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Stress-strain curve has one or more peaks.

Softening behavior

Stored energy function becomes non-convex. 

Loss of convexity

Tangent modulus becomes non-positive definite
(singular acoustic tensor). 

Non-positive-definite Hessian

Stiffness has one or more null or negative eigenvalues.

Non-positive-definite stiffness

Loss of ellipticity
Governing partial differential equation changes character.

Loss of Ellipticity



Localization Elements

Regularization Methods

Nonlocal FE Formulations

Gradient Formulations

Variational Nonlocal Method 

Use constitutive behavior as-is.
Accurate and efficient.
Failure follows mesh geometry.
Requires robust adaptive insertion.

By-passes loss of ellipticity entirely.
Capable of modeling post-peak behavior.
Special boundary considerations.
Constitutive models require modifications.

Confine localization to nonlocal domain.
Use constitutive behavior as-is.
Special boundary considerations.
Requires “cut off” approaches.

Nonlocality defined naturally.
Use constitutive behavior as-is.

(Yang, Mota, Ortiz; IJNME 2005)



Motivation for Variational 
Methods
 Begin from fundamental physical principles.
 Governing equations from optimization.
 Allow better analysis for uniqueness of 

solutions.
 Lead to robust numerical methods.
 Help identify correct conjugate fields.
 Et cetera.



Variational Nonlocal Method
Three-Field Mixed Finite Element Formulation:

Helmholtz Free 
Energy

Constraint Enforced by 
Lagrange Multiplier

Deformation Mapping

Deformation 
Mapping

Nonlocal 
Internal 
Variable

 Motivated through studies of non-locality

 Fully variational approach.

 Entirely by-passes ad hoc approaches.

 Does not require any modifications to constitutive models.

 Nonlocal domain is defined naturally by support of mixed 

interpolation functions.

Natural parallelization by domain decomposition of coarse 

discretization.

 Does not require cut-off approaches at boundary.

 Weight functions are unit interpolation functions.

Natural 
boundary for 
both levels

Standard node
fine level

Mixed node
coarse level



Finite Element Formulation
Three-Field Mixed Finite Element Formulation:

Variations:



Regularization

Discrete Statement of Equilibrium,
Internal Variables and Conjugate Forces:

Unit Interpolation, Regularized Variables:



Connection to Gradients

Expansion in Taylor Series:

Apply to Regularized Variables:

Obtain Gradient Regularization:



1D Problem – Stretching of Bar

 Proof of concept problem.
 Area proportional to square root of length.
 Strong singularity on left end of bar.
 Simple hyperelestic model with damage.
 Code written in Matlab.
 Two interpolation schemes.



Constant Unit Interpolation



Linear Interpolation



Avg Mesh 4, Unit Interpolation



Effect of Order of Interpolation



Weaker Defect – V Profile Bar

Mesh Dependent Regularized



N=16384
h~0.125mm

N=2048
h~0.25mm

N=256
h~0.5mm

N=32
h~1mm

Simple finite-deformation elastic model with damage: 

Mesh Dependence



N=16384
h~0.125mm

N=2048
h~0.25mm

N=256
h~0.5mm

N=32
h~1mm

Mesh Dependence

Damage



Mesh Dependence

Load - Displacement



Implementation

Use METIS to create domains D
vol(D)=(lengh scale)³=(1.6mm)³

Constant interpolation leads to 
simple averaging:



Partitions

N=16384
h~0.125mm

N=2048
h~0.25mm

N=256
h~0.5mm

N=32
h~1mm



Regularized Solution

Load - Displacement



N=16384
h~0.125mm

N=2048
h~0.25mm

N=256
h~0.5mm

N=32
h~1mm

Mesh Dependence

Damage



N=16384
h~0.125mm

N=2048
h~0.25mm

N=256
h~0.5mm

N=32
h~1mm

Regularized Solution

Damage



Regularized Solution (reference)

N=16384
h~0.125mm

N=2048
h~0.25mm

N=256
h~0.5mm

N=32
h~1mm



Regularized Solution (deformed)

N=16384
h~0.125mm

N=2048
h~0.25mm

N=256
h~0.5mm

N=32
h~1mm



Conclusions

 Regularization effective.
 Derived naturally from variational principle.
 Strong connection to gradient methods.
 No special boundary considerations.
 Simple form with unit interpolation functions.



Work in Progress

 Test in large 3D problems.
 Use same variational principle for mapping of 

internal variables.
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