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Diffusion and Swelling

Diffusion motion of a fluid through a solid due to

@ chemical affinity, Flory-Huggins model
@ motion of the solid, stress-assisted diffusion

Swelling deformation of a solid due to change in fluid content

co-located materials allow for a number of complex behaviors

@ biological systems : growth, resorption, remodeling [5]

e nutrient transport
e waste removal

@ engineering materials : solvent/diffusion interactions

e scission [7]
e polymerization
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Reference State : Dry Polymer

dry polymer
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Free-Swelling
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Elastic Deformation
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Multiplicative Decomposition
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Mechanics
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Continuum Mechanics approaches for isotropic swelling

@ researchers generally decompose the total deformation into an
isotropic free swelling deformation and an elastic isochoric
deformation, see Pence [6], Anand [2]

o the reference frame for the isotropic swelling portion is the dry
elastomer

o the reference frame for the elastic problem is the free swollen state

e define concentration as mass of the diffusant per unit volume of the
reference frame of the dry polymer

@ this decomposition is justified : we show

e the existence of a dilational deformation solution to the free swelling
problem

o this solution is locally energetically optimal since free-swelling provides
for a polyconvex strain energy

e constitutive equations need only be made isotropic w.r.t. the swollen
state
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Diffusive Balance
Theory

Diffusive Balance : Global Form

@ 7 is an arbitrary material subset of the dry polymer

o diffusant content is changed only through flux

i/c;dvz— m-NdA Y 7 C k (1)
dt T on
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Diffusive Balance
Theory

Diffusive Balance : Global Form

@ 7 is an arbitrary material subset of the dry polymer

o diffusant content is changed only through flux

i/c;dvz— m-NdA Y 7 C k (1)
dt T on

Diffusive Balance : Local Form

6+ Divm=0in k
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Dissipation inequality
Theory

Dissipation Inequality

@ Statement of the 2nd law in the absence of heat flux

@ Power is supplied via tractions and fluid flux

9(717,1?):/a”(p-i(—q-N)dA—%/n\lldVZOV7tCK 3)

2 . power supplied &
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Dissipation inequality
Theory

Dissipation Inequality

@ Statement of the 2nd law in the absence of heat flux

@ Power is supplied via tractions and fluid flux

d
@(n,t):/a”(pd(—q'N)dA—E/n\UdVZOV7rC K

&

(3)

2 . power supplied

Dissipation Inequality : Local Form
(WVg—P)-F+ (Vo —u)6+m-Du<0inx

e Two rate terms F and &
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Swelling Constraint
Theory

Total Volume

/J,:dv:/(JFe-i—JFd)dV VrcK (5)
T T
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Swelling Constraint
Theory

Total Volume

/J,:dv:/(JFe-i—JFd)dV VrcK (5)
T T

Total Volume : Local Form

JF=Jr,+JF, ink (6)
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Swelling Constraint
Theory

Total Volume

/dev:/(JFe-i—JFd)dVVnCK (5)
T T
Total Volume : Local Form

JF=Jr,+JF, ink (6)
Assumption : fluid volume is due solely to fluid flux.

JF, =0 =04Vqg in K (7)
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Connects the energetic rate terms
Theory

For an isochoric elastic deformation, Jg, =1

JF=14+0=1+04vy VT CK (8)
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Connects the energetic rate terms
Theory

For an isochoric elastic deformation, Jg, =1

JF=14+0=1+04vy VT CK (8)

Relate the Energetic Rates

EZF*J.::G:C'ded in K (9)
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Simplifies the local dissipation inequality
Theory

Dissipation Inequality : Local Form

[We—P+(Vo—p)F]-F+m-Du<0in k )

@ Here F and m are unrestricted

P=Vg+(Vs—pu)F inx (11)
———
q
m-Du<0ink (12)
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Mobility Tensor

Representation Theorems

Constitutive structure of the flux

m = M(F,c,Du) Dp (13)
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Mobility Tensor

Representation Theorems

Constitutive structure of the flux

m = M(F,c,Du) Dp (13)

v

Mobility Tensor Satisfies

Dp-M(F,0,Du)Dp <0 (14)

v
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Mobility Tensor

Representation Theorems

Constitutive structure of the flux

m =M(F,c,Du)Dp (13)
Mobility Tensor Satisfies
Du-M(F,0,Du)Dp <0 (14)

v

Representation Theorem

M = ool + oy U + apU? (15)

m = (pl+ 71U+ pU?) H (gradu) (16)

4
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Isotropy and Noll's Rule

Isotropic Material

o Material whose symmetry group w.r.t. some reference configuration is
the proper orthogonal group

G(QHQ™) =QG(H)Q” (17)

m(QUQT) = @wQIQ” + % QUQT +@QU?QT =Am(U)QT  (18)

4

Noll's Rule

H; = FHoF ! (19)

o’
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Isotropy and Noll's Rule

Noll’s Rule applied to flux

m; = GmoG_1 (20)

my = (A)mg (A1) = myg (21)

@ if constitutive response is isotropic w.r.t. the swollen state, it is also
isotropics w.r.t. the dry polymer.

Steigmann, Templet (UC Berkeley) Diff., swell., elastomers SES 2011 17 / 31



Mean Stress Theorem

@ The mean value of the stress in a body is

MV (P) = Sym [/ p®di+/b®de] (22)

1
Vol ()
@ As body force b and tractions p vanish the mean stress approaches

zero.

e As Vol(m) -0, P(x) > MV(P)=0
@ also applies to ue <0

Stress Free Reference

@ The mean value of the stress approaches zero as the size of an
arbitrary subregion approaches zero.

@ The Mean Stress theorem establishes the existence of a stress free
reference state, generally not continuous.
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Existence of a Free Swelling Solution

@ As the polymer undergoes local, isotropic swelling, a dilation
deformation, to a stress-free local state

P=Ro=0 (23)

— 911/ *
oG_(a—ll aI2)I—a,2U quU
e Taking the trace, obtain the equilibrium condition for free swelling
with i; =31, and i» = 312 and the swelling

, 81// oy
qi2 = 37/1 +2—- FR (24)

V=140 (25)
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@ If the strain energy is insensitive to SPRBM and isotropic w.r.t. it is a
function of the invariants of U, iy, ip, i3.
@ These are related to the invariants of C

/1 = ’1 2/2, /2 = 12 2/1/37 /3 = I3 (26)

@ The /k can be obtained from the /; by inverting l; = 11 20,
/2 = I2 2/1/2, /3 = I:,?
e lterative techniques
e essentially a 2x2 matrix inversion problem
e SVD
@ The strain energy formulation in terms of the stretch tensors is helpful
in proving polyconvexity since it provides convenient formulations of
the derivatives [4]
¢

: , J
(h)g=(h)p- =R, O = %R Qg = 87i2R (27)
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Polyconvexity : |

Polyconvexity requires the existence of a function ® such that

V'(F) = ¢ (F.F*, J) (28)

is jointly convex in its arguments. This implies non-local Quasi-convexity
which assure an energy minimizers and hence a solution for a specific
deformation.

For polyconvexity

V' (F)-V'(F) > ¢(F.F"Jr) (F-F)
+ ¢r (F.F,Jp)- (F = F) (29)
+

o
(pJF(F7F 7JF) (Jf JF) VFand?
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Here we show that isotropic swelling, since it is a dilational deformation, is
polyconvex for any strain energy

all 1976 [1]

@ A polyconvex strain energy function provides the existence of a energy
minimizer

@ not unique

Choose the function
&(F,F*,JF)=0¢ <\/FtF, \/(F*)tF*,JF> (30)

work with i, and it's derivatives w.r.t. F, F* as it simplifies the
calculations.
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Polyconvexity of a Free Swelling Solution

For free swelling F = A1, and the i, formulation, polyconvexity simplifies to

_ — 0 — d
W(i17i270-*) - W(i17i276*) < (Il - Il) 877]_/ + (I2 - 12) 8772/ (31)

e We know g—;’l’ >0, g—Z > 0 by definition of polyconvexity
@ Require a suitable formulation of i1,/» to show that this holds for a
given deformation

@ Ogden provides a decomposition of a dilation into a pure shear and a
isochoric extension with lateral compression.
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Polyconvexity for Free Swelling : |

Ogden [3](pg. 110) : any dilation can be decomposed into a pure shear
and an isochoric axial extension

F=U= (Il) SE (32)
where
S=s5u;®u; +S_IUQ®UQ+U3®U3 (33)
E=t2(u;®@u;+u;@up)+ tuz @ us (34)
leading to
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Polyconvexity for Free Swelling : I

_ d _1\d
Vi) (F) = Vo (F) 2 A (s.6) 52+ 2% (s.673) 52 (36)

A >0 by choice of reference frame

° g—;‘l’ >0, 3—}‘2' > 0 by definition of polyconvexity
o f(s,t)=(s+s )t 2+t -3>0
of <s, t_%) = (s+s_1) t+t1-3>0

f(x,y)>0 < g(x)>h(y) (37)

x+x1>@B-y)t: (38)

g (x) has a strict global minimum equal to 2 at (1,1)
h(x) has a strict global maximum equal to 2 at (1,1)
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@ M\
Steigmann, Templet

Taking the dry polymer as a reference simplifies polyconvexity
calculations

The Mean Stress Theorem suggests the existence of a stress-free and
flux-free local swollen reference state

A dilational deformation is a solution to the Free Swelling problem for
an arbitrary swelling field.

A strain energy function that is isotropic w.r.t. the swollen frame is
isotropic w.r.t. the dry reference due to Noll's Rule, i.e. dilational
deformations preserves the symmetry group.

This justifies using a multiplicative decomposition of the total
deformation such that it is composed of an point-wise dilational
swelling and an elastic deformation.

Outlook

o Analytical and Computational results
e Growth, remodeling, resorption driven by diffusion

e Time-dependent diffusion
Anisotrop
(UC Berkeley) Diff., swell., elastomers SES 2011
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Piola Stress

P=Ro (39)
oy .y oIy N
(all+1alz>l aIzu- qu (40)
_dy
H=355714 (41)
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Piola Stress in terms of principal stretches

R=v,®u; (42)

ow
c=Y ((9/1, - qu,-) u; @ u; (43)
A; evals of U (44)
Jr evals of U* (45)

Ai

u; evectors of U and U* (46)
W(?L,',G): l[/(kl—i-lz + A3, M A+ A3 +/’L3A,2,G) (47)

Steigmann, Templet (UC Berkeley) Diff., swell., elastomers SES 2011



	Physical Description of Swelling
	Theory
	Assumptions
	Balance Laws
	Mean Stress Theorem : Existence of a Free Swelling Solution
	Polyconvexity : Existence of energy minimizers

	Our Results/Contribution
	Appendix
	Appendix
	



