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Loss of Ellipticity | L

A
‘\ post-bifurcation
\\ (softening)

stress, ¢

Softening behavior
Stress-strain curve has one or more peaks.

Y

strain, ¢

Loss of ellipticity

Governing partial differential equation changes character.
DivP+B =0 W
Loss of convexity !

Stored energy function becomes non-convex.
P[] :/ W(F,Z,T) dV—/ B-cpdV—/ T pdS
B B orB

Non-positive-definite Hessian

Tangent modulus becomes non-positive definite
(singular acoustic tensor).
2
c=42"
oC
Non-positive-definite stiffness

Stiffness has one or more null or negative eigenvalues.
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Regularization Methods

Gradient Formulations

o] = /B A(F, K, Z,T) dV + &[]

Z=2y+V’Z(X,): HD)+ -+

v'By-passes loss of ellipticity entirely.
v'Capable of modeling post-peak behavior.
X Special boundary considerations.

X Constitutive models require modifications.

Nonlocal FE Formulations

F@%:aélémxyﬁumw

4,./’
I
Q

(X)) = /D H(X,Y) dV

v'Confine localization to nonlocal domain.
v'Use constitutive behavior as-is.

X Special boundary considerations.
X¥Requires “cut off” approaches.

Localization Elements

\
A

-« >/
N
v

Fi:I—l—%(X)N

v"Use constitutive behavior as-is.
v’ Accurate and efficient.

X Failure follows mesh geometry.
X Requires robust adaptive insertion.
(Yang, Mota, Ortiz; IINME 2005)

Variational Nonlocal Method
Plp, Z,Y] ::/W(F,Z,Q,T) dV+/Y’-(Z—Z) dV
B B

—/poB-sodV—
B

T -pdS

mixed
standard

orB

v'"Nonlocality defined naturally.
v'Use constitutive behavior as-is.
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Motivation for Variational
Methods

* Begin from fundamental physical principles.

* Governing equations from optimization.

* Allow better analysis for uniqueness of
solutions.

* Lead to robust numerical methods.

* Help identify correct conjugate fields.
* Et cetera.




Variational Nonlocal Method

Three-Field Mixed Finite Element Formulation:

. Z. V] ;2/ W(F.Z.Q.T) dv+/ Y (Z-2) dV—/poB-tpdV— T ds
\ B T \ B B orB
Deformation Helmholtz Free Nonlocal ConstraintIEnforced by
Mapping Energy Internal Lagrange Multiplier

Variable

* Motivated through studies of non-locality

* Fully variational approach. OB,

* Entirely by-passes ad hoc approaches.

Deformation Mapping

* Does not require any modifications to constitutive models.

* Nonlocal domain is defined naturally by support of mixed Natural -
_ _ _ boundary for O ¢ O ¢ o8
interpolation functions. both levels
e . I S W +- - * ¢ - +-
*Natural parallelization by domain decomposition of coarse \ | |
discretization. : * ¢ * v
e Standard node ‘ ;
* Does not require cut-off approaches at boundary. fine level 2 A G
_ _ o _ _ O Mixed node | |
* Weight functions are unit interpolation functions. coarse level L
T —
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Finite Element Formulation

Three-Field Mixed Finite Element Formulation:

. Z, Y] :=/W(F,Z,Q,T) dV+[Y-(Z—Z) dV—/pOB-cpdV— T dS
B B B

orB

Variations:
p€V,:=(W3(B))? ZeVy:=W5(B)land Y € Vy := (W3(B))!
nEVw,CEVZandﬁeVy

D@[@,Z,Y](n)zfP:Grad'r]dV—/poB-'r]dV— T -ndS=0,
B B orB

Do, 2.Y)¢) = | (¥ -¥)-Cav =0,

B

Delp, 2.Y)©) = [ (Z-2)-¢av =0,

B

P :=0W/OF Y = -0W/0Z
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Regularization

Discrete Statement of Equilibrium,
Internal Variables and Conjugate Forces:

/P-GradNa dV—/pOBNa dV —
B B

orB

—1
Y =\, (/ Aads dV) / AsY dV
B B
—1
Z =\, (f Aads dV) / AsZ dV,
B B

Unit Interpolation, Reqgularized Variables:

Mo =1, A5 =1

TN, dS =0,
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Connection to Gradients

Expansion in Taylor Series:
0Z 1 0°Z
Z=Zo+8—X(-X0)‘(X—Xo)+§(X—Xo)'an(Xo)-(X—Xo)+---

Apply to Regularized Variables:
_ 1 0°Z
Z =12

0T 5v0l(D) X2

(XO):/D(X_XO)@)(X_XO) dV + ...

Obtain Gradient Regularization:
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1D Problem - Stretching of Bar

* Proof of concept problem.

* Area proportional to square root of length.

* Strong singularity on left end of bar.

* Simple hyperelestic model with damage.
* Code written in Matlab.

* Two interpolation schemes.




Constant Unit Interpolation

Stretching of Tapered Bar

Mesh-dependent solutions, A = sqrt(x)

Stretching of Tapered Bar

Discontinuous Interpolation, Avg Mesh: 4
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Discontinuous Interpolation, Avg Mesh: 32
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S

Dis

tretching of Tapered Bar

continuous Interpolation, Avg Mesh: 8

let+05—

50000 —
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Displacement [m]

Stretching of Tapered Bar

Averaging level = 5, A = sqrt(x)
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Load [N]

Linear Interpolation

Stretching of Tapered Bar

Stretching of Tapered Bar

Piecewise-linear C° Interpolation, Avg. Mesh: 8

2e+05

1.5e+05

Load [N]

Stretching of Tapered Bar
Mesh-dependent solutions, A = sqrt(x) Piecewise-linear O Interpolation, Avg. Mesh: 4
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Piccewise-linear C' Interpolation, Avg. Mesh: 64
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Avg Mesh 4, Unit Interpolation

Load [N]
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Mesh-dependent solutions, A = sqrt(x)
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Discontinuous Interpolation, Avg Mesh: 4
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Effect of Order of Interpolation

Load [N]
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1.5e+05

50000
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Stretching of Tapered Bar
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Load [n]

Weaker Defect — V Profile Bar

Tapered Bar Tapered Bar
Linear Profile - Mesh Dependent Linear profile - averaged
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Mesh Dependence

Simple finite-deformation elastic model with damage:

W(C,¢) = (1-Wy(C) Wo(C) = W (0) + Wi (e), ((@) = (o[l — exp(—ar/)]
a(t) := max Wy(s)
e = Logo) Wl (8) = 5 [exp(20) — 1 —26], a0
= gk ﬁ (o0: maximum possible damage
€ = dev(e), Wi (€) = 3 [tr(exp €) — 3]. v: damage saturation parameter

E =200GPa
v =0.25
r =133GPa
1 =67GPa
Coi=1x0)
. =100GIJm >

N=32 N=2048 N=16 48 .
h~1mm h~0.5mm h~0.25mm h~ Sanda
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Mesh Dependence

damage damage damage
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Mesh Dependence
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Implementation

1
Y
Vol D) / eV

Z = Z dv,
Vol(D /

vol(e) := /(.)

Constant interpolation leads to
simple averaging:

vol(D) = Zn: vol(FE

Y dV = /de,
D ;Ei

Z dV = /ZdV
D ;Ez

Use METIS to create domains D
vol(D)=(lengh scale)3=(1.6mm)3
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Partitions

N=2048 N=16384
h~0.25mm h~0.125mm
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Regularized Solution

3.0x10° "
ZSXIOS—‘
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1.5x10°

Load [N]

1.0x10°
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h~0.125mm reg

0.0e-
0

2%10”
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Load - Displacement
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Mesh Dependence

damage damage
05 s g dor&oge
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Regularized Solution

age age

—0z2

N=32 N=256 N=2048 N=16384
h~Imm h~0.5mm h~0.25mm h~0.125mm

Damage
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Regularized Solution (reference)
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Regularized Solution (deformed)
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Conclusions

Reqgularization effective.

Derived naturally from variational principle.
Strong connection to gradient methods.
No special boundary considerations.

Simple form with unit interpolation functions.




Work in Progress

* Test in large 3D problems.

* Use same variational principle for mapping of
internal variables.
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