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What Is Random Projection?

Let P be a set of k points in Rp, let Φ ∈ L (Rp, Rq) with q < p.

Formally, random projection establishes conditions when the inequality

(1− ε)‖u − v‖2
2 ≤ ‖Φ(u − v)‖2

2 ≤ (1 + ε)‖u − v‖2
2

holds for all x and y in P.

Why random projection?

We will see that there are classes of random operators Φ for which the
above inequality holds with high probability.
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An Example Application of Random Projection

Task: Estimate pairwise distances of 5 points in R2.

We can halve the amount of data that needs processing if we can
project the data from R2 to R1 and assess the pairwise distances in
that space. In order to accomplish this, we project the data onto a
random line in R2.

We only consider the pairwise distances of the projected data in R1.
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Two Important Theorems for Random Projection:
1. Existence of Projection Operators

Theorem (Johnson-Lindenstrauss, 1984)

Let ε ∈ (0, 1) be given. For every set P consisting of k points in Rp, if q
is a positive integer such that q > O(ε−2 log(k)), there exists a Lipschitz
mapping Φ : Rp → Rq such that

(1− ε)‖u − v‖2
2 ≤ ‖Φ(u)− Φ(v)‖2

2 ≤ (1 + ε)‖u − v‖2
2

for all u, v ∈ P.

In other words, a well-behaved mapping exists so that the projected
pairwise distances between points remain bounded by their original
pairwise distances.
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Two Important Theorems for Random Projection:
2. Construction of Random Projection Operators

Theorem (Corollary of Achlioptas, 2001, applied to pair {x , 0})
Given ε, β > 0, let

q0 =
4 + 2β

ε2/2− ε3/3
log 2.

For integers p > q ≥ q0, let Φ ∈ Rq×p be a random matrix from either
one of the two probability distributions:

Φij =
1
√

q
×

{
+1 with probability 1/2
−1 ” 1/2,

Φij =

√
3

√
q
×

 +1 with probability 1/6
0 ” 2/3
−1 ” 1/6.

With probability at least 1− 2−β , for all x ∈ Rp

(1− ε)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + ε)‖x‖2
2.
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Properties of the Construction of
Random Projection Operators

Achlioptas’ random projection theorem gives sufficient
(conservative) conditions on the dimension q of the projected space

There is a large body of related work on the reduced isometry
property (RIP) and its use in compressed sensing.

See Blanchard, Cartis, Tanner:
Compressed Sensing: How Sharp is the Restricted Isometry Property?

SIAM Review, Vol 53, No 1, pp. 105-125.

In the context of optimization (parameter estimation) we focus on
the application of the inequality

(1− ε)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + ε)‖x‖2
2

and borrow the construction procedures and probability bounds for
the operator Φ from random projection.

Constructions and bounds for Φ using the RIP may apply as well;
no connection between our work and compressed sensing otherwise.
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Generalization to a Finite Product of Hilbert Spaces

In order to fix notation, we denote a finite product of some Hilbert space
Y by Y p = Y × · · · × Y︸ ︷︷ ︸

p

. Then, we define the 2-norm of y in Y p as

‖y‖2 =

√√√√ p∑
i=1

‖yi‖2.

Note, the underlying Hilbert space is general, e.g. L2(Ω) or H1(Ω) for
some domain Ω are fine.

Next we define a projection operator on the product space,
Φ⊗ I ∈ L (Y p,Y q), so that Φ ∈ Rq×p and

Φ⊗ I =

Φ11I . . . Φ1pI
...

. . .
...

Φq1I . . . ΦqpI

 .

,
J. Young Application of Random Projection to Seismic Inversion 9



Generalization to a Finite Product of Hilbert Spaces

Theorem (Young and Ridzal, 2011)

Given ε, β > 0, let

q0 =
4 + 2β

ε2/2− ε3/3
log 2.

For integers p > q ≥ q0, let Φ ∈ Rq×p be a random matrix from either
one of the two probability distributions:

Φij =
1
√

q
×

{
+1 with probability 1/2
−1 ” 1/2,

Φij =

√
3

√
q
×

 +1 with probability 1/6
0 ” 2/3
−1 ” 1/6.

Let Y denote a Hilbert space where Y p denotes the p-times Cartesian
product. With probability at least 1− 2−β , for all y ∈ Y p

(1− ε)‖y‖2
2 ≤ ‖(Φ⊗ I )y‖2

2 ≤ (1 + ε)‖y‖2
2.
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Application of Random Projection to
Parameter Estimation

Let A ∈ L (U,L (Y )) and B ∈ L (Y ) be two differential operators so
that A(u) + B is invertible for some set of parameters u ∈ U.
A typically represents a spatial differential operator while B is a temporal
differential operator. For example, for the wave equation, we have that

A(u) = −∇ · (u∇y) B = ytt .

We define the block operator Ap(u) ∈ L (U,L (Y p)) where

Ap(u) =

A(u)
. . .

A(u)

 ,

and we define Bp ∈ L (Y p) analogously.
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Application of Random Projection to
Parameter Estimation

Consider the parameter estimation problem

arg min
u∈U,y∈Y p

{
1

2

p∑
i=1

‖yi − di‖2
2 : (A(u) + B)yi = bi , i = 1, . . . , p

}
.

Rewrite in block form as

arg min
u∈U,y∈Y p

{
1

2
‖y − d‖2

2 : (Ap(u) + Bp)y = b

}
.

This is known as the full-space formulation.

In the reduced-space formulation, we solve

arg min
u∈U

{
1

2
‖(Ap(u) + Bp)

−1b − d‖2
2

}
.
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Application of Random Projection to
Parameter Estimation

A direct application of random projection to the reduced objective
function from parameter estimation gives

(1− ε)‖(Ap(u) + Bp)
−1b − d‖2

2 ≤

‖(Φ⊗ I )
(
(Ap(u) + Bp)

−1b − d
)
‖2

2 ≤

(1 + ε)‖(Ap(u) + Bp)
−1b − d‖2

2

This tells us that the objective value for the projected problem can be
bounded tightly by the objective value for the original problem.

Further, we have that

‖(Φ⊗I )
(
(Ap(u) + Bp)

−1b − d
)
‖2

2 = ‖(Aq(u)+Bq)
−1(Φ⊗I )b−(Φ⊗I )d‖2

2

This tells us that we require

q PDE solves in the projected problem rather than p.
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Application of Random Projection to
Parameter Estimation

Theorem (Young and Ridzal, 2011)

Given β > 0 and ε ∈ (0, 1) choose q and Φ ∈ Rq×p according to
Achlioptas. Let us define the original and projected objective functions as
J : U → R and JΦ : U → R, respectively, where

J(u) =
1

2
‖(Ap(u) + Bp)

−1b − d‖2
2

JΦ(u) =
1

2
‖(Aq(u) + Bq)

−1(Φ⊗ I )b − (Φ⊗ I )d‖2
2 .

In addition, let u, s ∈ U be such that JΦ(u + s) < CJΦ(u), where
C = (1− ε)/(1 + ε).
Then, we have that J(u + s) < J(u) with probability 1− 2−β.

This tells us that if an optimization algorithm reduces the projected
objective value quickly enough, we can guarantee monotonic decrease in
the original objective value.
This gives a mathematical foundation for random phase encoding from
Krebs, et. al. Fast full wave seismic inversion using encoded sources
Geophysics, Vol 74, No 6, pp. 177-188.
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Random Projection Operators

In our first experiment, we examine the bound

(1− ε)‖y‖2
2 ≤ ‖(Φ⊗ I )y‖2

2 ≤ (1 + ε)‖y‖2
2

on a 30× 30 triangular grid Ω where y ∈ L2(Ω). We use Achlioptas’
binary operator

Φij =
1
√

q
×

{
+1 with probability 1/2
−1 ” 1/2
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‖(Φ⊗ I)y‖2
2/‖y‖2

2
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Application to the Acoustic Wave Equation

In the following set of examples, we solve the problem

arg min
(p,v)∈Y Ns ,(ρ,K)∈U2

{
1

2
‖Ψ(p, v)− (p, v)true‖2 : (ANs (ρ,K ) + BNs )(p, v) = s

}
where

p ≡ Pressure
v ≡ Velocity
ρ ≡ Density
K ≡ Bulk Modulus
(A(ρ,K ) + B)(p, v) ≡ First order decomposition of the acoustic wave equation
Ns ≡ Number of sources
s ≡ Source that is Gaussian in space and a Ricker wavelet in time
Ψ ≡ Projection for receivers
(p, v)true ≡ Pressures and velocities generated from Marmousi2
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True and Initial Starting Models

True solution:

Initial solution for inversion:
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Steepest Descent, 1 Encoded Experiment, 20, 40, 80, 160 Iter
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Steepest Descent, 2 Encoded Experiments, 20, 40, 80, 160 Iter
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Steepest Descent, 4 Encoded Experiments, 20, 40, 80, 160 Iter
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Gauss-Newton, 1 Encoded Experiment, 20, 40, 80 Iter
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Gauss-Newton, 2 Encoded Experiments, 20, 40, 80 Iter
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Gauss-Newton, 4 Encoded Experiments, 20, 40, 80 Iter
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Steepest Descent, 20 Iter, 1, 2, 4 Encoded Exp.
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Steepest Descent, 40 Iter, 1, 2, 4 Encoded Exp.

,
J. Young Application of Random Projection to Seismic Inversion 28



Steepest Descent, 80 Iter, 1, 2, 4 Encoded Exp.
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Steepest Descent, 160 Iter, 1, 2, 4 Encoded Exp.
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Gauss-Newton, 20 Iter, 1, 2, 4 Encoded Exp.
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Gauss-Newton, 40 Iter, 1, 2, 4 Encoded Exp.
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Gauss-Newton, 80 Iter, 1, 2, 4 Encoded Exp.
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Model Fit in Vp Per Iteration
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Model Fit in Vp Per Extra PDE Solve
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Conclusion

Random projection extends to a finite product of Hilbert spaces.

Using random projection, we can reduce the number of PDE solves
required for a reduced-space approach to parameter estimation.

Random projection provides a mathematical foundation for random
phase encoding.

Computational results verify the method works on the acoustic wave
equation.

Future work: Experimentation with different random encoding
strategies.
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