

Diffusion and swelling in finitely deforming elastomers

G.J. Templet¹ D.J. Steigmann²

¹Applied Science & Technology
University of California at Berkeley

²Department of Mechanical Engineering
University of California at Berkeley

Society of Engineering Science, 2011

Outline

1 Physical Description of Swelling

2 Theory

- Assumptions
- Balance Laws
- Mean Stress Theorem : Existence of a Free Swelling Solution
- Polyconvexity : Existence of energy minimizers

3 Our Results/Contribution

Diffusion and Swelling

Diffusion motion of a fluid through a solid due to

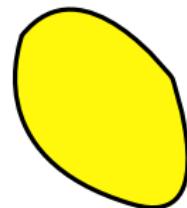
- chemical affinity, *Flory-Huggins model*
- motion of the solid, *stress-assisted diffusion*

Swelling deformation of a solid due to change in fluid content

co-located materials allow for a number of complex behaviors

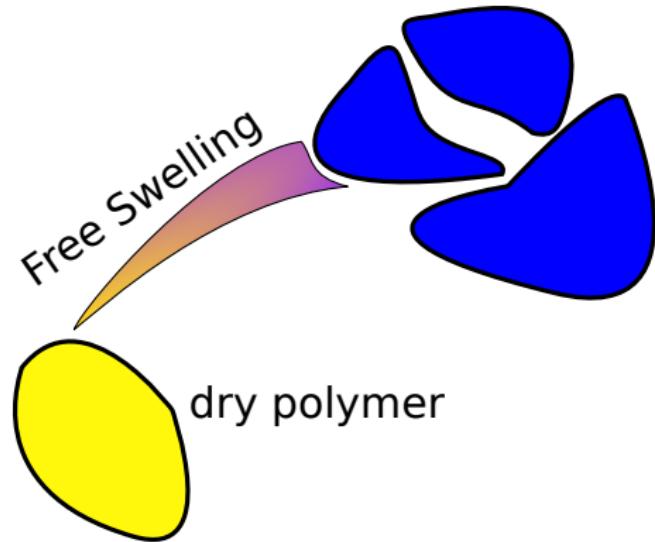
- biological systems : *growth, resorption, remodeling* [5]
 - nutrient transport
 - waste removal
- engineering materials : solvent/diffusion interactions
 - scission [7]
 - polymerization

Reference State : Dry Polymer



dry polymer

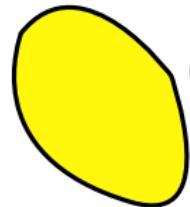
Free-Swelling



Elastic Deformation

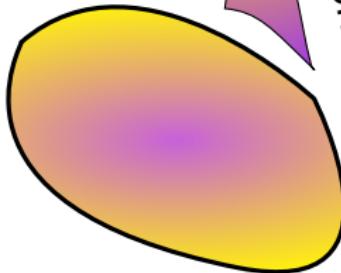
G

Free Swelling



dry polymer

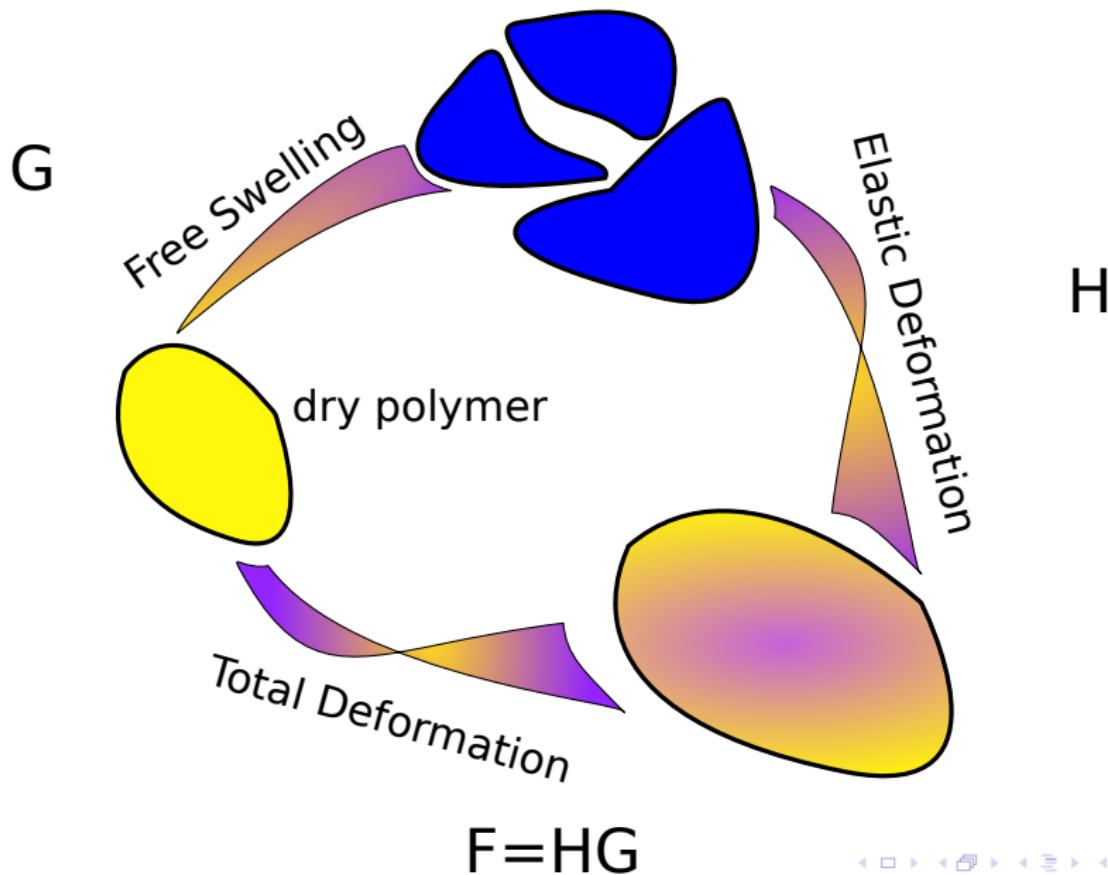
Elastic Deformation

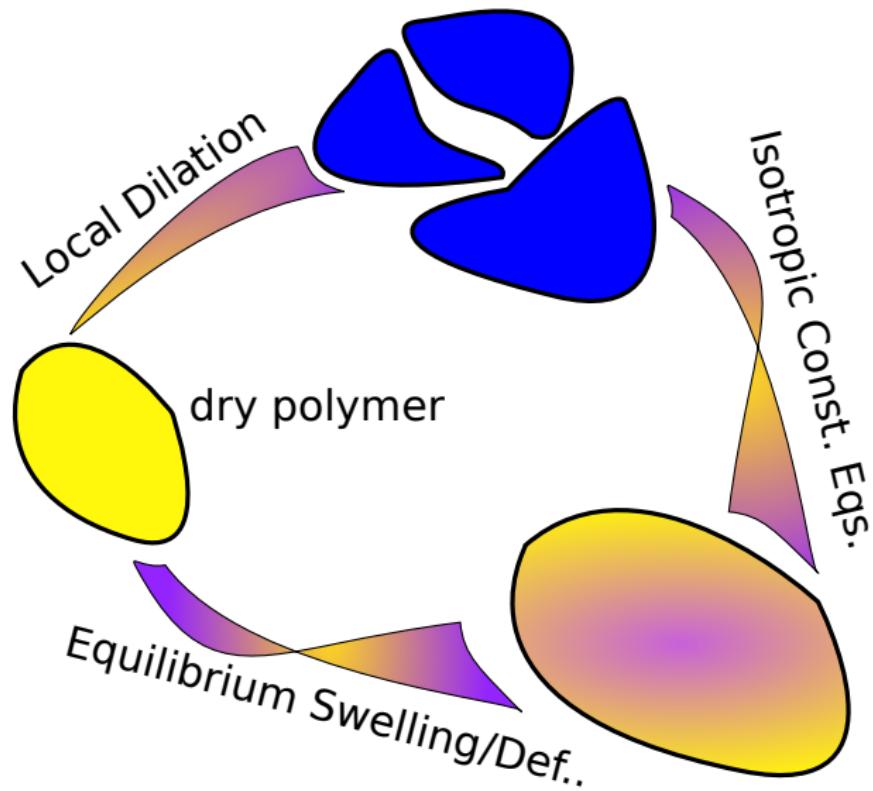


H

$$F = HG$$

Multiplicative Decomposition





Continuum Mechanics approaches for isotropic swelling

- researchers generally decompose the total deformation into an isotropic free swelling deformation and an elastic isochoric deformation, see Pence [6], Anand [2]
 - the reference frame for the isotropic swelling portion is the dry elastomer
 - the reference frame for the elastic problem is the free swollen state
 - define concentration as mass of the diffusant per unit volume of the reference frame of the dry polymer
- this decomposition is justified : we show
 - the existence of a dilational deformation solution to the free swelling problem
 - this solution is *locally* energetically optimal since free-swelling provides for a polyconvex strain energy
 - constitutive equations need only be made isotropic w.r.t. the swollen state

Diffusive Balance

Theory

Diffusive Balance : Global Form

- π is an arbitrary material subset of the dry polymer
- diffusant content is changed only through flux

$$\frac{d}{dt} \int_{\pi} \sigma dV = - \int_{\partial\pi} \mathbf{m} \cdot \mathbf{N} dA \quad \forall \pi \subset \kappa \quad (1)$$

Diffusive Balance : Local Form

$$\dot{\sigma} + \operatorname{Div} \mathbf{m} = 0 \text{ in } \kappa \quad (2)$$

Diffusive Balance

Theory

Diffusive Balance : Global Form

- π is an arbitrary material subset of the dry polymer
- diffusant content is changed only through flux

$$\frac{d}{dt} \int_{\pi} \sigma dV = - \int_{\partial\pi} \mathbf{m} \cdot \mathbf{N} dA \quad \forall \pi \subset \kappa \quad (1)$$

Diffusive Balance : Local Form

$$\dot{\sigma} + \operatorname{Div} \mathbf{m} = 0 \text{ in } \kappa \quad (2)$$

Dissipation inequality

Theory

Dissipation Inequality

- Statement of the 2nd law in the absence of heat flux
- Power is supplied via tractions and fluid flux

$$\mathcal{D}(\pi, t) = \underbrace{\int_{\partial\pi} (\mathbf{p} \cdot \dot{\mathbf{x}} - \mathbf{q} \cdot \mathbf{N}) dA}_{\mathcal{P} : \text{power supplied}} - \underbrace{\frac{d}{dt} \int_{\pi} \Psi dV}_{\dot{\mathcal{E}}} \geq 0 \quad \forall \pi \subset \kappa \quad (3)$$

Dissipation Inequality : Local Form

$$(\Psi_F - P) \cdot \dot{F} + (\Psi_\sigma - \mu) \dot{\sigma} + \mathbf{m} \cdot D\mu \leq 0 \text{ in } \kappa \quad (4)$$

- Two rate terms \dot{F} and $\dot{\sigma}$

Dissipation inequality

Theory

Dissipation Inequality

- Statement of the 2nd law in the absence of heat flux
- Power is supplied via tractions and fluid flux

$$\mathcal{D}(\pi, t) = \underbrace{\int_{\partial\pi} (\mathbf{p} \cdot \dot{\mathbf{x}} - \mathbf{q} \cdot \mathbf{N}) dA}_{\mathcal{P} : \text{power supplied}} - \underbrace{\frac{d}{dt} \int_{\pi} \psi dV}_{\dot{\mathcal{E}}} \geq 0 \quad \forall \pi \subset \kappa \quad (3)$$

Dissipation Inequality : Local Form

$$(\Psi_F - \mathbf{P}) \cdot \dot{\mathbf{F}} + (\Psi_\sigma - \mu) \dot{\sigma} + \mathbf{m} \cdot D\mu \leq 0 \text{ in } \kappa \quad (4)$$

- Two rate terms $\dot{\mathbf{F}}$ and $\dot{\sigma}$

Swelling Constraint

Theory

Total Volume

$$\int_{\pi} J_F dV = \int_{\pi} (J_{F_e} + J_{F_d}) dV \quad \forall \pi \subset \kappa \quad (5)$$

Total Volume : Local Form

$$J_F = J_{F_e} + J_{F_d} \text{ in } \kappa \quad (6)$$

Assumption : *fluid volume is due solely to fluid flux.*

$$J_{F_d} = \sigma = \sigma_d v_d \text{ in } \kappa \quad (7)$$

Swelling Constraint

Theory

Total Volume

$$\int_{\pi} J_F dV = \int_{\pi} (J_{F_e} + J_{F_d}) dV \quad \forall \pi \subset \kappa \quad (5)$$

Total Volume : Local Form

$$J_F = J_{F_e} + J_{F_d} \text{ in } \kappa \quad (6)$$

Assumption : *fluid volume is due solely to fluid flux.*

$$J_{F_d} = \sigma = \sigma_d v_d \text{ in } \kappa \quad (7)$$

Swelling Constraint

Theory

Total Volume

$$\int_{\pi} J_F dV = \int_{\pi} (J_{F_e} + J_{F_d}) dV \quad \forall \pi \subset \kappa \quad (5)$$

Total Volume : Local Form

$$J_F = J_{F_e} + J_{F_d} \text{ in } \kappa \quad (6)$$

Assumption : *fluid volume is due solely to fluid flux.*

$$J_{F_d} = \sigma = \sigma_d v_d \text{ in } \kappa \quad (7)$$

Connects the energetic rate terms

Theory

For an isochoric elastic deformation, $J_{F_e} = 1$

$$J_F = 1 + \sigma = 1 + \sigma_d v_d \quad \forall \pi \subset \kappa \quad (8)$$

Relate the Energetic Rates

$$\dot{\overline{J_F}} = \mathbf{F}^* \cdot \dot{\mathbf{F}} = \dot{\sigma} = \dot{\sigma}_d v_d \text{ in } \kappa \quad (9)$$

Connects the energetic rate terms

Theory

For an isochoric elastic deformation, $J_{F_e} = 1$

$$J_F = 1 + \sigma = 1 + \sigma_d v_d \quad \forall \pi \subset \kappa \quad (8)$$

Relate the Energetic Rates

$$\dot{\overline{J_F}} = \mathbf{F}^* \cdot \dot{\mathbf{F}} = \dot{\sigma} = \dot{\sigma}_d v_d \text{ in } \kappa \quad (9)$$

Simplifies the local dissipation inequality

Theory

Dissipation Inequality : Local Form

$$[\Psi_F - P + (\Psi_\sigma - \mu) F^*] \cdot \dot{F} + m \cdot D\mu \leq 0 \text{ in } \kappa \quad (10)$$

- Here \dot{F} and m are unrestricted

$$P = \Psi_F + \underbrace{(\Psi_\sigma - \mu) F^*}_q \text{ in } \kappa \quad (11)$$

$$m \cdot D\mu \leq 0 \text{ in } \kappa \quad (12)$$

Mobility Tensor

Representation Theorems

Constitutive structure of the flux

$$\mathbf{m} = \mathbf{M}(\mathbf{F}, \sigma, D\mu) D\mu \quad (13)$$

Mobility Tensor Satisfies

$$D\mu \cdot \mathbf{M}(\mathbf{F}, \sigma, D\mu) D\mu \leq 0 \quad (14)$$

Representation Theorem

$$\mathbf{M} = \alpha_0 \mathbf{I} + \alpha_1 \mathbf{U} + \alpha_2 \mathbf{U}^2 \quad (15)$$

$$\mathbf{m} = (\gamma_0 \mathbf{I} + \gamma_1 \mathbf{U} + \gamma_2 \mathbf{U}^2) \mathbf{H}^t (\mathbf{grad} \mu) \quad (16)$$

Mobility Tensor

Representation Theorems

Constitutive structure of the flux

$$\mathbf{m} = \mathbf{M}(\mathbf{F}, \boldsymbol{\sigma}, D\boldsymbol{\mu}) D\boldsymbol{\mu} \quad (13)$$

Mobility Tensor Satisfies

$$D\boldsymbol{\mu} \cdot \mathbf{M}(\mathbf{F}, \boldsymbol{\sigma}, D\boldsymbol{\mu}) D\boldsymbol{\mu} \leq 0 \quad (14)$$

Representation Theorem

$$\mathbf{M} = \alpha_0 \mathbf{I} + \alpha_1 \mathbf{U} + \alpha_2 \mathbf{U}^2 \quad (15)$$

$$\mathbf{m} = (\gamma_0 \mathbf{I} + \gamma_1 \mathbf{U} + \gamma_2 \mathbf{U}^2) \mathbf{H}^t (\mathbf{grad} \boldsymbol{\mu}) \quad (16)$$

Mobility Tensor

Representation Theorems

Constitutive structure of the flux

$$\mathbf{m} = \mathbf{M}(\mathbf{F}, \sigma, D\mu) D\mu \quad (13)$$

Mobility Tensor Satisfies

$$D\mu \cdot \mathbf{M}(\mathbf{F}, \sigma, D\mu) D\mu \leq 0 \quad (14)$$

Representation Theorem

$$\mathbf{M} = \alpha_0 \mathbf{I} + \alpha_1 \mathbf{U} + \alpha_2 \mathbf{U}^2 \quad (15)$$

$$\mathbf{m} = (\gamma_0 \mathbf{I} + \gamma_1 \mathbf{U} + \gamma_2 \mathbf{U}^2) \mathbf{H}^t (\mathbf{grad} \mu) \quad (16)$$

Isotropy and Noll's Rule

Isotropic Material

- Material whose *symmetry group* w.r.t. some reference configuration is the *proper orthogonal group*

$$\mathbf{G}(\mathbf{Q}\mathbf{H}\mathbf{Q}^T) = \mathbf{Q}\mathbf{G}(\mathbf{H})\mathbf{Q}^T \quad (17)$$

$$\mathbf{m}(\mathbf{Q}\mathbf{U}\mathbf{Q}^T) = \alpha_0 \mathbf{Q}\mathbf{I}\mathbf{Q}^T + \alpha_1 \mathbf{Q}\mathbf{U}\mathbf{Q}^T + \alpha_2 \mathbf{Q}\mathbf{U}^2\mathbf{Q}^T = \mathbf{Q}\mathbf{m}(\mathbf{U})\mathbf{Q}^T \quad (18)$$

Noll's Rule

$$\mathbf{H}_1 = \mathbf{F}\mathbf{H}_0\mathbf{F}^{-1} \quad (19)$$

Isotropy and Noll's Rule

Noll's Rule applied to flux

$$\mathbf{m}_1 = \mathbf{G} \mathbf{m}_0 \mathbf{G}^{-1} \quad (20)$$

$$\mathbf{m}_1 = (\lambda \mathbf{I}) \mathbf{m}_0 (\lambda \mathbf{I})^{-1} = \mathbf{m}_0 \quad (21)$$

- *if constitutive response is isotropic w.r.t. the swollen state, it is also isotropic w.r.t. the dry polymer.*

Mean Stress Theorem

- The mean value of the stress in a body is

$$MV(\mathbf{P}) = \frac{1}{Vol(\pi)} Sym \left[\int_{\partial\pi} \mathbf{p} \otimes \mathbf{x} dA + \int_{\pi} \mathbf{b} \otimes \mathbf{x} dV \right] \quad (22)$$

- As body force \mathbf{b} and tractions \mathbf{p} vanish the mean stress approaches zero.
- As $Vol(\pi) \rightarrow 0$, $\mathbf{P}(\mathbf{x}) \rightarrow MV(\mathbf{P}) = \mathbf{0}$
- also applies to $\mu \dot{\sigma} \leq 0$

Stress Free Reference

- The mean value of the stress approaches zero as the size of an arbitrary subregion approaches zero.
- The Mean Stress theorem establishes the existence of a stress free reference state, generally not continuous.

Existence of a Free Swelling Solution

- As the polymer undergoes local, isotropic swelling, a dilation deformation, to a stress-free local state

$$\mathbf{P} = \mathbf{R}\boldsymbol{\sigma} = 0 \quad (23)$$

- $\boldsymbol{\sigma} = \left(\frac{\partial \psi}{\partial i_1} + i_1 \frac{\partial \psi}{\partial i_2} \right) \mathbf{I} - \frac{\partial \psi}{\partial i_2} \mathbf{U} - q \mathbf{U}^*$
- Taking the trace, obtain the equilibrium condition for free swelling with $i_1 = 3\lambda$, and $i_2 = 3\lambda^2$ and the swelling

$$qi_2 = 3 \frac{\partial \psi}{\partial i_1} + 2 \frac{\partial \psi}{\partial i_2} \quad (24)$$

$$\lambda^3 = 1 + \sigma \quad (25)$$

Strain Energy in terms of Stretch Tensor

- If the strain energy is insensitive to SPRBM and isotropic w.r.t. it is a function of the invariants of \mathbf{U} , i_1 , i_2 , i_3 .
- These are related to the invariants of \mathbf{C}

$$I_1 = i_1^2 - 2i_2, \quad I_2 = i_2^2 - 2i_1 i_3, \quad I_3 = i_3^2 \quad (26)$$

- The i_k can be obtained from the I_k by inverting $I_1 = i_1^2 - 2i_2$, $I_2 = i_2^2 - 2i_1 i_3$, $I_3 = i_3^2$
 - Iterative techniques
 - essentially a 2×2 matrix inversion problem
 - SVD
- The strain energy formulation in terms of the stretch tensors is helpful in proving polyconvexity since it provides convenient formulations of the derivatives [4]

$$(i_1)_{\mathbf{F}} = (i_2)_{\mathbf{F}^*} = \mathbf{R}, \quad \Phi_{\mathbf{F}} = \frac{\partial \varphi}{\partial i_1} \mathbf{R} \quad \Phi_{\mathbf{F}^*} = \frac{\partial \varphi}{\partial i_2} \mathbf{R} \quad (27)$$

Polyconvexity : I

Polyconvexity requires the existence of a function Φ such that

$$\Psi'(\mathbf{F}) = \varphi(\mathbf{F}, \mathbf{F}^*, J_F) \quad (28)$$

is jointly convex in its arguments. This implies non-local Quasi-convexity which assure an energy minimizers and hence a solution for a specific deformation.

For polyconvexity

$$\begin{aligned} \Psi'(\bar{\mathbf{F}}) - \Psi'(\mathbf{F}) &\geq \varphi_{\mathbf{F}}(\mathbf{F}, \mathbf{F}^*, J_F) \cdot (\bar{\mathbf{F}} - \mathbf{F}) \\ &+ \varphi_{\mathbf{F}^*}(\mathbf{F}, \mathbf{F}^*, J_F) \cdot (\bar{\mathbf{F}}^* - \mathbf{F}^*) \\ &+ \varphi_{J_F}(\mathbf{F}, \mathbf{F}^*, J_F) \cdot (J_{\bar{\mathbf{F}}} - J_F) \quad \forall \mathbf{F} \text{ and } \bar{\mathbf{F}} \end{aligned} \quad (29)$$

invariants of \mathbf{U}

Here we show that isotropic swelling, since it is a dilational deformation, is polyconvex for any strain energy

B

all 1976 [1]

- A polyconvex strain energy function provides the existence of a energy minimizer
- not unique

Choose the function

$$\Phi(\mathbf{F}, \mathbf{F}^*, J_F) = \varphi \left(\sqrt{\mathbf{F}^t \mathbf{F}}, \sqrt{(\mathbf{F}^*)^t \mathbf{F}^*}, J_F \right) \quad (30)$$

work with i_k and its derivatives w.r.t. \mathbf{F} , \mathbf{F}^* as it simplifies the calculations.

Polyconvexity of a Free Swelling Solution

For free swelling $\mathbf{F} = \lambda \mathbf{I}$, and the i_k formulation, polyconvexity simplifies to :

$$\psi(\bar{i}_1, \bar{i}_2, \sigma^*) - \psi(i_1, i_2, \sigma^*) \leq (\bar{i}_1 - i_1) \frac{\partial \psi}{\partial i_1} + (\bar{i}_2 - i_2) \frac{\partial \psi}{\partial i_2} \quad (31)$$

- We know $\frac{\partial \psi}{\partial i_1} \geq 0$, $\frac{\partial \psi}{\partial i_2} \geq 0$ by definition of polyconvexity
- Require a suitable formulation of \bar{i}_1, \bar{i}_2 to show that this holds for a given deformation
- Ogden provides a decomposition of a dilation into a *pure shear* and a *isochoric extension with lateral compression*.

Polyconvexity for Free Swelling : I

Ogden [3](pg. 110) : any dilation can be decomposed into a *pure shear* and an *isochoric axial extension*

$$\bar{\mathbf{F}} = \bar{\mathbf{U}} = (\bar{\lambda} \mathbf{I}) \mathbf{SE} \quad (32)$$

where

$$\mathbf{S} = s \mathbf{u}_1 \otimes \mathbf{u}_1 + s^{-1} \mathbf{u}_2 \otimes \mathbf{u}_2 + \mathbf{u}_3 \otimes \mathbf{u}_3 \quad (33)$$

$$\mathbf{E} = t^{-\frac{1}{2}} (\mathbf{u}_1 \otimes \mathbf{u}_1 + \mathbf{u}_2 \otimes \mathbf{u}_2) + t \mathbf{u}_3 \otimes \mathbf{u}_3 \quad (34)$$

leading to

$$\bar{i}_1 = \bar{\lambda} \left[(s + s^{-1}) t^{-\frac{1}{2}} + t \right], \quad \bar{i}_2 = \bar{\lambda}^2 \left[(s + s^{-1}) t^{\frac{1}{2}} + t^{-1} \right], \quad \bar{i}_3 = \bar{\lambda}^3 \quad (35)$$

Polyconvexity for Free Swelling : II

$$\Psi_{(\sigma^*)}(\bar{\mathbf{F}}) - \Psi_{(\sigma^*)}(\mathbf{F}) \geq \lambda f(s, t) \frac{\partial \psi}{\partial i_1} + \lambda^2 f\left(s, t^{-\frac{1}{2}}\right) \frac{\partial \psi}{\partial i_2} \quad (36)$$

- $\lambda \geq 0$ by choice of reference frame
- $\frac{\partial \psi}{\partial i_1} \geq 0, \frac{\partial \psi}{\partial i_2} \geq 0$ by definition of polyconvexity
- $f(s, t) = (s + s^{-1}) t^{-\frac{1}{2}} + t^1 - 3 \geq 0$
- $f\left(s, t^{-\frac{1}{2}}\right) = (s + s^{-1}) t + t^{-1} - 3 \geq 0$

$$f(x, y) \geq 0 \iff g(x) \geq h(y) \quad (37)$$

$$x + x^{-1} \geq (3 - y) t^{-\frac{1}{2}} \quad (38)$$

$g(x)$ has a strict global *minimum* equal to 2 at $(1, 1)$
 $h(x)$ has a strict global *maximum* equal to 2 at $(1, 1)$

Summary

- Taking the dry polymer as a reference simplifies polyconvexity calculations
- The Mean Stress Theorem suggests the existence of a stress-free and flux-free local swollen reference state
- A dilational deformation is a solution to the Free Swelling problem for an arbitrary swelling field.
- A strain energy function that is isotropic w.r.t. the swollen frame is isotropic w.r.t. the dry reference due to Noll's Rule, i.e. dilational deformations preserves the symmetry group.
- This justifies using a multiplicative decomposition of the total deformation such that it is composed of an point-wise dilational swelling and an elastic deformation.
- Outlook
 - Analytical and Computational results
 - Growth, remodeling, resorption driven by diffusion
 - Time-dependent diffusion
 - Anisotropy

For Further Reading I

John M. Ball.

Convexity conditions and existence theorems in nonlinear elasticity.

Archive for Rational Mechanics and Analysis, 63(4):337–403,

December 1976.

Shawn A. Chester and Lallit Anand.

A coupled theory of fluid permeation and large deformations for elastomeric materials.

Journal of the Mechanics and Physics of Solids, 58(11):1879–1906,
November 2010.

R. W. Ogden.

Non-linear elastic deformations.

Dover Pubns, 1997.

For Further Reading II

David J. Steigmann.

Invariants of the stretch tensors and their application to finite elasticity theory.

Mathematics and Mechanics of Solids, 7(4):393–404, August 2002.

Larry A. Taber.

Biomechanics of growth, remodeling, and morphogenesis.

Applied Mechanics Reviews, 48(8):487–545, 1995.

Hungyu Tsai, Thomas J. Pence, and Eleftherios Kirkinis.

Swelling induced finite strain flexure in a rectangular block of an isotropic elastic material.

Journal of Elasticity, 75(1):69–89, April 2004.

For Further Reading III

Alan Wineman and Je-Hong Min.

Time dependent scission and cross-linking in an elastomeric cylinder undergoing circular shear and heat conduction.

International Journal of Non-Linear Mechanics, 38(7):969–983,
October 2003.

Piola Stress

$$\mathbf{P} = \mathbf{R}\boldsymbol{\sigma} \quad (39)$$

$$\boldsymbol{\sigma} = \left(\frac{\partial \psi}{\partial i_1} + i_1 \frac{\partial \psi}{\partial i_2} \right) \mathbf{I} - \frac{\partial \psi}{\partial i_2} \mathbf{U} - q \mathbf{U}^* \quad (40)$$

$$\mu = \frac{\partial \psi}{\partial \boldsymbol{\sigma}} + q \quad (41)$$

Piola Stress in terms of principal stretches

$$\mathbf{R} = \mathbf{v}_i \otimes \mathbf{u}_i \quad (42)$$

$$\boldsymbol{\sigma} = \sum \left(\frac{\partial W}{\partial \lambda_i} - q u_i \right) \mathbf{u}_i \otimes \mathbf{u}_i \quad (43)$$

λ_i evals of \mathbf{U} (44)

$\frac{J_F}{\lambda_i}$ evals of \mathbf{U}^* (45)

\mathbf{u}_i eigenvectors of \mathbf{U} and \mathbf{U}^* (46)

$$W(\lambda_i, \boldsymbol{\sigma}) = \psi(\lambda_1 + \lambda_2 + \lambda_3, \lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_3 \lambda_2, \boldsymbol{\sigma}) \quad (47)$$