



# Technology Development and Field Trials of EGS Drilling Systems

June 6-10, 2011

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

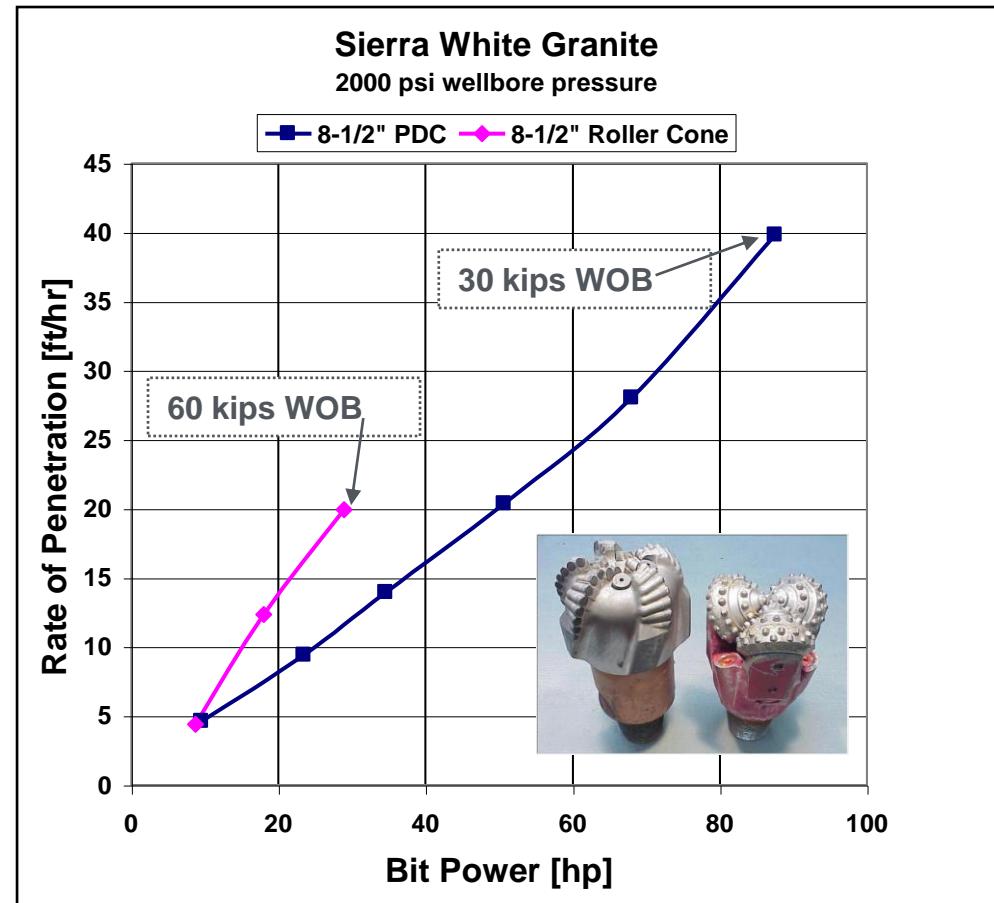
**David W. Raymond**  
**Sandia National Laboratories**

ARRA Funded R&D

- Summary
  - Conventional geothermal drilling is hampered by challenges of hard/abrasive/fractured rock, high temperatures and loss of circulated drilling fluids to the formation
  - Apply mature/proven rock penetration systems used in Oil &Gas/Minerals industry to improve geothermal drilling technology
- Timeline
  - Project start date: Oct 2010 (startup activities in preceding 6 months)
  - Project end date: Sept 2012 (for ARRA-funded activities)
  - Percent complete: 25%
- Budget
  - Total project funding: \$1,414,065
  - DOE share: \$1,336,565
  - awardee share (cost share amount): \$77,500
  - total spent: 20%

- Objective
  - Development of fit-for-purpose EGS drilling solutions for geothermal exploration and production drilling
    - Hard/abrasive/fractured rock, high temperature, deep drilling
- Purpose
  - Improved drilling technologies that reduce costs by drilling faster with improved life, capabilities for improved hard stringer penetration, and are appropriate for deep drilling applications
  - Improved support for economic development of geothermal resources
    - Increase in the number of tools / options available for geothermal well construction
    - Service companies engaged in geothermal drilling market
    - Broad experience base to promote continued geothermal well construction

- Challenges/Barriers addressed on this project
  - Risk Reduction
  - Limitations of Laboratory Testing
  - Service Company Investment
  - Drilling Industry Acceptance
- Impact/Performance
  - Potentially reduce geothermal drilling costs via improved ROP & increased bit life
    - Nominal baseline is sealed roller cone performance in hard abrasive rock (low ROP: 10-20 ft/hr, short life: 40 hrs)
    - PDC Bits / Pneumatic Hammers drill proportionally faster
  - Derive benefit from O&G/Minerals research in comparable domains
  - Catalyze industry via improved / economical deep hole access


# Scientific/Technical Approach

Fundamentally this will be accomplished by:

- Advanced Materials (synthetic diamond)
  - Increase rock/bit interfacial stress concentrations
  - Reduce abrasive wear mechanisms
- Energy Augmentation (percussive hammers)



Sandia percussive hammer test rig



Sandia data from laboratory testing in a 2000 psi wellbore

## Overall Approach

Three Phases over Three Years (ARRA Funding for two years only)

- Phase 1 - Preliminary field trials to demonstrate potential & highlight deficiencies (Yr 1: ARRA-funded)
- Phase 2 - Service company involvement in performance remediation and custom development (Yr 2: ARRA-funded)
- Phase 3 - Secondary field trials for verification & validation (Yr 3: Non-ARRA funded)
  - Demonstrate technology readiness for geothermal drilling
  - Verify design improvements realized in year two

## Highlights

- Direct partnership with geothermal operators/developers
- Service companies directly involved in development & testing

- Key Issues Currently Being Addressed
  - Formation Assessment
  - Well Profile & Drilling Plan
  - Test Plan Development
  - Review current product line offering for applicability and technology improvements
    - PDC Bit abrasion resistance / impact resistance
    - Percussive hammer high temperature operation
  - Field Drilling Testing Coordination
    - Data acquisition system development & integration
    - Daily drilling activities
    - Well logging

- Percussive Hammers / Key Issues
  - Potential temperature-sensitive components to be addressed
    - Valve
    - O-rings
    - Foot Valve
    - Check Valve
- PDC Bit / Key Issues
  - Thermally-Stable PDC Cutters
  - Cutting structure consistent with anticipated formation
  - Operating Conditions per Service Company recommendations
  - Down hole data collect for performance analysis & diagnostics

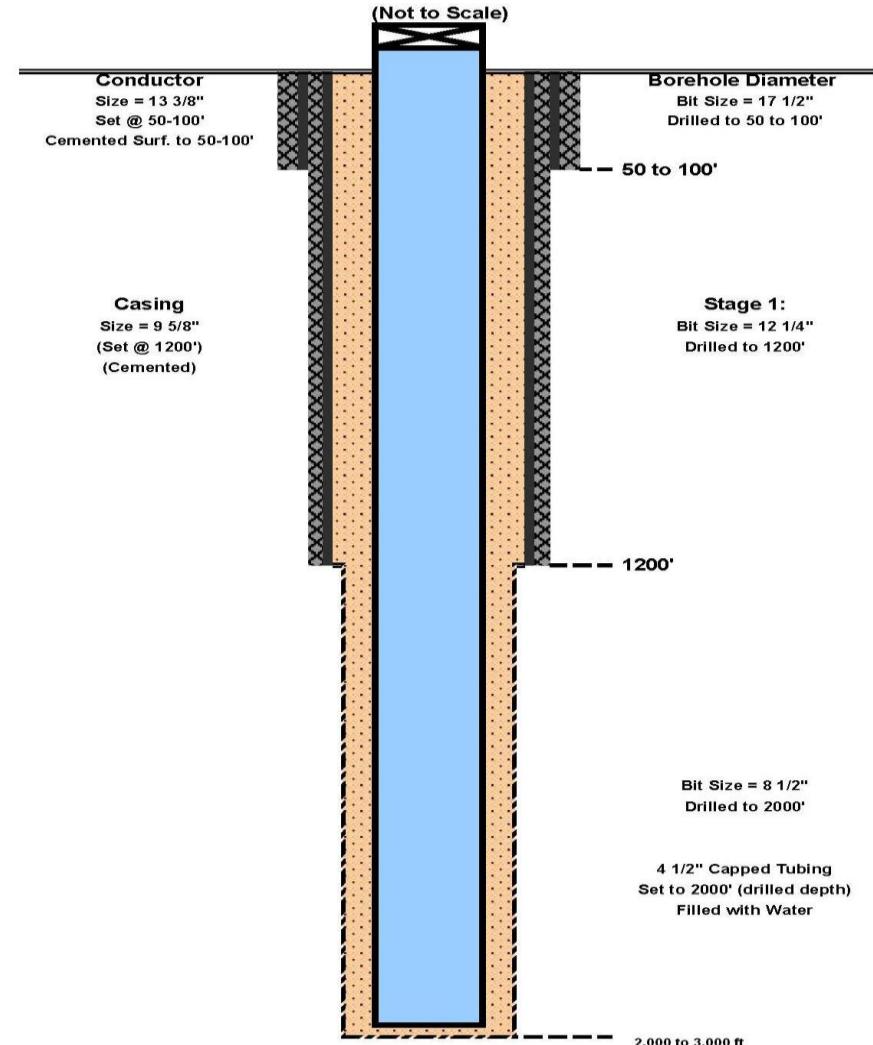
- Geothermal Developer/Drilling Company Identification
  - US Navy GPO has agreed to collaborate by providing wells of opportunity
  - MOU with Sandia/Navy (DOE/DOD) in place
  - Barbour Well, Inc.,
    - USN GPO drilling contractor
    - Will provide drill rig time, integration, and coordination with test plan
- Test Site/Well of Opportunity Identified
  - Chocolate Mountains Aerial Gunnery Range, CA
  - Two geophysical test holes planned
  - Investigate temperature field/hydrothermal alteration
  - Metamorphosed volcanic rocks anticipated




# Accomplishments, Results and Progress (continued)

- Major service companies now under contract
  - NOV Reed Hycalog, PDC Bit manufacturer
  - Atlas Copco, Percussive hammer manufacturer
  - Cost share contracts
    - Will provide internal R&D to foster development of appropriate product line




**Representative Fixed Cutter Bit per NOV Reed Hycalog:**  
7 bladed, heavy set bit with aggressivity limiters



Down hole data collect for  
performance analysis &  
diagnostics

# Accomplishments, Results and Progress (continued)

- Drilling Plan Coordination
  - Formation Assessment
  - Well Profile & Drilling Plan Developed
  - Test Plan Development underway
  - Service Company Product line under evaluation for down select
- Drilling Tests Pending
  - Scheduled for Summer 2011

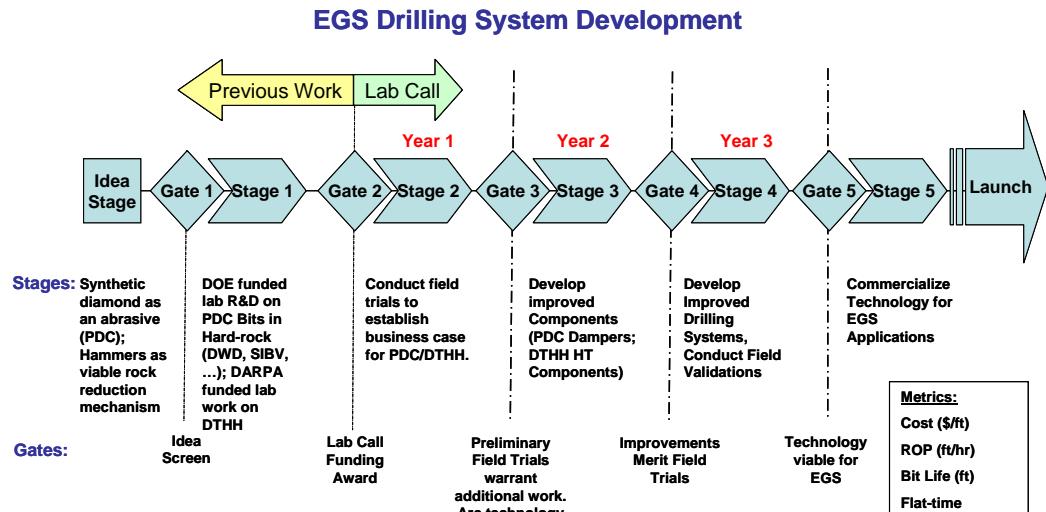


- Project on schedule (following re-scoping due to late start)
  - Work officially commenced in Sept 2010
  - Budget allocations proceeding per original plan
  - Schedule subject to integration with USN GPO drilling schedule

| WBS                               | Task | Subtask | Description                                                     | FY11 |    |    |      |   |   |      |   |   |      |   |   | FY12 |    |    |   |   |   |   |   |   |   |   |   | FY13 |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |
|-----------------------------------|------|---------|-----------------------------------------------------------------|------|----|----|------|---|---|------|---|---|------|---|---|------|----|----|---|---|---|---|---|---|---|---|---|------|----|----|---|---|---|---|---|---|---|---|---|--|--|--|--|--|--|--|--|--|
|                                   |      |         |                                                                 | 2010 |    |    | 2011 |   |   | 2012 |   |   | 2013 |   |   |      |    |    |   |   |   |   |   |   |   |   |   |      |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |
|                                   |      |         |                                                                 | 10   | 11 | 12 | 1    | 2 | 3 | 4    | 5 | 6 | 7    | 8 | 9 | 10   | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10   | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  |  |  |  |  |  |  |  |  |
| Project Management                | 1    | 1.1     | Report on First year results                                    |      |    |    |      |   |   |      |   |   |      |   |   |      |    |    |   |   |   |   |   |   |   |   |   |      |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |
|                                   |      | 1.2     | Review Feasibility of Developing EGS Drilling Systems           |      |    |    |      |   |   |      |   |   |      |   |   |      |    |    |   |   |   |   |   |   |   |   |   |      |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |
|                                   |      | 1.3     | Go/No-Go decision on year 2 funding                             |      |    |    |      |   |   |      |   |   |      |   |   |      |    |    |   |   |   |   |   |   |   |   |   |      |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |
|                                   |      | 1.4     | Report on Second year results                                   |      |    |    |      |   |   |      |   |   |      |   |   |      |    |    |   |   |   |   |   |   |   |   |   |      |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |
|                                   |      | 1.5     | Review impact of enabling technologies                          |      |    |    |      |   |   |      |   |   |      |   |   |      |    |    |   |   |   |   |   |   |   |   |   |      |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |
|                                   |      | 1.6     | Go/No-Go decision on year 3 funding                             |      |    |    |      |   |   |      |   |   |      |   |   |      |    |    |   |   |   |   |   |   |   |   |   |      |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |
|                                   |      | 1.7     | Final Report                                                    |      |    |    |      |   |   |      |   |   |      |   |   |      |    |    |   |   |   |   |   |   |   |   |   |      |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |
| Field Trials                      | 2    | 2.1     | Identify field test partner (USN GPO/Barbour)                   |      |    |    |      |   |   |      |   |   |      |   |   |      |    |    |   |   |   |   |   |   |   |   |   |      |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |
|                                   |      | 2.2     | Identify well of opportunity                                    |      |    |    |      |   |   |      |   |   |      |   |   |      |    |    |   |   |   |   |   |   |   |   |   |      |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |
|                                   |      | 2.3     | Develop well plan (diameters, depths, formations, temperatures) |      |    |    |      |   |   |      |   |   |      |   |   |      |    |    |   |   |   |   |   |   |   |   |   |      |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |
|                                   |      | 2.4     | Develop surface measurement system                              |      |    |    |      |   |   |      |   |   |      |   |   |      |    |    |   |   |   |   |   |   |   |   |   |      |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |
|                                   |      | 2.5     | Conduct First Generation Field Trials of EGS Drilling Systems   |      |    |    |      |   |   |      |   |   |      |   |   |      |    |    |   |   |   |   |   |   |   |   |   |      |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |
|                                   |      | 2.6     | Conduct Second Generation Field Trials of EGS Drilling Systems  |      |    |    |      |   |   |      |   |   |      |   |   |      |    |    |   |   |   |   |   |   |   |   |   |      |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |
| High-Temperature Pneumatic Hammer | 3    | 3.1     | Identify industry partner(s) (Atlas Copco)                      |      |    |    |      |   |   |      |   |   |      |   |   |      |    |    |   |   |   |   |   |   |   |   |   |      |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |
|                                   |      | 3.2     | Review designs                                                  |      |    |    |      |   |   |      |   |   |      |   |   |      |    |    |   |   |   |   |   |   |   |   |   |      |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |
|                                   |      | 3.3     | Modify designs as conceivable for first generation HT DTHH      |      |    |    |      |   |   |      |   |   |      |   |   |      |    |    |   |   |   |   |   |   |   |   |   |      |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |
|                                   |      | 3.4     | Fabricate HT DTHH                                               |      |    |    |      |   |   |      |   |   |      |   |   |      |    |    |   |   |   |   |   |   |   |   |   |      |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |
|                                   |      | 3.5     | Test in Sandia test rig                                         |      |    |    |      |   |   |      |   |   |      |   |   |      |    |    |   |   |   |   |   |   |   |   |   |      |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |
|                                   |      | 3.6     | Correct design deficiencies                                     |      |    |    |      |   |   |      |   |   |      |   |   |      |    |    |   |   |   |   |   |   |   |   |   |      |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |
|                                   |      | 3.7     | Review field trial test results                                 |      |    |    |      |   |   |      |   |   |      |   |   |      |    |    |   |   |   |   |   |   |   |   |   |      |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |
|                                   |      | 3.8     | Develop enabling technologies (ht seals, material coatings)     |      |    |    |      |   |   |      |   |   |      |   |   |      |    |    |   |   |   |   |   |   |   |   |   |      |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |
|                                   |      | 3.9     | Develop second generation HT DTHH                               |      |    |    |      |   |   |      |   |   |      |   |   |      |    |    |   |   |   |   |   |   |   |   |   |      |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |
| System-Engineered PDC Bits        | 4    | 4.1     | Identify industry partner(s) (Reed Hycalog)                     |      |    |    |      |   |   |      |   |   |      |   |   |      |    |    |   |   |   |   |   |   |   |   |   |      |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |
|                                   |      | 4.2     | Model Rig/Drillstring compliance                                |      |    |    |      |   |   |      |   |   |      |   |   |      |    |    |   |   |   |   |   |   |   |   |   |      |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |
|                                   |      | 4.3     | Specify BHA (bit cutting structure, damper, etc)                |      |    |    |      |   |   |      |   |   |      |   |   |      |    |    |   |   |   |   |   |   |   |   |   |      |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |
|                                   |      | 4.4     | Fabricate EGS PDC Bits                                          |      |    |    |      |   |   |      |   |   |      |   |   |      |    |    |   |   |   |   |   |   |   |   |   |      |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |
|                                   |      | 4.5     | Review field trial test results                                 |      |    |    |      |   |   |      |   |   |      |   |   |      |    |    |   |   |   |   |   |   |   |   |   |      |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |
|                                   |      | 4.6     | Develop Enabling technologies (dampers, modeling, etc)          |      |    |    |      |   |   |      |   |   |      |   |   |      |    |    |   |   |   |   |   |   |   |   |   |      |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |
|                                   |      | 4.7     | Develop system-engineered EGS PDC Bits                          |      |    |    |      |   |   |      |   |   |      |   |   |      |    |    |   |   |   |   |   |   |   |   |   |      |    |    |   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |

Generated data will include

- *Drilling performance data (ROP, Life) for various systems (PDC Bits, Hammers) in typical geothermal rock types (alluvial fill, metamorphosed volcanics, granitic basement rocks)*
- *Compatibility format for DOE Geothermal Data Repository being addressed*
- *A technical paper will be submitted to the Geothermal Resources Council (GRC) Transactions*


- Project Collaborators
  - Sandia National Laboratories
  - US Navy Geothermal Program Office ( USN GPO)
  - Barbour Well, Inc.
  - Atlas Copco Secoroc
  - NOV Reed Hycalog
- ARRA Impact
  - Employment opportunities created at Sandia, Atlas Copco & Reed Hycalog thru project funding (equivalent of 3.5 - 4 FTEs) in FY11/FY12
  - Future jobs will result thru expanding geothermal market within drilling service companies

## Deployment Strategy

- Facilitates involvement of service companies in future BHA specification, development, deployment & operation
- Ensures valid outcome in drilling technology development thru early involvement
- Project will follow Stage/Gate strategy illustrated

## Future Research

- Key activities for FY11
  - Project team collaborations
  - Drilling tests
  - Data analysis
- To completion (FY12)
  - Collaborate with service companies
  - Verify improvements in test fixtures
- Field testing (Yr 3/FY13)



- Rock reduction technology
  - mature for conventional geothermal drilling
  - present technology will inhibit commercially – viable development of EGS resources
- Improvements are necessary to access EGS resources
- O & G/Mineral drilling systems will prove beneficial (PDC Bits, Percussive Hammers) for improved drilling
  - Backed by significant R&D
  - Drilling comparable rocks/depths
- Demonstration project with follow-on technology developments will validate technologies for geothermal drilling

|                  | FY2011                                                                                 | FY2012                                             |
|------------------|----------------------------------------------------------------------------------------|----------------------------------------------------|
| Target/Milestone | Complete Initial Field Trials                                                          | Implement Design Changes from Initial Field Trials |
| Results          | Well of opportunity identified; service companies engaged; working towards deliverable | Work initiation pending completion of field trials |