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Before 
Response 

Polymer Foams provide thermal, mechanical, & 
electrical  isolation in engineered systems 

• Systems safety analyses use numerical models to predict heat transfer 
to encapsulated objects and pressurization/failure of sealed containers 

• In inert environments, the incident heat flux to a system can cause 
foams to decompose 

• Evolved gases can cause pressurization and failure of sealed 
containers  

• Container pressurization involves complex physics 
– Liquefaction/flow introduces convective heat transfer 
– Erosive channeling by hot gases exacerbates liquefaction/flow 
– Pressure depends on rate of gas generation, which depends on temperature 

history  (Heat transfer through foam is very more important) 
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Small container heat transfer and 
pressurization experiments 

Develop model based on existing 
radiation-conduction code 

( ) ( )i
i

ie HrTkk
t
Tc D-+Ñ+·Ñ=

¶
¶ å rr

Evaluate models: compare with results 
from container experiments 

Material properties from independent 
laboratory experiments 

Coordinated experiments & analyses are needed to 
develop models for systems safety analyses 
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Reaction rate expressions for ri & ng 

Determine needed experiments 
and model/code development 
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Sample container 
•Sleeve 321 SS tubing 

•8.89-cm OD, 5.40 cm long 
•0.508-mm wall thickness 

•End plates: 0.635-cm thick 304 SS 
•Laser welded to Sleeve 

Foam 

End Plate 

Internal Mass 

Vent 

Sleeve 

Heated End Plate 

TDI-polyester-polyol, rigid, closed cell, polyurethane foam (160 - 720 kg/m3) 

Small container heat transfer & pressurization 
exp’s. provide physical insight and T & P data 

Q 

FOAM 

G 

OBJECT 

Upright – 0o Q 

FOAM 

G 
OBJECT 

Inverted – 180o 



           5 

X-ray images showed liquefaction and flow occurring with 
lower density TDI-based polyurethane foam 

TDI-based foam, 160 kg/m3 

Bulk movement was away from the heat source 

Bulk movement was toward the heat source 
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Laboratory experiments provide material 
properties* 

• Decomposition rates and  evolved gas/vapor products 
– TGA-FTIR  and Pyrolysis-GC-FTIR 

• Specific heat and enthalpy changes 
–  DSC and simultaneous DSC-TGA 

• *Previous joint work between SNL and VNIIA determined 
mechanisms and kinetics for decomposition of pertinent 
polyurethane and epoxy materials.** 

         
 

• Thermal conductivity (k) values were taken from literature 
• Effective radiative conductivity (ke ) was determined  using an 

integrating sphere apparatus to measure reflectance and 
transmittance through un-reacted foam 

• Scattering (σs) and absorption (a) coefficients were calculated  
using an analytical two-flux representation of radiative transfer 
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**V. S. Sirenko, R. A. Koslovskiy, E. I. Popova, S. G. Mulyashow, and K. L. Erickson,  “Use of Multiple Experimental Techniques 
to Study Thermal Decomposition of Polyurethane Foam,” Proceedings of SAMPE 2007, Baltimore, MD, June 2007. 
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Energy Balance  
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Diffusive approximation: 
Optically thick material ( )
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Pressure - Assume 
• Gradients relax quickly 
• Ideal gas law 
• All decomp. prod.     
• Gas occupies all free volume 
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Decomposition reactions / rates (ri ) 
Polymer = w1A1 + w2A2 +  · · · · 

Ai                ξi1Bi1 + ξi2Bi2 + · · · · 
ri 

Modeling approach was based on diffusive 
approximation for radiant heat transfer 
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For both RPU foams, time to vent pressure (2.4 MPa) 
decreased as bulk density of initial foam increased 
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Foam density and structure determine physical 
behavior during thermal decomposition 

• Rate of container pressurization depends on physical behavior 
• Low-density (160 kg/m3) TDI based-foam 

– Significant convective heat transfer was caused by 
• Liquefaction and flow 
• Penetration and erosive channeling by hot gases 

• In pressure range previously studied (ambient to 2.4 MPa), 
magnitude of effects decreased as foam density increased 

• In recent work (ambient to 4.5 MPa), difference between upright 
and inverted samples increased significantly above ~2.5 Mpa 

• Sources of Model Form Error (MFE) 
– Convective heat transfer (gas permeation in pores structure and 

liquefaction and flow) causes MFE in current model 
• Heat transfer to foam and, therefore, the amount of foam that has 

decomposed as a function of time  
• Volume that is available to the gas phase as a function of time  

– A related MFE is the distribution of organic decomposition products 
between condensed and vapor phases  
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Future work to reduce model form error 
and include additional physics 

• Continue collaboration with VNIIA building on previous thermal 
decomposition and current modeling work 

– Evaluate and develop advanced computational tools for system-integrated safety 
analyses requiring approximations to complex phenomena.  

– Continued computational modeling with best available code capabilities at respective 
labs 

– Explore additional experimental techniques to provide results from variety of 
physical and thermal boundary conditions and sample geometries 
 

• Liquefaction and flow of decomposition 
products 
– Significantly impacts heat transfer to foam / 

rate of gas generation and container 
pressurization 

• Gas penetration into pores and erosive 
channeling by hot gas-phase 
decomposition products 

• Vapor-liquid distribution of organic 
decomposition products 
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Backup Slides 
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For both RPU foams, time to vent pressure (2.4 MPa) 
decreased as bulk density of initial foam increased 

12 
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Path Forward 

• Estimating partial pressure 
of volatile organic 
decomposition products 

• Liquefaction/flow of 
decomposition products 
– Significantly impacts heat 

transfer to foam / rate of gas 
generation and container 
pressurization 

• Erosive channeling by hot 
gas-phase decomposition  
products 
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Postmortem examination of samples also indicates 
different physical behavior (density = 160 kg/m3) 

Upright 

Inverted 

TDI-Based PMDI-based 
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Plate temperature: 1173 K 
Foam density = 160 to 720 kg/m3 

Sample 
Unit 

Duraboard Insulation 

Heat Lamp Array 

x-ray: 57o 

Larger-scale experiments examined heat transfer 
to encapsulated objects & pressurization 
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Sample container 
•Sleeve 321 SS tubing 

•8.89-cm OD, 5.40 cm long 
•0.508-mm wall thickness 

•End plates: 0.635-cm thick 304 SS 
•Laser welded to Sleeve 

Foam 

End Plate 

Internal Mass 

Vent 

Sleeve 

Heated End Plate 

Rigid, closed cell, polyurethane foams 
•TDI-polyester-polyol  

(160 - 720 kg/m3) 
•PMDI-polyether-polyol 

•160 & 320 kg/m3 

Experiments were done using foam-in-can 
(FIC) configuration 
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Initial Foam 
 

Reaction Decomposition Products 
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Multiple techniques were used to examine decomposition 
mechanisms and obtain rate data 

Decomposition rates and  evolved gas/vapor products 
•TGA-FTIR  
•Pyrolysis-GC-FTIR 

Postmortem condensed-phase analyses 
•FTIR - ATR 

Specific heat and enthalpy changes 
• DSC simultaneous DSC-TGA 
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Values for ρ, c, k, and ke were obtained from 
available literature or independent exp’s 

• Density was determined by measuring/weighing 
samples 

• Heat capacity (c ) values were taken from available 
literature and were consistent with DSC results 

• Thermal conductivity (k ) values were taken from 
available literature 

• Effective radiative conductivity ke was determined  
using an integrating sphere apparatus to measure 
reflectance and transmittance through un-reacted foam 

• Scattering (σs) and absorption (a) coefficients were 
calculated  using an analytical two-flux representation 
of radiative transfer 
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Current simulations do not account for 
convective heat transfer by gases or liquids 

*MFE is Model Form Error 
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Difference between experimental and modeling 
results is less with higher density TDI-based foams 
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Similar results were obtained for PMDI-based foams 


