-updates

• To orthonormalize 16 vectors

• Performance for vectors > L3 cache size

• NVDIA K20x     : 174 GB/sec = ~78% of theoretical peak

• Intel Xeon         :   78 GB/sec = ~71% of theoretical peak

• Intel Xeon Phi  :   92 GB/sec = ~46% of achievable peak
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Performance Test: Molecular Dynamics
Lennard Jones force model using atom neighbor list
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 Solve Newton’s equations for N particles

 Simple Lennard Jones force model:

 Use atom neighbor list to avoid N2 computations

 Moderately compute bound computational kernel

 On average 77 neighbors with 55 inside of the cutoff radius

F i= ∑
j , r ij< r cut

6 ε[(ς

r ij)
7

− 2(
ς

r ij)
13

]
pos_i = pos(i); 
for( jj = 0; jj < num_neighbors(i); jj++) {
j = neighbors(i,jj); 
r_ij = pos_i – pos(j); //random read 3 floats
if ( |r_ij| < r_cut )
f_i += 6*e*( (s/r_ij)^7 – 2*(s/r_ij)^13 )

}
f(i) = f_i;



Performance Test: Molecular Dynamics
Lennard Jones (LJ) force model using atom neighbor list
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 Test Problem (#Atoms = 864k, ~77 neighbors/atom)
 Neighbor list array with correct vs. wrong layout

 Different layout between CPU and GPU

 Random read of neighbor coordinate via GPU texture fetch 

 Large loss in performance with wrong layout
 Even when using GPU texture fetch
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MPI+X Performance Test: MiniFE
Conjugate Gradient Solve of a Finite Element Matrix

 Comparing X = Kokkos, OpenMP, Cuda (GPU-direct via MVAPICH2)

 Weak scaling with one MPI process per device
• Except on Xeon: OpenMP requires one process/socket due to NUMA

• 8M elements/device

 Kokkos performance
• 90% or better of “native”

• Improvements ongoing 



MPI+X Performance: MiniMD
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 Comparing X = OpenMPI vs. Kokkos , one MPI process / device
• Using GPU-direct via MVAPICH2; no native Cuda version to compare

 Strong scaling test: 864k atoms, ~77 neighbors/atom
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Incremental Migration Strategy
For C++ Applications & Libraries

 Replace array allocations with Views (in Host space)
• Specify layout(s) to match existing array layout(s)

• Extract pointers to allocated array data and use them in legacy code

 Replace array access with Views
• Replace legacy array data structure(s) with View

• Access data members via View API

 Replace functions with Functors, run in parallel on Host
• Hard part: finding and extracting your functions’ hidden states

 improve code quality

• Hard part: finding and fixing remaining thread-unsafe (race) conditions

most easily using atomic operations

 Set device to ‘Cuda’ and run on GPU
• Hard part: thread scalability, some functors may require redesign
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Conclusion
Manycore Performance Portability

 Solved: “array of structs” vs. “struct of arrays” ?
• The right question: what abstractions are required ?

• Answer: multidimensional arrays with device-polymorphic layout

• and coordinated parallel dispatch of computational kernels

 Kokkos C++ core library, not a language extension
• Performance evaluation “unit tests” and mini-applications

• Multicore CPU, NVidia GPU, Intel Xeon Phi coprocessor

• 90% or better of device-specialized “native” implementation

 Plans : First release Sept’13 (next month)
• Enable Trilinos MPI+X through Tpetra

• Researching hierarchical task-data parallelism

• Applications are investigating Kokkos for MPI+X migration
 LAMMPS
 Climate modeling LDRD


