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Overview

* Introduction and motivation
 Couette flow test case

« Multiscale coupling approach
— Atomistic sampling noise
— Parametric uncertainty

* Ongoing work
» Conclusions



Multiscale methods needed to account for phenomena
coupled over wide ranges of time and length scales
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Nanoporous polyaniline membrane Polycarbonate track etched membrane

« Many key applications have macroscale behavior driven
by microscale phenomena

— E.g. ionic flux through nanopores in water desalination
* Multiscale simulations resolve key physics on different
scales

— Uncertainties on all scales
— Uncertainties in coupling



Predictive multiscale simulation requires quantification
of the many sources of uncertainty

 This talk focuses on

— Assessment of sampling noise on Finite MD
the atomistic level sampling noise

— Propagation of parametric

uncertainty and sampling noise pA Atomistic
across scales BCA model
« Related work presented at this
. Multiscale
meetmg interface

— Forward propagation and
inference of parametric uncertainty nc :
on atomistic level: Knio et al., BCC Continuum
poster 1 _— model

— Propagation of uncertainty through
the continuum level: Long et al.
poster 48

Uncertain
observables



Canonical plane Couette flow is used as model

problem for algorithm development

u =W , 1his BC is handled by
y=h a continuum model.

Multiscale interface
(hand-shake region)

— O » 1his BC is handled by an
y=0 atomistic simulation.
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Continuum Atomistic

« Complex enough to illustrate key challenges in coupling
atomistic to continuum with uncertainty

« Simple enough to make computations tractable



Finite sampling in extracting macroscale observables
from atomistic simulations results in uncertainty

30,

¢ij = 4¢0

 Molecular dynamics deterministic
— Lennard Jones o\’ (o)
— LAMMPS (7) _(7)
« Sampling noise due to
— Finite size of domain
— Finite size of averaging time window ¢,
* For non-trivial MD simulations, we
can not sample our way out of this * - ¢ =~ © =




Building blocks in atomistic to continuum coupling

« Characterizing sampling
noise in atomistic output

* Uncertain inputs and
sampling noise in
atomistic simulation

e Continuum simulation
with uncertain inputs

* Coupled atomistic and
continuum simulation
— Sampling noise only
— Sampling noise and \ Uncertain
uncertain inputs observables




Bayesian inference of response surfaces

u’ =f()Li)+snl.J. n; ~N(0,1)

>

A =2 (&) A {p(u,sz|d)ocP(d‘u,SZ)P(ll,sz)J

Analytical expression for u

as student-t process if: u~ St(,S,y)
— Gaussian noise model
— Infinite (improper) uniform _
prior on u, { ”=w(§)Tu+§\/w(‘§)TSw(§) 1

— Jeffreys prior for s2
— Marginalize over s2 C~ Sf(O,l,y)



Quantification of sampling noise in atomistic simulations

30

—tu; =1 ﬁs
—tw = D ns
20+ = 25 ns d _ {VA }N
J j=1

10 ‘ ]
| | |

‘ L | t J ! ! _|‘, | [ | ‘ A — C
Bttt LY v =v e,

T M
‘|

’ \
-10

v (m/s)

2% 10 20 3? 4(1'0) 50 60 70

 Infer v€ from N short-term averaged MD velocity samples vjA
— Gaussian model for data noise due to Central Limit Theorem (CLT)
— Analytical solution gives v¢ as student-t random variable

* Averaging over longer time window or more data reduces
sampling noise



Propagating parametric uncertainty and sampling
noise through atomistic simulations
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» Infer v& from N short-term averaged MD velocity samples v;*
— Sampled over a range of input velocities u”?
— Gaussian model for data noise due to Central Limit Theorem (CLT)

— Analytical solution gives v© as student-t process over input velocity
uncertainty



Propagating uncertainty through continuum

« Steady state, linear velocity profile
— Allows analytical propagation of uncertainties



Coupled atomistic to continuum simulation accounting
for sampling noise on atomistic level

» Sampling noise is only source of
uncertainty Atomistic
— All external inputs deterministic

« Sampling noise in atomistic outputs
propagated through coupling
— Uncertain continuum simulation
— Uncertain atomistic inputs

 Different approaches
— Fixed point iteration on atomistic level Continuum

— Intersecting sampled continuum
response surfaces

— Fixed point iteration on intersecting
uncertain continuum response surfaces

Uncertain
observables



Fixed point iteration on atomistic level

A2C
C ' ¢
u (@)"‘ Continuum  Eoly (é‘) Folding € into
YRRL AN .
l/tl- i=1~> Atomistic —> Vij i Bayesian Inference

« Additional sampling noise introduced with every atomistic
simulation

— Merged with uncertainty present in atomistic input velocity

* Requires many atomistic simulations at nearby inputs
— Expensive unless surrogate model used

 Salloum et al., SIAM MMS, submitted 2011



Response surfaces make atomistic simulation
available to the macroscale

{ V= yp(&) T (&) Sy (E) 1 ul

& ~St(0,1,y)

« Same formulation as propagation of parametric uncertainty
« Can be evaluated instead of running MD simulations

» Uncertainty due to sampling noise captured by (
— Can be reduced by adding more MD data



Intersecting sampled response surfaces readily
provides coupling variables ,

Samples of vC over ¢ for two values
'of the MD force field parameter o
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« Sample atomistic response surface over intrinsic variability ¢
— Deterministic intersection with continuum response surface

 Project resulting samples of v¢ onto PC basis
— Mapping to PC random variables using inverse CDF of sampled v®



Fixed point iteration on uncertain response surfaces
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« Assume PC expansion for coupling variables to
represent sampling noise

« Substitute PCEs into atomistic and continuum response
surfaces

« Starting from an initial guess, iterate till convergence



The three coupling approaches are in agreement

4.5

I T

— 3.57 /
CD 1 &~
= Green: continuum fixed point

8 3r |0 = 3.34 A Blue: continuum sampled intersectior
@) Red: atomistic fixed point

I 1 1 I 1 I
o [ 1]
\a=3.15A

1.5

tw=1mns |t, = 5 ns|t, = 25 ns

« Larger o gives more uncertainty
* Noise can be reduced through longer time averaging



Coupled atomistic to continuum simulation with
sampling noise and parametric uncertainty

uC [m/s]

03
o [A]
« Response surface fA as function of input parameters
— Generalization of case with sampling noise only

— Inferred from MD data at sampled parameter values
— Sampling noise represented as student-t process



Response surface intersection through sampling
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 Intersect response surfaces at specific parameter values
— Using previously discussed approaches

* Infer polynomial surface through those points



Intersection through fixed point iteration on uncertain
continuum response surfaces

"=§0"’/’"<§) [VC _ fA(u/C,G, )][MC =;‘C(VC’W)]
— i

* Assume known uncertainties in w and o
« Substitute PC expansions into response surfaces

* |terate on expansions for u¢ and v©



The sampled intersection and fixed point iteration
approaches agree well

Sampled intersection ~ Fixed point iteration

18 19 20 21 22 184 19 20 21 22
w [m/s] w [m/s]

* Implemented for linear dependence on w at fixed o
— Good agreement with sampled intersection approach

* General non-linear case being implemented



Forward propagation of uncertainty in driving velocity
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* Assume uncertain driving velocity w
— Gaussian with mean 20 m/s and standard deviation 1 m/s

* Uncertainty from w and MD sampling noise propagated
iInto coupling variables



Application to more challenging multiscale problems
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lonic fluxes (NaCl) through Silica nanopores

MD concentration boundary conditions set by continuum
Continuum flux boundary conditions set by MD

Work in progress



Conclusions

« Bayesian methods are used to quantify sampling noise
in macroscale observables extracted from atomistic
simulations

« Stochastic multiscale coupling approach accounts for
sampling noise and parametric uncertainty

* Response surfaces for atomistic simulations allow
coupling on the macroscale level

« Simple model problem here often allows for analytical
solutions, but formulation is generally applicable
— Application to nanopore ionic fluxes in progress
* More details

— Salloum et al., SIAM MMS, submitted
— Rizzi et al., J. Comp. Phys, submitted (Part | and II)
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Extra material



Variables are exchanged across scale interfaces
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Bayesian Inference

Let m be a hypothesis and D observed data.

Posterior \ Likelihood \(A ‘ ) ( ‘)/Prior
P(D\m)P(m
P(m|D) = [P (D[m)P (m)dm

e The prior expresses the initial knowledge about the hypothesis m (e.g. uniform
distribution, expert's knowledge...)

e The likelihood is the probability of observing the data D given the hypothesis m.
It encompasses the forward model of m.

e The denominator is a normalization constant.

e The posterior is the probability of the hypothesis m given the data D : offers an
enhanced knowledge of m.



Quantification of sampling noise in atomistic simulations

v;‘=vc+s77j d={vj‘} j=1..,N
P(vc,sz|d) o P(d‘vc,sz)P(vc,sz)
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» Infer v© from N short-term averaged MD velocity samples v/
— Gaussian model for data noise due to Central Limit Theorem (CLT)

— Analytical solution gives vC as student-t random variable
« P(v®) marginalized over s is student-t distributed



Propagating parametric uncertainty and sampling
noise through atomistic simulations
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» Infer v& from N short-term averaged MD velocity samples v;*
— Sampled over a range of input velocities u#
— Gaussian model for data noise due to Central Limit Theorem (CLT)

— Analytical solution gives vC¢ as student-t process over input velocity
uncertainty



Inferring the Output Variable
P(a)o?)D,) x P(D,|a, 0*)P(a, %)

VA
( ij]‘NrXN[
lv Jj=1
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Noise term

P
v = E ﬂk\llk(f)JrO'é e ‘ ;
—0 Noise %{{é :

We draw samples from the | . . | |
posterior using Markov Chain | | | | | (U
Monte Carlo (MCMC) sampling.

€ relates to the spread in U’



Folding the input uncertainty and the sampling noise into
one uncertain output

. o« . o e . ~ 1P
After marginalizing over o, we obtain a joint posterior on the {4, |, _o:
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We approximate {Jk}f:o as a Multivariate Normal Distribution (MVN) as
follows:

{ag}r o ~MVYN(u,2) =pu+ L where LTL =X

We obtain:

i=RE)T ot () TET S T(E)



Folding the input uncertainty and the sampling noise into one
uncertain output

Q=) pt (\JEET S (E)

This expression of i is “cheap” for sampling in {and & !

Inverse Cumulative i F() is the CDF of 4 P
Distribution
Function (CDF) < 1 U = Zuk‘l’k(f)
truanncsf]cc))rr:n Up = <F <(D<£))§.DA(€)> k=0

- <qj’~(€)ﬂ>

¢ is the degree of
freedom associated
with the sampling noise



Summary of the Different Steps for Coupling

Laminar Newtonian Couette flow
The analytical solution is available

V Vuk hMD h, for\
U= V“k hMDh for 0 <k <P

)

U(é) u(é)

Sampling on Gauss : :
lquadrature points seelng { L ET
: N XN,
i\N, ij
Bayesian inference
Surrogate

M=N_xN,



The surrogate reflects the original short-time

averaged data

|t — 25 ns |

15 15 15

10} 10t T 10+

-10 -10 : : : : ; -10
-1 -1 1

2 4 5 - 0 1 2 3
u” (m/s) u? (m/s)

t,, = Time averaging window width

VA = C[0 + C[1 UA @—> Spread in the short-time averaged MD data

- For a given t,, the properties of the joint posterior on {a,,a,,s} are
tabulated.

« This joint posterior is a surrogate to the original atomistic scale short-time
averaged MD data.



Joint Posterior of {d,,0d.}
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’j NrXNt .
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Bayesian inference Folding { into & BaCk_ to
continuum

Sequential Bayesian Updating (SBU)

The posterior of the previous iteration is used as the prior in the current iteration.
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Stochastic Coupling Algorithm Convergence Without SBU
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Stochastic Coupling Algorithm Convergence With SBU
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Effect of the time averaging window t_ on the
convergence of the mean and standard deviation

Solid: t,=1ns

Dashed: t,=5ns

Dotted: t,=25ns
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Effect of the number of samples M on the convergence
of the mean and standard deviation
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Effect of the time averaging window t_ on the
convergence of the mean and standard deviation

u(m/s)

Solid: tw=1 ns Dashed: tw=5 ns Dotted: tw=25 ns
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Sequential Bayesian Updating (SBU)

» The posterior of the previous iteration is used as the prior in the
current iteration.

» The accuracy in the converged variables by including additional data
at each iteration.



Representation of response surface with student-t
process

VAL

¢ ~S(0,1,)
« Sum of P+1 student-t RVs mapped into 1 student-t RV

« Well approximated with Gaussian Process if y large enough
— Satisfied if enough MD samples used



Comparison student-t and Gaussian



