SAND2011-5589C

Experimental Evaluation of the Impact of Packet
Capturing Tools for Web Services

Chao-Chih Cheht, Yung Ryn Choe*, Chen-Nee Chudhand Prasant Mohapatra
fDepartment of Computer Science. University of Califorribayis, CA 95616
Email {cchchen,pmohapatf@ucdavis.edu
*Sandia National Laboratories. Livermore, CA 94551
Email yrchoe@sandia.gov
iDepartment of Electrical Engineering. University of Catifia, Davis, CA 95616
Email: chuah@ucdavis.edu

Abstract—Network measurement is a discipline that provides machines and also amortizes the cost of packet capturing ove
the techniques to collect data that are fundamental to many g|| the machines.
branches of computer science. While many capturing tools ah Although not a concern if dedicated machines are used to

comparisons have made available in the literature and elsevere, t kets. th f . t of turi 0
the impact of these packet capturing tools on existing procses C2PtUre Packets, the performance impact of capturing geoce

have not been thoroughly studied. While not a concem for becomes important if it is to co-locate in the same physical
collection methods in which dedicated servers are used, mgn machine as running processes. In fact, in some cases moni-

usage scenarios of packet capturing now requires the packet toring at the server machines is preferred, if not esserfia
capturing tool to run concurrently with operational processes. example, there are works that attempt to discover appicati

In this paper we perform experimental evaluations of the . .
performance impact that packet capturing process have on we level dependency [1], [2] while others try to localize theiste

based services; in particular, we observe the impact on web Of faults from information derived from captured packetk [3
servers. We find that packet capturing processes indeed impa Without capturing the network information at the server ma-
the performance of web servers, but on a multi-core system chines, details such as application-level dependencytherei
the impact varies depending on whether the packet capturing jmnossible or much more difficult to capture elsewhere.

and web hosting processes are co-located or not. In addition . - . .
the architecture and behavior of the web server and process Recognizing the deficiency of research work in this area,

scheduling is coupled with the behavior of the packet capting W€ Carry out experiments to examine the impact that packet

process, which in turn also affect the web server’s performace. capturing process has on web-based services. In particular

we test packet capturing process’ performance impact on web

servers at their saturation point. This gives us some insigh

into the maximum performance achievable for web services
Network measurement is a discipline that provides thghen packet capturing process is also running, and whether i

foundation for many studies in networked systems. Froatversely impacts existing services.

capacity planning to anomaly detection to network security The contributions of this paper are:

being able to measure and collect data from the network iss Experimental evaluation on the performance impact of

crucial for the success in these tasks. One such populaogheth capturing process to co-located web-based services.

to collect data from the network is packet capturing. Beeaus « Deployment of two web servers of different architecture

the collected data (the packet) contains applicationriana to validate that results are consistent across differeft we

and application-specific information, it is a good candidat server architectures.

for one-time data collection that can support various types. Measurement of both system-level statistics and user-

of analysis. In addition, packet capturing tools are widely perceived statistics to observe correlation between the

available (e.g., Wireshark, TCPDump for Linux, NetMon for two.

Windows), and there are mature libraries for custom codes|ipsection 11 we briefly go over the packet capturing process;
tap into the packet monitoring process. Section 1l presents the evaluation methodology and theltes
In the past network measurements are often collected §itained; Section IV discuss the related works; Section V

means of port mirroring at the router and dedicated machingigcusses future works and concludes the paper.
to collect the packets. Another way to monitor the network

is to do so at the edge of the network (i.e., capture at the
server machines). This reduces the need to have a dedicatethis section provides a high-level overview of the packet
capturing process in Linux, as to make the discussion in this

¢ Is supported in part by fellowship from Sandia National Liabories. paper complete. The goal of this section is not to provide a
*Sandia is a multiprogram laboratory operated by Sandiap@ution, a

Lockheed Martin Company, for the United States Departméinergys Na- pomplete detail of the _'ntemals_ of p.aCk?t capturing, but to
tional Nuclear Security Administration under Contract BE04-94AL85000. illuminate on the steps involved in delivering the packendr

|I. INTRODUCTION

Il. PACKET CAPTURING PROCESS

the network card to the kernel and to the user applicatiomulti-threaded, or both. In the model we use, the worker
This will help towards understanding the behaviors obskrvenodulé€ is selected. Apache uses a parent process to accept
in Section IlI; details of the packet capturing process dbed incoming connections and distributes them to multiple pro-
here can be found in [4], [5]. cesses/threads, where each process/threads handlesjoestre
When packets are transmitted over the wire, the netwoak a time [9F. One implication of such an architecture means
interface card (NIC) normally picks up the packet if the petckthat in order to scale, the number of threads and process
is destined for it; under promiscuous mode it will pick up alheeded to spawn needs to increase. On the other hand, Nginx
packets sensed. Once the packet is recognized for recept[@his a highly-scalable web server developed to address the
the NIC’s interrupt routine is invoked, in which the routineability to serve high number of simultaneous user connastio
allocates some space in memory and copies the packet intodls® known as the C10K problem [10] Nginx operates under
allocated memory. The packet is not immediately processé asynchronous call model, so a single process can scale
after moving to the memory, as the interrupt routine is idegh quite well against increasing concurrent request volume.
to perform as little operation as possible. When the packet i To measure the performance impact of packet capturing,
picked up later by the software interrupt handler, it passes we monitor the CPU and bandwidth utilization of all applica-
packet upwards to the appropriate protocol handler basedtiwns, and application-specific metrics. The packet capgur
the packet’s protocol type. tool we used in this experiment is a vanilla TCPDump, as
For packets destined for packet capturing tools, a speci@ would like to observe the impact of a free and widely
handler is used so that all the packets can be handled anailable tool without any performance modification to ig(e
subsequently forwarded to the capturing process. Corngspommap extension, PIRING extension [11]). To stress the web
ing to this special handler is a special protocol family @dll servers, we use HTTROAD [12] to constantly fetch a small
PF_PACKET, and the packet is copiednd delivered to a static HTML page from the servers. In addition, for all the
socket created specifying the FFACKET family. Copying experiments the web server is hosted on a Duo Core system,
is needed because the packet might be actually destined fat we confine the web server to a single core. This allows
an application at the local machine, so the packet must b to experiment with co-locating and separating the packet
copied for separate consumption by the capturing process aapturing and web server process. By doing so, we can observe
the application. the effect that sharing CPU resource has on the performance
While this overview is brief, it illuminates the many transdegradation of the web servers.
actions involved in capturing the packet, and these traios&c For each web server, we test the co-location factor by
will result in the use of CPU resource. The experiments to bgoving TCPDump and the web server processes onto the same
discussed in Section IIl are aimed at observing how its wptajsr different CPU core, and we also vary TCPDump’s behavior
of CPU resource affects the performance of web servers. in four ways: no TCPDump running, normal TCPDump,
I1l. EVALUATION quieter TCPDump, and TCPDump writing captured packets
to disk. We have a total of eight settings, two of which

In this section we present the experimental results olbdaine

when running the packet capturing tool under various a re repeats (no TCPDump and co-locate is the same as no

lication scenarios. We will first discuss the set-up of o rCPDump and do not co-locate). For each setting we use
P) P HTTP_LOAD on two different clients, where each client set

experiments and the metrics we set out to collect; then wle w ;
xP . o 'he HTTP_LOAD concurrency to 15, to fetch continuously
discuss the results of the experiments and various infegen

drawn from them. rom the server fqr _flv_e m|nqtes; metrics are col!ected every
five seconds to minimize its impact on the experiment.
A. Experimental Set-up

To observe the effects of packet capturing on applicatiorf$, Web Servers
we deployed two web servers and collected various perfor—Figure 1 and Figure 2 show the CPU and bandwidth

mance metrics. The web servers used are Apache versmm - ; -

, . : zation for one run of the experiment, when running the
2.2.17 with V_/orker MPM [6] and Nginx version 0.8.54 [7]; theI—|'I'_TP_LOAD to retrieve files from the web servers.
kernel used is 2.6.35.11. We choose to use Apache because l'jpon first glance, we note that the behavior of Apache

is rated the most-used web server according to the Iatam;surand Nginx are visibly different, with Apache more prone

,t\le .':etgi‘;tsc(::eggéa&(fg1;;1?;3?2(? \rltven'tlsn?)rfg]ain:\,hrllltztﬁ) CPU fluctuation, while Nginx is more stable in CPU
ginx | u use ecture 1s 1u ¥ usage. This could be attributed to the fact that Apache’s
different from Apache.

. : . . method of scaling with demand results in much more context
The Apache architecture offers various Multl—ProcessmSgN. . S

e itches between the various worker threads, resultingén t
Modules (MPM) as a way to scale the web server with increas- rformance fluctuation. On the other hand. Nainx is usin
ing user demand. These MPMs are either muIti—processgS, ' ' NG g

1The way in which the packet is copied is that an internal $tmeg sk buf, 2We choose this model based on the scalability and smaller anem
that holds information regarding the data packet is cofged.only the fields footprint than pure process-based module
are copied — the packet data itself is referred by pointethénduplicate and ~ 3We also consulted the documentation on the popular prefarétule and
the original structure. it works in similar manner.

Apache’s CPU Utilization TCPDump's CPU Utilization Apache’s CPU Utilization TCPDump’s CPU Utilization

CPU Utilization (%) .
cPU Utlhzxatlon (%))
CPU Utihzation:(%) .
CPU Utihzation:(%)

0 E) E) C) o)) E] 0
Time Time Time

* Time
(a) CPU Utilization For Apache and TCPDump When Pinned Téelbght (b) CPU Utilization For Apache and TCPDump When Pinned To &am
CPU Core CPU Core

Apache’s Bandwidth Utilization Apache’s Bandwidth Utilization
T T

Bandwidth (Mbps)
Bandwidth (Mbps)

! B T\Jr:\e T\Jr:\e
(c) Bandwidth Utilization When Apache and TCPDump Are Puhri®
Different (left) Or The Same CPU Core (right)

Fig. 1: Apache Results

Nginx's CPU Utilization TCPDump’s CPU Utilization Nginx's CPU Utilization TCPDump'’s CPU Utilization
T

12 120 120

100

8

g, 8
CPU Utilization (%)
g 8

CPU Utilization (%)
CPU Utilization (%)
CPU Utilization (%)

o 1 El) E) © o 0 El El w o 1 El El w
Time Time Time Time

(a) CPU Utilization For Nginx and TCPDump When Pinned To &xiént (b) CPU Utilization For Nginx and TCPDump When Pinned To Same
CPU Core CPU Core

Nginx's Bandwidth Utilization Nginx's Bandwidth Utilization

Bandwidth (Mbps)

o o
o 0 E)) E) @ o 0 E)
Time

(c) Bandwidth Utilization When Nginx and TCPDump Are Pinn&d
Different (left) Or The Same CPU Core (right)

)
Time

Fig. 2: Nginx Results

much less number of processes, and is able to serve requé&stsnaintain scalability, the worker MPM in Apache has a
without getting constantly interrupted. parent process that monitors and distributes incoming.load
The parent process spawns a number of child process that

With the web server and TCPDump pinned to differenfctually serve the request, with the maximum number of child
CPU core, both processes are shown to take up significpbcesses constrained by the ServerLimit directive (defau
amount of CPU resource. In both types of web servers, 116, which is our setting). The kernel scheduling alganith
web server process takes up nearly one hundred percent of\{g|d then try to equally distribute the available CPU reseu
process while the TCPDump process also consumes significgni|| active process, majority of which belongs to Apache. O
CPU resource. When the server and TCPDump process @€ other hand, Nginx and TCPDump predictably shares the
bound to the same CPU core, the Apache server seemsciSy resource equally, due to the fact that only one Nginx
be holding more share of the CPU resource while Nginxocess is actively serving incoming requests. This resast
predictably shares the resource equally with TCPDump. §ynificant implication to the efficiency of the web servedan
fact, TCPDump has almost no access to the CPU, usiffcket capturing process. To ensure capturing process has
only a few percent of the CPU resource at any given timgecess to enough CPU to process the captured packet, itishoul
This phenomenon can be explained by understanding §)& scheduled on a separate core. If the capturing process is
method in which Apache scales with increasing user demand.

to be co-located with the web server, care must be takeonsiderably lower; while Nginx consumes much less CPU but
to understand the structure and behavior of the web serveais similar performance degradation as Apache. Howevsr it i
to ensure the capturing process also has access to the QiRdeniable that the presence of TCPDump has negative per-
resource. It is interesting to also note that, in some cdses formance impacts to the web servers, so care should be taken
recorded CPU utilization is over one hundred percent. Thighen running packet capturing process such as TCPDump,
is impossible because we confine the processes to a sirggeto ensure the performance impact to the web servers is
core, so the maximum possible is one hundred percent. Aftamimal. In addition, when TCPDump has equal opportunity
inspecting the source code of the tool we used to collect ttecontend for the CPU resource it does consume a non-trivial
CPU utilization, we noticed the tool reads two pseudo-files amount, and this has performance impact for admins looking
calculate the CPU utilization for a process, and the two seath consolidate different types of task onto a single machine
are not atomic. We believe that this behavior, in additiotht® For tasks that are CPU-bound, consolidating it with machine
CPU collection process running on another thread, means thanning packet capturing processes could elongate the task
there is a potential race condition, and the calculationccba completion time as well as diminishing the number of packets
slightly off. However, we note that despite the observedrerr captured.

the general trend is still significant enough for us to make th

above observations. IV. RELATED WORKS

Next we look at the bandwidth utilization result. For Nginx
the achieved bandwidth utilization is lower in the case when For evaluation of packet capturing tools, the closest works
TCPDump is running and co-locating with the web server. Of this paper are those that either explicitly evaluate pack
the other hand, the bandwidth utilization for apache is abotaPturing performance or attempts to improve the packet
the same as before. Comparing Figure 1c and Figure 2c waipturing performance. This is because in both types of work
Figure 1b, Figure 2b, the difference in bandwidth usage @ evaluation of the various aspects of packet capturinig too
correlated with the difference in CPU usage: a higher CPgych as CPU utilization and packets captured are usually
usage corresponding to higher bandwidth utilization, aice v Presented. Below we briefly describe both types of work.
versa; however the variability in the bandwidth/CPU utitipn ~ Deri [11] has suggested that the packet capturing process
are different, as the bandwidth utilization remains moablet is inefficient due to overhead involved in copying the packet
than CPU utilization. The work proposes a new socket type, RING, in which

While these metrics shed some light on the resource cdhe packet can be copied directly from the device driver
sumption and possible performance of the system, they Bdffer to user-accessible memory, drastically reducingorgy
not explicitly tell us the performance that users can expeéllocation and copying operations. A later work improved
To gain such an insight, we scrape the reports generatétbn PERING by proposing a new architecture in which
by HTTP_LOAD at each client machine at the end of thénulti-core processor can be utilized to increase the madngo
experiments. Figure 3 shows the aggregate number of fetchapability of the system [13]. In both of these works, Deri et
per second that are observed from all the clients. We note tigh discovered that the capturing process do not handle high
the baseline experiment (i.e., TCPDump is not running) shoaffic volume well due to the memory operations from device
the performance of Apache and Nginx is quite good. With ttdiver to kernel and from kernel to user level, as well as sub-
presence of TCPDump, the performance of the web sen@atimal utilization of resource available at device andnlegr
varies depending on the co-location. When TCPDump is niével.
co-located with the server process, TCPDump seems to dein [14], [15], the authors investigate the performance of
crease the average performance of Apache more significafticket capturing tools in various software and hardware pla
(up to 10%). However, when TCPDump co-locates with tHe@rm. The metrics investigated in these works are the packet
server process on the same core, the result is more dramatéptured [14], [15], with [14] having some emphasis on the
Correlating the results in Figure 3 with Figure 1b and FiguréPU utilization and [15] focusing on the percentage of pteke
2b, we can see that the CPU share TCPDump has obtainedaptured. Both works are important because they evaluate
directly proportional to the decrease in the average fatglee the performance of packet capturing tools using common
second achievable. The significant performance degradatiglatforms, so the valid conclusions can be drawn regarding
for the case where TCPDump and Nginx are on same coréhe hardware or software stacks involved in packet capgjurin
but little performance degradation when on different cores Our paper differs from these works in that we do not
suggests that CPU utilization could be a major source of teenphasize on the performance of the packet capturing tabl, b
web servers’ performance degradation. whether the packet capturing tool affects existing appbos,

In summary, the experiments carried out in this sectiand if so to what degree. Even though the hardware used to
implies that CPU utilization can tell us that performancbost the capturing process and web server is multi-core, we
degradation has occurred, but performance degradation camy utilize one core for either the web server or the packet
still occur even if CPU utilization looks normal. In the caseapturing process. This is so we could monitor the effect of
for Apache, even though it dominates the CPU when coe-locating the two processes, and have shown that coidocat
located with TCPDump, the fetches per second achievablecauses dramatic performance degradation to the web servers

Apache Performance
4100

No TCPDump ===

TCPDump Normal &zwzzme

TCPDump Quiet memses
TCP Write To Disk

4000

+

{,

3900 —
3800 - —

3700

Fetches/Sec
Fetches/Sec

3600 [

3500

|
|
|
|
|
|
|
|
|

3400

% s,
7&)
% o)
(9 e} 0, %
%

(a) Apache Server's Performance

Nginx Performance
7500

No TCPDump ===

TCPDump Normal &zwzzee
TCPDump Quiet

TCP Write To Disk

.

7000 [

6500 [q

6000 [q

5500 - —

5000 - —

4500 —

4000 et 7

3500

9, &
”%,@ %,
%, Y
©

%

(b) Nginx Web Server’s Performance

Fig. 3: Web server performance in fetches/second averaged2d runs, with 95% confidence interval shown

V. CONCLUSIONAND FUTURE WORKS

In this paper we examine the performance of web serverg)
in the presence of packet capturing process. We find that CPU
sharing is directly proportional to the performance degtiadh
experienced by the web server, and separating the two pro-
cesses onto different cores still has some performancecimpa
on the web server. 31

This work is a good start, but more environments can be
considered:

« Serving larger web pages We need to repeat the

experiments for the case when web servers are servin
larger web pages. This would make the web server mo@

New York, NY, USA: ACM, 2009, pp. 229-240. [Online]. Availlh
http://doi.acm.org/10.1145/1658939.1658966

X. Chen, M. Zhang, Z. M. Mao, and P. Bahl, “Automating netk
application dependency discovery: experiences, linoitati and new
solutions,” inProceedings of the 8th USENIX conference on Operating
systems design and implementation, ser. OSDI'08. Berkeley, CA,
USA: USENIX Association, 2008, pp. 117-130. [Online]. Ashie:
http://portal.acm.org/citation.cfm?id=1855741.18567

P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz
and M. Zhang, “Towards highly reliable enterprise netwostvices
via inference of multi-level dependencies,” iRroceedings of the
2007 conference on Applications, technologies, architectures, and
protocols for computer communications, ser. SIGCOMM '07. New
York, NY, USA: ACM, 2007, pp. 13-24. [Online]. Available:
http://doi.acm.org/10.1145/1282380.1282383

G. Insolvibile, “Inside the Linux Packet Filter.” [Omig]. Available:
http://www.linuxjournal.com/article/4852

I/0 bound, and having the capturing process write to disks] ——, “Inside the Linux Packet Filter, Part 11" [Online]Available:
should create another venue for resource contention. http://iwww.linuxjournal.com/article/5617
] Apache, “Apache Software Foundation.” [Online]. Awdile:

« Serving dynamic pagesIn this paper we have looked [

http://www.apache.org/

at the case when web servers host static pages, dynani¢ Nginx, “Nginx.” [Online]. Available: http://wiki.nghx.org/Main

page would put more CPU demand on the server, and tHél
performance impact of such needs to be investigated.

« Caching pages When serving static pages, the webjg
page can be cached in memory, thus avoiding the disk
completely. More experiments should be performed
investigate the effect of such a strategy.

« Monitoring technology: In this work we do not take
advantage of the prototypes made available from priﬂrZ]
research works (e.g., PRING), other techniques (e.g.,
sampling), or other types of packet capturing tools (e.d13]
dumpcap), future work will investigate these varieties.

[11]

We believe this work is the first step towards thoroughly
understanding the behavior of co-locating capturing pssc

] D. Kegel,

NetCraft, “February 2011 Web Server Survey,” 2011. [©el.
Available: http://news.netcraft.com/archives/20111G2february-2011-
web-server-survey.html

I. F. Haddad, “Apache 2.0: The Internals of the New, Imad.”
[Online]. Available: http://www.linuxjournal.com/adie/4559
“The C10K problem,” 2006. [Online].
http://www.kegel.com/c10k.html

L. Deri, N. S. P. A, V. D. B. Km, and L. L. Figuretta, “Impwving
passive packet capture: Beyond device polling,”linProceedings of
SANE 2004, 2004.

A. Laboratories, “httpload - Multiprocessing HTTP Test Client.”
[Online]. Available: http://www.acme.com/softwarefhttoad/

F. Fusco and L. Deri, “High speed network traffic analysi
with commodity multi-core systems,” irProceedings of the 10th
annual conference on Internet measurement, ser. IMC '10. New
York, NY, USA: ACM, 2010, pp. 218-224. [Online]. Available:
http://doi.acm.org/10.1145/1879141.1879169

Availal

e[14] F. Schneider and J. Wallerich, “Performance evaluatiof packet

and web servers. From these experiments, we can understandcapturing systems for high-speed networks, Piroceedings of the 2005
how to best capture packets when the capturing process has ACM conference on Emerging network experiment and technology,

to be co-located with the on-line service, and whether new
techniques can be applied to perform network measuremens

REFERENCES

[1] L. Popa, B.-G. Chun, I. Stoica, J. Chandrashekar, and HKit, T
“Macroscope: end-point approach to networked applicatiependency
discovery,” in Proceedings of the 5th international conference on
Emerging networking experiments and technologies, ser. CONEXT '09.

ser. CONEXT '05. New York, NY, USA: ACM, 2005, pp. 284-285.
[Online]. Available: http://doi.acm.org/10.1145/102891095982

L. Braun, A. Didebulidze, N. Kammenhuber, and G. Cateomparing
and improving current packet capturing solutions basedamncodity
hardware,” inProceedings of the 10th annual conference on Internet
measurement, ser. IMC '10. New York, NY, USA: ACM, 2010, pp. 206—
217. [Online]. Available: http://doi.acm.org/10.11487D141.1879168

