
Experimental Evaluation of the Impact of Packet
Capturing Tools for Web Services

Chao-Chih Chen⋄ †, Yung Ryn Choe∗, Chen-Nee Chuah‡ and Prasant Mohapatra†

†Department of Computer Science. University of California,Davis, CA 95616
Email {cchchen,pmohapatra}@ucdavis.edu

∗Sandia National Laboratories. Livermore, CA 94551
Email yrchoe@sandia.gov

‡Department of Electrical Engineering. University of California, Davis, CA 95616
Email: chuah@ucdavis.edu

Abstract—Network measurement is a discipline that provides
the techniques to collect data that are fundamental to many
branches of computer science. While many capturing tools and
comparisons have made available in the literature and elsewhere,
the impact of these packet capturing tools on existing processes
have not been thoroughly studied. While not a concern for
collection methods in which dedicated servers are used, many
usage scenarios of packet capturing now requires the packet
capturing tool to run concurrently with operational processes.

In this paper we perform experimental evaluations of the
performance impact that packet capturing process have on web-
based services; in particular, we observe the impact on web
servers. We find that packet capturing processes indeed impact
the performance of web servers, but on a multi-core system
the impact varies depending on whether the packet capturing
and web hosting processes are co-located or not. In addition,
the architecture and behavior of the web server and process
scheduling is coupled with the behavior of the packet capturing
process, which in turn also affect the web server’s performance.

I. I NTRODUCTION

Network measurement is a discipline that provides the
foundation for many studies in networked systems. From
capacity planning to anomaly detection to network security,
being able to measure and collect data from the network is
crucial for the success in these tasks. One such popular method
to collect data from the network is packet capturing. Because
the collected data (the packet) contains application-invariant
and application-specific information, it is a good candidate
for one-time data collection that can support various types
of analysis. In addition, packet capturing tools are widely
available (e.g., Wireshark, TCPDump for Linux, NetMon for
Windows), and there are mature libraries for custom codes to
tap into the packet monitoring process.

In the past network measurements are often collected by
means of port mirroring at the router and dedicated machines
to collect the packets. Another way to monitor the network
is to do so at the edge of the network (i.e., capture at the
server machines). This reduces the need to have a dedicated

⋄ Is supported in part by fellowship from Sandia National Laboratories.
*Sandia is a multiprogram laboratory operated by Sandia Corporation, a

Lockheed Martin Company, for the United States Department of Energys Na-
tional Nuclear Security Administration under Contract DE-AC04-94AL85000.

machines and also amortizes the cost of packet capturing over
all the machines.

Although not a concern if dedicated machines are used to
capture packets, the performance impact of capturing process
becomes important if it is to co-locate in the same physical
machine as running processes. In fact, in some cases moni-
toring at the server machines is preferred, if not essential. For
example, there are works that attempt to discover application-
level dependency [1], [2] while others try to localize the source
of faults from information derived from captured packets [3].
Without capturing the network information at the server ma-
chines, details such as application-level dependency is either
impossible or much more difficult to capture elsewhere.

Recognizing the deficiency of research work in this area,
we carry out experiments to examine the impact that packet
capturing process has on web-based services. In particular,
we test packet capturing process’ performance impact on web
servers at their saturation point. This gives us some insight
into the maximum performance achievable for web services
when packet capturing process is also running, and whether it
adversely impacts existing services.

The contributions of this paper are:
• Experimental evaluation on the performance impact of

capturing process to co-located web-based services.
• Deployment of two web servers of different architecture

to validate that results are consistent across different web
server architectures.

• Measurement of both system-level statistics and user-
perceived statistics to observe correlation between the
two.

In Section II we briefly go over the packet capturing process;
Section III presents the evaluation methodology and the results
obtained; Section IV discuss the related works; Section V
discusses future works and concludes the paper.

II. PACKET CAPTURING PROCESS

This section provides a high-level overview of the packet
capturing process in Linux, as to make the discussion in this
paper complete. The goal of this section is not to provide a
complete detail of the internals of packet capturing, but to
illuminate on the steps involved in delivering the packet from

SAND2011-5589C

the network card to the kernel and to the user application.
This will help towards understanding the behaviors observed
in Section III; details of the packet capturing process described
here can be found in [4], [5].

When packets are transmitted over the wire, the network
interface card (NIC) normally picks up the packet if the packet
is destined for it; under promiscuous mode it will pick up all
packets sensed. Once the packet is recognized for reception,
the NIC’s interrupt routine is invoked, in which the routine
allocates some space in memory and copies the packet into the
allocated memory. The packet is not immediately processed
after moving to the memory, as the interrupt routine is intended
to perform as little operation as possible. When the packet is
picked up later by the software interrupt handler, it passesthe
packet upwards to the appropriate protocol handler based on
the packet’s protocol type.

For packets destined for packet capturing tools, a special
handler is used so that all the packets can be handled and
subsequently forwarded to the capturing process. Correspond-
ing to this special handler is a special protocol family called
PF PACKET, and the packet is copied1 and delivered to a
socket created specifying the PFPACKET family. Copying
is needed because the packet might be actually destined for
an application at the local machine, so the packet must be
copied for separate consumption by the capturing process and
the application.

While this overview is brief, it illuminates the many trans-
actions involved in capturing the packet, and these transactions
will result in the use of CPU resource. The experiments to be
discussed in Section III are aimed at observing how its uptake
of CPU resource affects the performance of web servers.

III. E VALUATION

In this section we present the experimental results obtained
when running the packet capturing tool under various ap-
plication scenarios. We will first discuss the set-up of our
experiments and the metrics we set out to collect; then we will
discuss the results of the experiments and various inferences
drawn from them.

A. Experimental Set-up

To observe the effects of packet capturing on applications,
we deployed two web servers and collected various perfor-
mance metrics. The web servers used are Apache version
2.2.17 with worker MPM [6] and Nginx version 0.8.54 [7]; the
kernel used is 2.6.35.11. We choose to use Apache because it
is rated the most-used web server according to the latest survey
by NetCraft (February 2011 at the time of writing) [8]; while
Nginx is also used because its architecture is fundamentally
different from Apache.

The Apache architecture offers various Multi-Processing
Modules (MPM) as a way to scale the web server with increas-
ing user demand. These MPMs are either multi-processed,

1The way in which the packet is copied is that an internal structure, sk buf,
that holds information regarding the data packet is copied.But only the fields
are copied – the packet data itself is referred by pointers inthe duplicate and
the original structure.

multi-threaded, or both. In the model we use, the worker
module2 is selected. Apache uses a parent process to accept
incoming connections and distributes them to multiple pro-
cesses/threads, where each process/threads handles one request
at a time [9]3. One implication of such an architecture means
that in order to scale, the number of threads and process
needed to spawn needs to increase. On the other hand, Nginx
[7] is a highly-scalable web server developed to address the
ability to serve high number of simultaneous user connections,
also known as the C10K problem [10] Nginx operates under
the asynchronous call model, so a single process can scale
quite well against increasing concurrent request volume.

To measure the performance impact of packet capturing,
we monitor the CPU and bandwidth utilization of all applica-
tions, and application-specific metrics. The packet capturing
tool we used in this experiment is a vanilla TCPDump, as
we would like to observe the impact of a free and widely
available tool without any performance modification to it (e.g.,
mmap extension, PFRING extension [11]). To stress the web
servers, we use HTTPLOAD [12] to constantly fetch a small
static HTML page from the servers. In addition, for all the
experiments the web server is hosted on a Duo Core system,
but we confine the web server to a single core. This allows
us to experiment with co-locating and separating the packet
capturing and web server process. By doing so, we can observe
the effect that sharing CPU resource has on the performance
degradation of the web servers.

For each web server, we test the co-location factor by
moving TCPDump and the web server processes onto the same
or different CPU core, and we also vary TCPDump’s behavior
in four ways: no TCPDump running, normal TCPDump,
quieter TCPDump, and TCPDump writing captured packets
to disk. We have a total of eight settings, two of which
are repeats (no TCPDump and co-locate is the same as no
TCPDump and do not co-locate). For each setting we use
HTTP LOAD on two different clients, where each client set
the HTTP LOAD concurrency to 15, to fetch continuously
from the server for five minutes; metrics are collected every
five seconds to minimize its impact on the experiment.

B. Web Servers

Figure 1 and Figure 2 show the CPU and bandwidth
utilization for one run of the experiment, when running the
HTTP LOAD to retrieve files from the web servers.

Upon first glance, we note that the behavior of Apache
and Nginx are visibly different, with Apache more prone
to CPU fluctuation, while Nginx is more stable in CPU
usage. This could be attributed to the fact that Apache’s
method of scaling with demand results in much more context
switches between the various worker threads, resulting in the
performance fluctuation. On the other hand, Nginx is using

2We choose this model based on the scalability and smaller memory
footprint than pure process-based module

3We also consulted the documentation on the popular prefork module and
it works in similar manner.

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60

C
P

U
 U

til
iz

at
io

n
(%

)

Time

Apache’s CPU Utilization
No TCPDump

TCPDump Normal
TCPDump Quiet

TCPDump Write To Disk

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60

C
P

U
 U

til
iz

at
io

n
(%

)

Time

TCPDump’s CPU Utilization
TCPDump Normal

TCPDump Quiet
TCPDump Write To Disk

(a) CPU Utilization For Apache and TCPDump When Pinned To Different
CPU Core

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60

C
P

U
 U

til
iz

at
io

n
(%

)

Time

Apache’s CPU Utilization
No TCPDump

TCPDump Normal
TCPDump Quiet

TCPDump Write To Disk

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60

C
P

U
 U

til
iz

at
io

n
(%

)

Time

TCPDump’s CPU Utilization
TCPDump Normal

TCPDump Quiet
TCPDump Write To Disk

(b) CPU Utilization For Apache and TCPDump When Pinned To Same
CPU Core

 0

 50

 100

 150

 200

 0 10 20 30 40 50 60

B
an

dw
id

th
 (

M
bp

s)

Time

Apache’s Bandwidth Utilization
No TCPDump

TCPDump Normal
TCPDump Quiet

TCPDump Write To Disk

 0

 50

 100

 150

 200

 0 10 20 30 40 50 60

B
an

dw
id

th
 (

M
bp

s)

Time

Apache’s Bandwidth Utilization
No TCPDump

TCPDump Normal
TCPDump Quiet

TCPDump Write To Disk

(c) Bandwidth Utilization When Apache and TCPDump Are Pinned To
Different (left) Or The Same CPU Core (right)

Fig. 1: Apache Results

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60

C
P

U
 U

til
iz

at
io

n
(%

)

Time

Nginx’s CPU Utilization
No TCPDump

TCPDump Normal
TCPDump Quiet

TCPDump Write To Disk

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60

C
P

U
 U

til
iz

at
io

n
(%

)

Time

TCPDump’s CPU Utilization
TCPDump Normal

TCPDump Quiet
TCPDump Write To Disk

(a) CPU Utilization For Nginx and TCPDump When Pinned To Different
CPU Core

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60

C
P

U
 U

til
iz

at
io

n
(%

)

Time

Nginx’s CPU Utilization
No TCPDump

TCPDump Normal
TCPDump Quiet

TCPDump Write To Disk

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60

C
P

U
 U

til
iz

at
io

n
(%

)

Time

TCPDump’s CPU Utilization
TCPDump Normal

TCPDump Quiet
TCPDump Write To Disk

(b) CPU Utilization For Nginx and TCPDump When Pinned To Same
CPU Core

 0

 50

 100

 150

 200

 0 10 20 30 40 50 60

B
an

dw
id

th
 (

M
bp

s)

Time

Nginx’s Bandwidth Utilization
No TCPDump

TCPDump Normal
TCPDump Quiet

TCPDump Write To Disk

 0

 50

 100

 150

 200

 0 10 20 30 40 50 60

B
an

dw
id

th
 (

M
bp

s)

Time

Nginx’s Bandwidth Utilization
No TCPDump

TCPDump Normal
TCPDump Quiet

TCPDump Write To Disk

(c) Bandwidth Utilization When Nginx and TCPDump Are PinnedTo
Different (left) Or The Same CPU Core (right)

Fig. 2: Nginx Results

much less number of processes, and is able to serve requests
without getting constantly interrupted.

With the web server and TCPDump pinned to different
CPU core, both processes are shown to take up significant
amount of CPU resource. In both types of web servers, the
web server process takes up nearly one hundred percent of the
process while the TCPDump process also consumes significant
CPU resource. When the server and TCPDump process are
bound to the same CPU core, the Apache server seems to
be holding more share of the CPU resource while Nginx
predictably shares the resource equally with TCPDump. In
fact, TCPDump has almost no access to the CPU, using
only a few percent of the CPU resource at any given time.
This phenomenon can be explained by understanding the
method in which Apache scales with increasing user demand.

To maintain scalability, the worker MPM in Apache has a
parent process that monitors and distributes incoming load.
The parent process spawns a number of child process that
actually serve the request, with the maximum number of child
processes constrained by the ServerLimit directive (defaults
to 16, which is our setting). The kernel scheduling algorithm
would then try to equally distribute the available CPU resource
to all active process, majority of which belongs to Apache. On
the other hand, Nginx and TCPDump predictably shares the
CPU resource equally, due to the fact that only one Nginx
process is actively serving incoming requests. This resulthas
significant implication to the efficiency of the web server and
packet capturing process. To ensure capturing process has
access to enough CPU to process the captured packet, it should
be scheduled on a separate core. If the capturing process is

to be co-located with the web server, care must be taken
to understand the structure and behavior of the web server,
to ensure the capturing process also has access to the CPU
resource. It is interesting to also note that, in some cases the
recorded CPU utilization is over one hundred percent. This
is impossible because we confine the processes to a single
core, so the maximum possible is one hundred percent. After
inspecting the source code of the tool we used to collect the
CPU utilization, we noticed the tool reads two pseudo-files to
calculate the CPU utilization for a process, and the two reads
are not atomic. We believe that this behavior, in addition tothe
CPU collection process running on another thread, means that
there is a potential race condition, and the calculation could be
slightly off. However, we note that despite the observed error,
the general trend is still significant enough for us to make the
above observations.

Next we look at the bandwidth utilization result. For Nginx
the achieved bandwidth utilization is lower in the case when
TCPDump is running and co-locating with the web server. On
the other hand, the bandwidth utilization for apache is about
the same as before. Comparing Figure 1c and Figure 2c with
Figure 1b, Figure 2b, the difference in bandwidth usage is
correlated with the difference in CPU usage: a higher CPU
usage corresponding to higher bandwidth utilization, and vice
versa; however the variability in the bandwidth/CPU utilization
are different, as the bandwidth utilization remains more stable
than CPU utilization.

While these metrics shed some light on the resource con-
sumption and possible performance of the system, they do
not explicitly tell us the performance that users can expect.
To gain such an insight, we scrape the reports generated
by HTTP LOAD at each client machine at the end of the
experiments. Figure 3 shows the aggregate number of fetches
per second that are observed from all the clients. We note that
the baseline experiment (i.e., TCPDump is not running) shows
the performance of Apache and Nginx is quite good. With the
presence of TCPDump, the performance of the web server
varies depending on the co-location. When TCPDump is not
co-located with the server process, TCPDump seems to de-
crease the average performance of Apache more significantly
(up to 10%). However, when TCPDump co-locates with the
server process on the same core, the result is more dramatic.
Correlating the results in Figure 3 with Figure 1b and Figure
2b, we can see that the CPU share TCPDump has obtained is
directly proportional to the decrease in the average fetches per
second achievable. The significant performance degradation
for the case where TCPDump and Nginx are on same core –
but little performance degradation when on different cores–
suggests that CPU utilization could be a major source of the
web servers’ performance degradation.

In summary, the experiments carried out in this section
implies that CPU utilization can tell us that performance
degradation has occurred, but performance degradation can
still occur even if CPU utilization looks normal. In the case
for Apache, even though it dominates the CPU when co-
located with TCPDump, the fetches per second achievable is

considerably lower; while Nginx consumes much less CPU but
has similar performance degradation as Apache. However it is
undeniable that the presence of TCPDump has negative per-
formance impacts to the web servers, so care should be taken
when running packet capturing process such as TCPDump,
as to ensure the performance impact to the web servers is
minimal. In addition, when TCPDump has equal opportunity
to contend for the CPU resource it does consume a non-trivial
amount, and this has performance impact for admins looking
to consolidate different types of task onto a single machine.
For tasks that are CPU-bound, consolidating it with machines
running packet capturing processes could elongate the task
completion time as well as diminishing the number of packets
captured.

IV. RELATED WORKS

For evaluation of packet capturing tools, the closest works
to this paper are those that either explicitly evaluate packet
capturing performance or attempts to improve the packet
capturing performance. This is because in both types of work,
an evaluation of the various aspects of packet capturing tools
such as CPU utilization and packets captured are usually
presented. Below we briefly describe both types of work.

Deri [11] has suggested that the packet capturing process
is inefficient due to overhead involved in copying the packet.
The work proposes a new socket type, PFRING, in which
the packet can be copied directly from the device driver
buffer to user-accessible memory, drastically reducing memory
allocation and copying operations. A later work improved
upon PFRING by proposing a new architecture in which
multi-core processor can be utilized to increase the monitoring
capability of the system [13]. In both of these works, Deri et
al. discovered that the capturing process do not handle high
traffic volume well due to the memory operations from device
driver to kernel and from kernel to user level, as well as sub-
optimal utilization of resource available at device and kernel
level.

In [14], [15], the authors investigate the performance of
packet capturing tools in various software and hardware plat-
form. The metrics investigated in these works are the packets
captured [14], [15], with [14] having some emphasis on the
CPU utilization and [15] focusing on the percentage of packets
captured. Both works are important because they evaluate
the performance of packet capturing tools using common
platforms, so the valid conclusions can be drawn regarding
the hardware or software stacks involved in packet capturing.

Our paper differs from these works in that we do not
emphasize on the performance of the packet capturing tool, but
whether the packet capturing tool affects existing applications,
and if so to what degree. Even though the hardware used to
host the capturing process and web server is multi-core, we
only utilize one core for either the web server or the packet
capturing process. This is so we could monitor the effect of
co-locating the two processes, and have shown that co-location
causes dramatic performance degradation to the web servers.

 3400

 3500

 3600

 3700

 3800

 3900

 4000

 4100

Different Core

Sam
e Core

F
et

ch
es

/S
ec

Apache Performance

No TCPDump
TCPDump Normal

TCPDump Quiet
TCP Write To Disk

(a) Apache Server’s Performance

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

Different Core

Sam
e Core

F
et

ch
es

/S
ec

Nginx Performance

No TCPDump
TCPDump Normal

TCPDump Quiet
TCP Write To Disk

(b) Nginx Web Server’s Performance

Fig. 3: Web server performance in fetches/second averaged over 24 runs, with 95% confidence interval shown

V. CONCLUSION AND FUTURE WORKS

In this paper we examine the performance of web servers
in the presence of packet capturing process. We find that CPU
sharing is directly proportional to the performance degradation
experienced by the web server, and separating the two pro-
cesses onto different cores still has some performance impact
on the web server.

This work is a good start, but more environments can be
considered:

• Serving larger web pages: We need to repeat the
experiments for the case when web servers are serving
larger web pages. This would make the web server more
I/O bound, and having the capturing process write to disk
should create another venue for resource contention.

• Serving dynamic pages: In this paper we have looked
at the case when web servers host static pages, dynamic
page would put more CPU demand on the server, and the
performance impact of such needs to be investigated.

• Caching pages: When serving static pages, the web
page can be cached in memory, thus avoiding the disk
completely. More experiments should be performed to
investigate the effect of such a strategy.

• Monitoring technology: In this work we do not take
advantage of the prototypes made available from prior
research works (e.g., PFRING), other techniques (e.g.,
sampling), or other types of packet capturing tools (e.g.,
dumpcap), future work will investigate these varieties.

We believe this work is the first step towards thoroughly
understanding the behavior of co-locating capturing process
and web servers. From these experiments, we can understand
how to best capture packets when the capturing process has
to be co-located with the on-line service, and whether new
techniques can be applied to perform network measurement.

REFERENCES

[1] L. Popa, B.-G. Chun, I. Stoica, J. Chandrashekar, and N. Taft,
“Macroscope: end-point approach to networked applicationdependency
discovery,” in Proceedings of the 5th international conference on
Emerging networking experiments and technologies, ser. CoNEXT ’09.

New York, NY, USA: ACM, 2009, pp. 229–240. [Online]. Available:
http://doi.acm.org/10.1145/1658939.1658966

[2] X. Chen, M. Zhang, Z. M. Mao, and P. Bahl, “Automating network
application dependency discovery: experiences, limitations, and new
solutions,” inProceedings of the 8th USENIX conference on Operating
systems design and implementation, ser. OSDI’08. Berkeley, CA,
USA: USENIX Association, 2008, pp. 117–130. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1855741.1855750

[3] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz,
and M. Zhang, “Towards highly reliable enterprise network services
via inference of multi-level dependencies,” inProceedings of the
2007 conference on Applications, technologies, architectures, and
protocols for computer communications, ser. SIGCOMM ’07. New
York, NY, USA: ACM, 2007, pp. 13–24. [Online]. Available:
http://doi.acm.org/10.1145/1282380.1282383

[4] G. Insolvibile, “Inside the Linux Packet Filter.” [Online]. Available:
http://www.linuxjournal.com/article/4852

[5] ——, “Inside the Linux Packet Filter, Part II.” [Online].Available:
http://www.linuxjournal.com/article/5617

[6] Apache, “Apache Software Foundation.” [Online]. Available:
http://www.apache.org/

[7] Nginx, “Nginx.” [Online]. Available: http://wiki.nginx.org/Main
[8] NetCraft, “February 2011 Web Server Survey,” 2011. [Online].

Available: http://news.netcraft.com/archives/2011/02/15/february-2011-
web-server-survey.html

[9] I. F. Haddad, “Apache 2.0: The Internals of the New, Improved.”
[Online]. Available: http://www.linuxjournal.com/article/4559

[10] D. Kegel, “The C10K problem,” 2006. [Online]. Available:
http://www.kegel.com/c10k.html

[11] L. Deri, N. S. P. A, V. D. B. Km, and L. L. Figuretta, “Improving
passive packet capture: Beyond device polling,” inIn Proceedings of
SANE 2004, 2004.

[12] A. Laboratories, “httpload - Multiprocessing HTTP Test Client.”
[Online]. Available: http://www.acme.com/software/http load/

[13] F. Fusco and L. Deri, “High speed network traffic analysis
with commodity multi-core systems,” inProceedings of the 10th
annual conference on Internet measurement, ser. IMC ’10. New
York, NY, USA: ACM, 2010, pp. 218–224. [Online]. Available:
http://doi.acm.org/10.1145/1879141.1879169

[14] F. Schneider and J. Wallerich, “Performance evaluation of packet
capturing systems for high-speed networks,” inProceedings of the 2005
ACM conference on Emerging network experiment and technology,
ser. CoNEXT ’05. New York, NY, USA: ACM, 2005, pp. 284–285.
[Online]. Available: http://doi.acm.org/10.1145/1095921.1095982

[15] L. Braun, A. Didebulidze, N. Kammenhuber, and G. Carle,“Comparing
and improving current packet capturing solutions based on commodity
hardware,” inProceedings of the 10th annual conference on Internet
measurement, ser. IMC ’10. New York, NY, USA: ACM, 2010, pp. 206–
217. [Online]. Available: http://doi.acm.org/10.1145/1879141.1879168

