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Quantifying prediction fidelity in multiscale multiphysics 
simulations: the overall team 

•! Sandia National 
Laboratories 
–! Helgi Adalsteinsson 
–! Bert Debusschere 
–! Maher Salloum 
–! Reese Jones 
–! Khachik Sargsyan 

•! Johns Hopkins 
University 
–! Omar Knio 
–! Francesco Rizzi 

•! Texas Tech University 
–! Kevin Long 
–! Kaleb McKale 
–! Jed Gohlke 
–! Simon Rush 

•! Massachusetts 
Institute of Technology 
–! Youssef Marzouk 
–! Jinglai Li 



Overview 

•! Introduction and motivation 
•! Couette flow test case 
•! Multiscale coupling approach 

–! Atomistic sampling noise 
–! Parametric uncertainty 

•! Ongoing work 
•! Conclusions 



Multiscale methods needed to account for phenomena 
coupled over wide ranges of time and length scales 

•! Many key applications have macroscale behavior driven 
by microscale phenomena 
–! E.g. ionic flux through nanopores in water desalination 

•! Multiscale simulations resolve key physics on different 
scales 
–! Uncertainties on all scales 
–! Uncertainties in coupling 

Nanoporous polyaniline membrane Polycarbonate track etched membrane 



Predictive multiscale simulation requires quantification 
of the many sources of uncertainty 
•! This talk focuses on 

–! Assessment of sampling noise on 
the atomistic level 

–! Propagation of parametric 
uncertainty and sampling noise 
across scales 

•! Related work presented at this 
meeting 
–! Forward propagation and 

inference of parametric uncertainty 
on atomistic level: Knio et al., 
poster 1 

–! Propagation of uncertainty through 
the continuum level: Long et al. 
poster 48 



Canonical plane Couette flow is used as model 
problem for algorithm development 

•! Complex enough to illustrate key challenges in coupling 
atomistic to continuum with uncertainty 

•! Simple enough to make computations tractable 

This BC is handled by 
a continuum model. 

Multiscale interface 
(hand-shake region) 

uy=h = w 

uy=0 = 0 This BC is handled by an 
atomistic simulation. 

u 

v 
Atomistic Continuum 

y = ! 
y = 0 

y = hMD 
y = ! 
y = 0 

y = hMD 



Finite sampling in extracting macroscale observables 
from atomistic simulations results in uncertainty 

•! Molecular dynamics deterministic 
–! Lennard Jones  
–! LAMMPS 

•! Sampling noise due to 
–! Finite size of domain 
–! Finite size of averaging time window tw 

•! For non-trivial MD simulations, we 
can not sample our way out of this 
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Building blocks in atomistic to continuum coupling  

•! Characterizing sampling 
noise in atomistic output 

•! Uncertain inputs and 
sampling noise in 
atomistic simulation 

•! Continuum simulation 
with uncertain inputs 

•! Coupled atomistic and 
continuum simulation 
–! Sampling noise only 
–! Sampling noise and 

uncertain inputs 
Uncertain 
observables 



Bayesian inference of response surfaces 

Analytical expression for u 
as student-t process if: 

–!Gaussian noise model 
–! Infinite (improper) uniform 

prior on uk 
–! Jeffreys prior for s2 
–!Marginalize over s2 

u j = f ! i( )+ s!ij

P u, s2 d( )!P d u, s2( )P u, s2( )

d = u j{ } j=1
N

u = f !( ) u = uk!k "( )
k=0

P

!! = !k"k #( )
k=0

P

!

u =! "( )T u+! " #( )T S! "( )

! ~ St 0,1,!( )

! 

u

! i = ! "i( )

u j

!ij ~N 0,1( )

u = uk{ }k=0
P

u ~ St u, S,!( )



Quantification of sampling noise in atomistic simulations 

•! Infer vC from N short-term averaged MD velocity samples vj
A 

–! Gaussian model for data noise due to Central Limit Theorem (CLT) 
–! Analytical solution gives vC as student-t random variable 

•! Averaging over longer time window or more data reduces 
sampling noise 

vj
A = vC + s! j

d = v
j

A{ }
j=1

N

vC = v C + S ! ! ~ St 0,1,!( )



Propagating parametric uncertainty and sampling 
noise through atomistic simulations 

vij
A = vC !( )+ s!ij

•! Infer vC from N short-term averaged MD velocity samples vij
A 

–! Sampled over a range of input velocities ui
A 

–! Gaussian model for data noise due to Central Limit Theorem (CLT) 
–! Analytical solution gives vC as student-t process over input velocity 

uncertainty 

vC = vk
C!k "( )

k=0

P

!

vC =! "( )T vC +! " #( )T S! "( )

! ~ St 0,1,!( )

uC = uk
C!k "( )

k=0

P

!

ui
A = uC !i( )



Propagating uncertainty through continuum 

•! Steady state, linear velocity profile 
–! Allows analytical propagation of uncertainties 

uC = w! h! hMD
h!!

w! vC( )

uC = uk
C!k "( )

k=0

P

! vC = vk
C!k "( )

k=0

P

!

vC 

uC 



Coupled atomistic to continuum simulation accounting 
for sampling noise on atomistic level 

•! Sampling noise is only source of 
uncertainty 
–! All external inputs deterministic 

•! Sampling noise in atomistic outputs 
propagated through coupling 
–! Uncertain continuum simulation 
–! Uncertain atomistic inputs 

•! Different approaches 
–! Fixed point iteration on atomistic level 
–! Intersecting sampled continuum 

response surfaces 
–! Fixed point iteration on intersecting 

uncertain continuum response surfaces 

Uncertain 
observables 



Fixed point iteration on atomistic level 

•! Additional sampling noise introduced with every atomistic 
simulation 
–! Merged with uncertainty present in atomistic input velocity 

•! Requires many atomistic simulations at nearby inputs 
–! Expensive unless surrogate model used 

•! Salloum et al., SIAM MMS, submitted 2011 

Atomistic 

Continuum 

!vC !,"( )
ui
A{ }i=1

Nq vij
A{ } j=1

N

vC !( )uC !( )

Bayesian Inference 

Folding " into # 

Sampling uC at !i 

A2C 

C2A 



Response surfaces make atomistic simulation 
available to the macroscale 

•! Same formulation as propagation of parametric uncertainty 
•! Can be evaluated instead of running MD simulations 
•! Uncertainty due to sampling noise captured by # 

–! Can be reduced by adding more MD data 

vC = f A uC,!( )

vC =! "( )T vC +! " #( )T S! "( )

! ~ St 0,1,!( )

uC !( ) vC !( )



! " # $ %"

!

"

#

$

%

uC [m/s]
v

C
[m

/
s
]

σ = 3.15 Å
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Samples of vC over # for two values 
of the MD force field parameter $ 

Continuum model 

Intersecting sampled response surfaces readily 
provides coupling variables 

•! Sample atomistic response surface over intrinsic variability # 
–! Deterministic intersection with continuum response surface 

•! Project resulting samples of vC onto PC basis 
–! Mapping to PC random variables using inverse CDF of sampled vC 

vC = f A uC,!( )

uC = f C vC( )



Fixed point iteration on uncertain response surfaces 

•! Assume PC expansion for coupling variables to 
represent sampling noise 

•! Substitute PCEs into atomistic and continuum response 
surfaces 

•! Starting from an initial guess, iterate till convergence 

vC = f A uC,!( ) uC = f C vC( )

vC = vk
C!k "( )

k=0

P

!uC = uk
C!k "( )

k=0
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The three coupling approaches are in agreement 

•! Larger $ gives more uncertainty 
•! Noise can be reduced through longer time averaging 
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σ [Å]uC [m/s]

v
C

[m
/s

]
Coupled atomistic to continuum simulation with 
sampling noise and parametric uncertainty 

•! Response surface fA as function of input parameters 
–! Generalization of case with sampling noise only 
–! Inferred from MD data at sampled parameter values 
–! Sampling noise represented as student-t process 

vC = f A uC,! ,"( )
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σ [Å]w[m/s]

u
C

[m
/
s
]

Response surface intersection through sampling 

•! Intersect response surfaces at specific parameter values 
–! Using previously discussed approaches 

•! Infer polynomial surface through those points 



vC = f A uC,! ,"( ) uC = f C vC,w( )

vC = vk
C!k ",#( )

k=0

P
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!

Intersection through fixed point iteration on uncertain 
continuum response surfaces 

•! Assume known uncertainties in w and $ 
•! Substitute PC expansions into response surfaces 
•! Iterate on expansions for uC and vC 

w = wk!k "( )
k=0

P

!

! = ! k"k #( )
k=0

P

!



The sampled intersection and fixed point iteration 
approaches agree well 

•! Implemented for linear dependence on w at fixed $ 
–! Good agreement with sampled intersection approach 

•! General non-linear case being implemented 
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Fixed point iteration 
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Forward propagation of uncertainty in driving velocity 

•! Assume uncertain driving velocity w 
–! Gaussian with mean 20 m/s and standard deviation 1 m/s 

•! Uncertainty from w and MD sampling noise propagated 
into coupling variables 



Application to more challenging multiscale problems 

•! Ionic fluxes (NaCl) through Silica nanopores 
•! MD concentration boundary conditions set by continuum 
•! Continuum flux boundary conditions set by MD 
•! Work in progress 



Conclusions 

•! Bayesian methods are used to quantify sampling noise 
in macroscale observables extracted from atomistic 
simulations 

•! Stochastic multiscale coupling approach accounts for 
sampling noise and parametric uncertainty 

•! Response surfaces for atomistic simulations allow 
coupling on the macroscale level 

•! Simple model problem here often allows for analytical 
solutions, but formulation is generally applicable 
–! Application to nanopore ionic fluxes in progress 

•! More details 
–! Salloum et al., SIAM MMS, submitted 
–! Rizzi et al., J. Comp. Phys, submitted (Part I and II) 



Papers 

•! Rizzi, F., Najm, H.N., Debusschere, B.J., Sargsyan, K., Salloum, M., 
Adalsteinsson, H., Knio, O.M., “Uncertainty Quantification in MD 
Simulations. Part I: Forward propagation”, J. Comp. Phys., submitted, 2011 

•! Salloum, M., Sargsyan, K., Najm, H.N., Debusschere, B., Jones, R., 
Adalsteinsson, H. “A Stochastic Multiscale Coupling Scheme to account for 
Sampling Noise in Atomistic-to-Continuum Simulations” SIAM Multiscale 
Modeling and Simulation, submitted, 2011 

•! Rizzi, F., Najm, H.N., Debusschere, B.J., Sargsyan, K., Salloum, M., 
Adalsteinsson, H., Knio, O.M., “Uncertainty Quantification in MD 
Simulations. Part II: Inference of Force Field Parameters”, J. Comp. Phys., 
submitted, 2011 



Extra material 



Variables are exchanged across scale interfaces 

u 

v 
Atomistic Continuum 

y = ! 
y = 0 

y = hMD 
y = ! 
y = 0 

y = hMD 



Prior Likelihood Posterior 

!! The prior expresses the initial knowledge about the hypothesis m (e.g. uniform 
distribution, expert's knowledge...) 
 
!! The likelihood is the probability of observing the data D given the hypothesis m. 
It encompasses the forward model of m. 
 
!! The denominator is a normalization constant. 
 
!! The posterior is the probability of the hypothesis m given the data D : offers an 
enhanced knowledge of m. 

Let m be a hypothesis and D observed data. 

Bayesian Inference 



Quantification of sampling noise in atomistic simulations 

•! Infer vC from N short-term averaged MD velocity samples vj
A 

–! Gaussian model for data noise due to Central Limit Theorem (CLT) 
–! Analytical solution gives vC as student-t random variable 

•! P(vC) marginalized over s is student-t distributed 

vj
A = vC + s! j

P vC, s2 d( )!P d vC, s2( )P vC, s2( )

d = v
j

A{ } j =1,…,N



Propagating parametric uncertainty and sampling 
noise through atomistic simulations 

vij
A = vC !( )+ s!ij

•! Infer vC from N short-term averaged MD velocity samples vij
A 

–! Sampled over a range of input velocities ui
A 

–! Gaussian model for data noise due to Central Limit Theorem (CLT) 
–! Analytical solution gives vC as student-t process over input velocity 

uncertainty 

vC = vk
C!k "( )

k=0

P

!



Inferring the Output Variable 

Noise  
Noise term 

We draw samples from the 
posterior using Markov Chain 
Monte Carlo (MCMC) sampling. 

" relates to the spread in U i 

v 



Folding the input uncertainty and the sampling noise into 
one uncertain output 

We approximate            as a Multivariate Normal Distribution (MVN) as 
follows: 

where 

After marginalizing over ! 2, we obtain a joint posterior on the           : 

We obtain: 



Folding the input uncertainty and the sampling noise into one 
uncertain output 

This expression of " is “cheap” for sampling in # and $ ! 

Inverse Cumulative 
Distribution 
Function (CDF) 
transform 

F(.) is the CDF of "  

$ is the degree of 
freedom associated 
with the sampling noise 



Continuum 

Laminar Newtonian Couette flow 
The analytical solution is available 

Summary of the Different Steps for Coupling 

Surrogate 
M = Nr x Nt 



tw = Time averaging window width 

The surrogate reflects the original short-time 
averaged data 

•! For a given tw, the properties of the joint posterior on {a0,a1,s} are 
tabulated.  
•! This joint posterior is a surrogate to the original atomistic scale short-time 
averaged MD data. 

vA = #0 + #1u
A + s$ Spread in the short-time averaged MD data 



Joint Posterior of {"0,"1} 

Back to 
continuum 

Sequential Bayesian Updating (SBU) 
The posterior of the previous iteration is used as the prior in the current iteration. 

1st iteration 
8th iteration 
Without SBU 

8th iteration 
With SBU 



1st iteration 
8th iteration 
Without SBU 

8th iteration 
With SBU 

PDFs of u and U 

Back to 
continuum 



tw = Time averaging window width 

tw=1 ns tw=5 ns tw=25 ns 

Stochastic Coupling Algorithm Convergence Without SBU 



tw = Time averaging window width 

Stochastic Coupling Algorithm Convergence With SBU 

tw=1 ns tw=5 ns tw=25 ns 



Without SBU With SBU 

Solid: tw=1 ns Dashed: tw=5 ns Dotted: tw=25 ns 

Mean 
Standard 
deviation 

Effect of the time averaging window tw on the 
convergence of the mean and standard deviation 

Mean Standard 
deviation 



Without SBU With SBU 

Solid: M=10 Dashed: M=20 Dotted: M=40 

Mean 
Standard 
deviation 

Effect of the number of samples M on the convergence 
of the mean and standard deviation 

Mean Standard 
deviation 



Without SBU With SBU 

Solid: tw=1 ns Dashed: tw=5 ns Dotted: tw=25 ns 

Mean Standard 
deviation 

Effect of the time averaging window tw on the 
convergence of the mean and standard deviation 

Mean 
Standard 
deviation 

u
C
!m

"s
#

Iteration Iteration 
u

C
!m

"s
#

Sequential Bayesian Updating (SBU) 
•! The posterior of the previous iteration is used as the prior in the 
current iteration. 
•! The accuracy in the converged variables by including additional data 
at each iteration. 



Representation of response surface with student-t 
process 

•! Sum of P+1 student-t RVs mapped into 1 student-t RV  
•! Well approximated with Gaussian Process if % large enough 

–! Satisfied if enough MD samples used 

vC = vk
C!k "( )

k=0

P

!

vC =! "( )T ! +!"( )

vC = f A uC,!( )
uC = uk

C!k "( )
k=0

P

!

ui
A = uC !i( )

vC =! "( )T vC +! " #( )T !T!! "( )

! ~ S 0,1,!( )



Comparison student-t and Gaussian 


