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Diffusion and Swelling

Diffusion motion of a fluid through a solid due to
chemical affinity, Flory-Huggins model
motion of the solid, stress-assisted diffusion

Swelling deformation of a solid due to change in fluid content

co-located materials allow for a number of complex behaviors
biological systems : growth, resorption, remodeling [5]

nutrient transport
waste removal

engineering materials : solvent/diffusion interactions
scission [7]
polymerization
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Reference State : Dry Polymer

dry polymer
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Free-Swelling
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Elastic Deformation
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Multiplicative Decomposition
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Mechanics
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Continuum Mechanics approaches for isotropic swelling

researchers generally decompose the total deformation into an
isotropic free swelling deformation and an elastic isochoric
deformation, see Pence [6], Anand [2]

the reference frame for the isotropic swelling portion is the dry
elastomer
the reference frame for the elastic problem is the free swollen state
define concentration as mass of the diffusant per unit volume of the
reference frame of the dry polymer

this decomposition is justified : we show
the existence of a dilational deformation solution to the free swelling
problem
this solution is locally energetically optimal since free-swelling provides
for a polyconvex strain energy
constitutive equations need only be made isotropic w.r.t. the swollen
state
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Diffusive Balance
Theory

Diffusive Balance : Global Form
π is an arbitrary material subset of the dry polymer
diffusant content is changed only through flux

d
dt

∫
π

σdV =−
∫

∂π

m ·NdA ∀ π ⊂ κ (1)

Diffusive Balance : Local Form

σ̇ +Divm = 0 in κ (2)
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Dissipation inequality
Theory

Dissipation Inequality
Statement of the 2nd law in the absence of heat flux
Power is supplied via tractions and fluid flux

D (π, t) =
∫

∂π

(p · ẋ−q ·N)dA︸ ︷︷ ︸
P : power supplied

− d
dt

∫
π

ΨdV︸ ︷︷ ︸
Ė

≥ 0 ∀ π ⊂ κ (3)

Dissipation Inequality : Local Form

(ΨF−P) · Ḟ + (Ψσ −µ) σ̇ + m ·Dµ ≤ 0 in κ (4)

Two rate terms Ḟ and σ̇
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Swelling Constraint
Theory

Total Volume ∫
π

JFdv =
∫

π

(JFe +JFd )dV ∀ π ⊂ κ (5)

Total Volume : Local Form

JF = JFe +JFd in κ (6)

Assumption : fluid volume is due solely to fluid flux.

JFd = σ = σdνd in κ (7)
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Connects the energetic rate terms
Theory

For an isochoric elastic deformation, JFe = 1

JF = 1+ σ = 1+ σdνd ∀ π ⊂ κ (8)

Relate the Energetic Rates

J̇F = F? · Ḟ = σ̇ = σ̇dνd in κ (9)
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Simplifies the local dissipation inequality
Theory

Dissipation Inequality : Local Form

[ΨF−P + (Ψσ −µ)F?] · Ḟ + m ·Dµ ≤ 0 in κ (10)

Here Ḟ and m are unrestricted

P = ΨF + (Ψσ −µ)︸ ︷︷ ︸
q

F? in κ (11)

m ·Dµ ≤ 0 in κ (12)
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Mobility Tensor
Representation Theorems

Constitutive structure of the flux

m = M(F,σ ,Dµ)Dµ (13)

Mobility Tensor Satisfies

Dµ ·M(F,σ ,Dµ)Dµ ≤ 0 (14)

Representation Theorem

M = α0I + α1U + α2U2 (15)

m =
(
γ0I + γ1U + γ2U2)Ht (gradµ) (16)
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Isotropy and Noll’s Rule

Isotropic Material
Material whose symmetry group w.r.t. some reference configuration is
the proper orthogonal group

G
(

QHQT
)

= QG(H)QT (17)

m
(

QUQT
)

= α0QIQT + α1QUQT + α2QU2QT = Qm(U)QT (18)

Noll’s Rule

H1 = FH0F−1 (19)
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Isotropy and Noll’s Rule

Noll’s Rule applied to flux

m1 = Gm0G−1 (20)

m1 = (λ I)m0 (λ I)−1 = m0 (21)

if constitutive response is isotropic w.r.t. the swollen state, it is also
isotropics w.r.t. the dry polymer.
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Mean Stress Theorem

The mean value of the stress in a body is

MV (P) =
1

Vol (π)
Sym

[∫
∂π

p⊗xdA+
∫

π

b⊗xdV
]

(22)

As body force b and tractions p vanish the mean stress approaches
zero.
As Vol (π)→ 0, P(x)→MV (P) = 0
also applies to µσ̇ ≤ 0

Stress Free Reference
The mean value of the stress approaches zero as the size of an
arbitrary subregion approaches zero.
The Mean Stress theorem establishes the existence of a stress free
reference state, generally not continuous.
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Existence of a Free Swelling Solution

As the polymer undergoes local, isotropic swelling, a dilation
deformation, to a stress-free local state

P = Rσ = 0 (23)

σ =
(

∂ψ

∂ i1 + i1 ∂ψ

∂ i2

)
I− ∂ψ

∂ i2 U−qU?

Taking the trace, obtain the equilibrium condition for free swelling
with i1 = 3λ , and i2 = 3λ 2 and the swelling

qi2 = 3∂ψ

∂ i1
+2∂ψ

∂ i2
(24)

λ
3 = 1+ σ (25)
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Strain Energy in terms of Stretch Tensor

If the strain energy is insensitive to SPRBM and isotropic w.r.t. it is a
function of the invariants of U, i1, i2, i3.
These are related to the invariants of C

I1 = i21 −2i2, I2 = i22 −2i1i3, I3 = i23 (26)
The ik can be obtained from the Ik by inverting I1 = i21 −2i2,
I2 = i22 −2i1i2, I3 = i23

Iterative techniques
essentially a 2x2 matrix inversion problem
SVD

The strain energy formulation in terms of the stretch tensors is helpful
in proving polyconvexity since it provides convenient formulations of
the derivatives [4]

(i1)F = (i2)F? = R, ΦF =
∂ϕ

∂ i1
R ΦF? =

∂ϕ

∂ i2
R (27)
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Polyconvexity : I

Polyconvexity requires the existence of a function Φ such that

Ψ′ (F) = ϕ (F,F?,JF ) (28)

is jointly convex in its arguments. This implies non-local Quasi-convexity
which assure an energy minimizers and hence a solution for a specific
deformation.

For polyconvexity

Ψ′
(
F
)
−Ψ′ (F) ≥ ϕF (F,F?,JF ) ·

(
F−F

)
+ ϕF? (F,F?,JF ) ·

(
F?−F?

)
+ ϕJF (F,F?,JF ) ·

(
JF −JF

)
∀ F and F

(29)
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invariants of U

Here we show that isotropic swelling, since it is a dilational deformation, is
polyconvex for any strain energy

B
all 1976 [1]

A polyconvex strain energy function provides the existence of a energy
minimizer
not unique

Choose the function

Φ(F,F?,JF ) = ϕ

(√
FtF,

√
(F?)t F?,JF

)
(30)

work with ik and it’s derivatives w.r.t. F, F∗ as it simplifies the
calculations.
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Polyconvexity of a Free Swelling Solution

For free swelling F = λ I, and the ik formulation, polyconvexity simplifies to
:

ψ
(
i1, i2,σ∗

)
−ψ (i1, i2,σ∗)≤

(
i1− i1

) ∂ψ

∂ i1
+
(
i2− i2

) ∂ψ

∂ i2
(31)

We know ∂ψ

∂ i1 ≥ 0, ∂ψ

∂ i2 ≥ 0 by definition of polyconvexity
Require a suitable formulation of i1, i2 to show that this holds for a
given deformation
Ogden provides a decomposition of a dilation into a pure shear and a
isochoric extension with lateral compression.
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Polyconvexity for Free Swelling : I

Ogden [3](pg. 110) : any dilation can be decomposed into a pure shear
and an isochoric axial extension

F = U =
(

λ I
)

SE (32)

where

S = su1⊗u1 + s−1u2⊗u2 + u3⊗u3 (33)

E = t−
1
2 (u1⊗u1 + u2⊗u2) + tu3⊗u3 (34)

leading to

i1 = λ

[(
s + s−1

)
t−

1
2 + t

]
, i2 = λ

2 [(s + s−1
)
t
1
2 + t−1

]
, i3 = λ

3 (35)
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Polyconvexity for Free Swelling : II

Ψ(σ?)

(
F
)
−Ψ(σ?) (F)≥ λ f (s, t)

∂ψ

∂ i1
+ λ

2f
(
s, t−

1
2
)

∂ψ

∂ i2
(36)

λ ≥ 0 by choice of reference frame
∂ψ

∂ i1 ≥ 0, ∂ψ

∂ i2 ≥ 0 by definition of polyconvexity

f (s, t) =
(
s + s−1

)
t− 1

2 + t1−3≥ 0

f
(
s, t− 1

2

)
=
(
s + s−1

)
t + t−1−3≥ 0

f (x ,y)≥ 0 ⇐⇒ g (x)≥ h (y) (37)

x + x−1 ≥ (3−y) t−
1
2 (38)

g (x) has a strict global minimum equal to 2 at (1,1)
h (x) has a strict global maximum equal to 2 at (1,1)
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Summary

Taking the dry polymer as a reference simplifies polyconvexity
calculations
The Mean Stress Theorem suggests the existence of a stress-free and
flux-free local swollen reference state
A dilational deformation is a solution to the Free Swelling problem for
an arbitrary swelling field.
A strain energy function that is isotropic w.r.t. the swollen frame is
isotropic w.r.t. the dry reference due to Noll’s Rule, i.e. dilational
deformations preserves the symmetry group.
This justifies using a multiplicative decomposition of the total
deformation such that it is composed of an point-wise dilational
swelling and an elastic deformation.
Outlook

Analytical and Computational results
Growth, remodeling, resorption driven by diffusion
Time-dependent diffusion
Anisotropy

Steigmann, Templet (UC Berkeley) Diff., swell., elastomers SES 2011 26 / 31



For Further Reading I

John M. Ball.
Convexity conditions and existence theorems in nonlinear elasticity.
Archive for Rational Mechanics and Analysis, 63(4):337–403,
December 1976.
Shawn A. Chester and Lallit Anand.
A coupled theory of fluid permeation and large deformations for
elastomeric materials.
Journal of the Mechanics and Physics of Solids, 58(11):1879–1906,
November 2010.
R. W. Ogden.
Non-linear elastic deformations.
Dover Pubns, 1997.

Steigmann, Templet (UC Berkeley) Diff., swell., elastomers SES 2011 27 / 31



For Further Reading II

David J. Steigmann.
Invariants of the stretch tensors and their application to finite
elasticity theory.
Mathematics and Mechanics of Solids, 7(4):393–404, August 2002.

Larry A. Taber.
Biomechanics of growth, remodeling, and morphogenesis.
Applied Mechanics Reviews, 48(8):487–545, 1995.

Hungyu Tsai, Thomas J. Pence, and Eleftherios Kirkinis.
Swelling induced finite strain flexure in a rectangular block of an
isotropic elastic material.
Journal of Elasticity, 75(1):69–89, April 2004.

Steigmann, Templet (UC Berkeley) Diff., swell., elastomers SES 2011 28 / 31



For Further Reading III

Alan Wineman and Je-Hong Min.
Time dependent scission and cross-linking in an elastomeric cylinder
undergoing circular shear and heat conduction.
International Journal of Non-Linear Mechanics, 38(7):969–983,
October 2003.

Steigmann, Templet (UC Berkeley) Diff., swell., elastomers SES 2011 29 / 31



Piola Stress

P = Rσ (39)

σ =

(
∂ψ

∂ i1
+ i1

∂ψ

∂ i2

)
I− ∂ψ

∂ i2
U−qU? (40)

µ =
∂ψ

∂σ
+q (41)
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Piola Stress in terms of principal stretches

R = vi ⊗ui (42)

σ = ∑

(
∂W
∂λi
−qui

)
ui ⊗ui (43)

λi evals of U (44)

JF
λi

evals of U? (45)

ui evectors of U and U? (46)

W (λi ,σ) = ψ (λ1 + λ2 + λ3,λ1λ2 + λ1λ3 + λ3λ2,σ) (47)
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