

Selective Synthesis of Iron Oxide-Hydroxides

Holly F. Zarick, Jill S. WHEELER, Dara V. Gough, Mark Rodriguez, Nicholas Hudak, and Erik D. Spoerke
Sandia National Laboratories, Albuquerque, NM USA

Background and Motivation

- Iron oxides comprise a rich class of materials that is chemically, structurally, and functionally diverse.
 - Oxides
 - Hydroxides
 - Oxide-Hydroxides

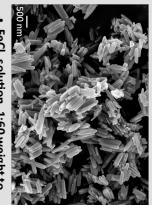
- Iron oxides are found all around us, forming naturally and spontaneously (if not always desirably).

- Laboratory synthesis is inexpensive and has become increasingly important as these green materials have found applications ranging from pigment to catalysis. The multiple oxidation states of iron have even made iron oxides attractive candidates for electrical energy storage.

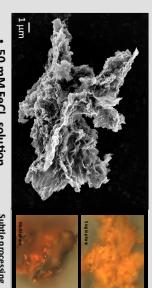
- Each of these applications, however, is dependent on being able to synthesize iron oxide phases with the desired morphological, crystallographic, magnetic, and chemical characteristics.
- The focus here is on the formation of specific crystallographic polymorphs of iron oxide-hydroxide (FeOOH):

Our Challenge

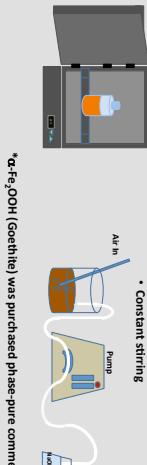
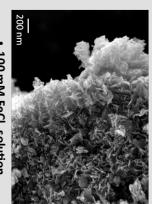
- Can we control the selective synthesis of FeOOH polymorphs and evaluate the influence of these structures on their electrochemical activity?


Synthesis Methods

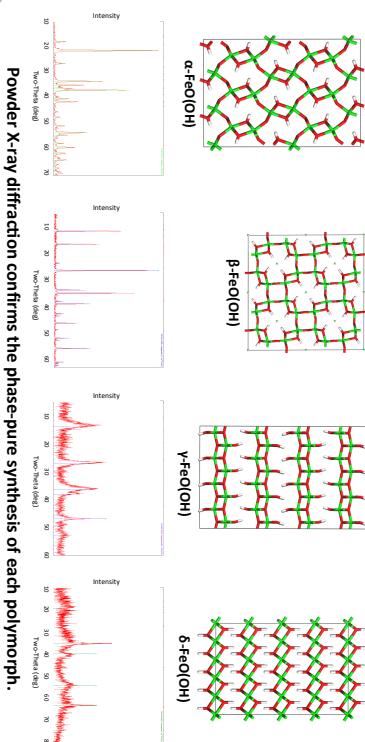
General Preparation Method: Oxidation of an aqueous iron salt solution


Experimental Parameters:

- Oxidizing Agent
- Reagent Concentration
- Temperature
- Reaction Rate
- Iron Salt
- pH

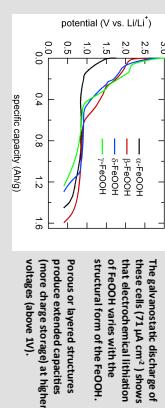
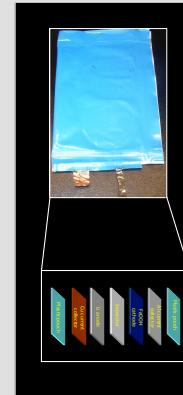


Akaganeite ($\beta\text{-FeOOH}$)

Lepidocrocite ($\gamma\text{-FeOOH}$)


Feroxyhyte ($\delta\text{-FeOOH}$)

* $\alpha\text{-Fe}_2\text{O}_3$ (Goethite) was purchased phase-pure commercially from Alpha Aesar®

Crystallography



Each polymorph of FeOOH is compositionally identical, but structurally very different.

Powder X-ray diffraction confirms the phase-pure synthesis of each polymorph.

Electrochemical Performance

FeOOH powders were mixed with binder and conductive carbon, coated onto aluminum foil and assembled as cathodes into lithium half-cell test pouches or coin cells.

These studies show that the structure of each FeOOH polymorph affects both the energy density (the product of voltage and capacity) and the cyclability of these materials as lithium ion electrodes.

Conclusions and Future Directions

- Careful control over synthetic processes can produce phase-pure iron oxide-hydroxides.
- Crystalllographically diverse polymorphs demonstrate distinct electrochemical responses.
- Future work will explore mechanisms of lithium intercalation into iron oxide-hydroxides, and will investigate other materials with similar polymorphic influences.