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Abstract

As smartphones increase in prevalence and functionality, they have become responsible for
a greater and greater amount of personal information. The information smartphones contain is
arguably more personal than the data stored on personal computers because smartphones stay
with individuals throughout the day and have access to a variety of sensor data not available
on personal computers. Developers of smartphone applications have access to this growing
amount of personal information, however, they may not handle it properly, or they may leak it
maliciously.

The Android smartphone operating system provides a
permissions-based security model which restricts application’s access to user’s private data. Each
application statically declares its requested permissions in a manifest file which is presented to
the user upon application installation. However, the user does not know if the application is
using the private locally or sending it to some third party. To combat this problem, we present
AndroidLeaks, a static analysis framework for finding leaks of personal information in Android
applications.

To evaluate the efficacy of AndroidLeaks on real world Android applications, we obtained
over 23,000 Android applications from several Android markets. We found 9,631 potential
privacy leaks in 3,258 Android applications of private data including phone information, GPS
location, WiFi data, and audio recorded with the microphone.

1 Introduction

As smartphones have become ubiquitous, the focus of mobile computing has shifted from laptops
to phones and tablets. Today, there are several competing mobile platforms, and as of March 3,
2011, Android has the highest market share of any smartphone operating system in the U.S.[6].
Android provides the core smartphone experience, but much of a user’s productivity is dependent
on third-party applications. To this end, Android has numerous marketplaces at which users can
obtain third-party applications. In contrast to the market policy for iOS, in which every application
is reviewed before it can be posted[12], most Android markets are open for developers to post their
applications directly, with no review process. This policy has been criticized for its potential
vulnerability to malicious applications. Google instead allows the Android Market to self-regulate,
with higher-rated applications more likely to show up in search results.

Android sandboxes each application from the rest of the system’s resources in an effort to protect
the user[2]. This attempts to ensure that one application cannot tamper with another application
or the system as a whole. If an application needs to access a restricted resource, the developer
must statically request permission to use that resource by declaring it in the application’s manifest
file. Then, when a user attempts to install the application, Android will warn the user that the

1

SAND2011-5590C



application requires certain restricted resources (for instance, location data), and that by installing
the application, she is granting permission for the application to use the specified resources. If the
user declines to authorize the application, the application will not be installed.

However, statically requiring permissions does not inform the user how the resource will be
used once granted. A maps application, for example, will require access to the Internet in order
to download updated map tiles, route information and traffic reports. It will also require access
to the phone’s location in order to adjust the displayed map and give real-time directions. The
application will send location data to the maps server in order to function, which is acceptable
given the purpose of the application. However, if the application is ad-supported it may also leak
location data to advertisers for targeted ads, which may compromise a user’s privacy. Given the
only information currently presented to users is a list of required permissions, a user will not be
able to tell how the maps application is handling her location information.

To address this issue, we present AndroidLeaks, a static analysis framework designed to iden-
tify leaks of personal information and privacy violations in Android applications on a large scale.
Leveraging WALA[5], a program analysis framework for Java source and byte code, we create a
callgraph of the application code and then perform a reachability analysis to determine if sensitive
information may be sent over the network. If there is a potential path, we perform dataflow analysis
to determine if private data reaches a network sink.

Other projects, such as TISSA[19], have worked on allowing users more control over access to
private data on a per application basis. However, taking advantage of their approach requires the
user to flash a custom version of the Android Operating System. This currently prevents widespread
adoption because there are barriers to doing this, such as voided warranties and lack of technical
knowledge.

AndroidLeaks has several advantages over related work in privacy leak detection. By using
static analysis techniques, we are able to cover the entire code base, identifying paths that may
not be uncovered using dynamic analysis, as dynamic analysis may not be able to trigger all
execution paths in the application. As AndroidLeaks does not require running applications, we
are able to analyze many Android applications in a short period of time- 18,089 applications in
under 26 hours, or almost 700 applications per hour. While several other tools exist to find privacy
violations in Android applications[7, 10], to the best of our knowledge, none have automatically
analyze applications on a large scale.

Our contributions in this paper are as follows:

• We have created a set of mappings between Android API methods and the permissions they
require to execute. We use a subset of this mapping as the sources of private data and the
network sinks we use to detect privacy leaks.

• Using this mapping we demonstrate the ability of our analysis to be a developer aid, auto-
matically recovering the minimal set of permissions an application needs. We confirm the
usefulness of this functionality based on observing published applications with incorrectly
specified permissions, including misspellings of Android-defined permissions.

• We present AndroidLeaks, a static analysis framework which finds leaks of private information
in Android applications. We evaluated AndroidLeaks on 23,838 Android applications, which
is to our knowledge the largest known evaluation of of mobile applications. We found potential
privacy leaks involving uniquely identifying phone information, location data, WiFi data, and
audio recorded with the microphone in 3,258 Android applications.
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• We compare the permissions used and data leaked in several popular ad libraries. We manu-
ally verified a number of ad library leaks to help developers pick the most privacy-respecting
ad libraries.

2 Background

Android applications run in a virtual machine called Dalvik [4]. A large portion of the Android
framework and the applications themselves, are initially coded in Java, then compiled into Java
bytecode before being converted into the Dalvik Executable (DEX) format. Fortunately for our
analysis, the final conversion to DEX byte code retains enough information that the conversion is
reversible in most cases using the dex2jar tool [15].

Android applications are distributed in compressed packages called Android Packages (APKs).
APKs contain everything that the application needs to run, including the code, icons, XML files
specifying the UI, and application data. Android applications are available both through the official
Android Market and other third-party markets. These alternative markets allow users freedom to
select the source of their applications.

The official Android Market is primarily user regulated. The ratings of applications in the
market are determined by the positive and negative votes of users. Higher ranked applications
are shown first in the market and therefore are more likely to be discovered. Users can also share
their experiences with an application by submitting a review. This can alert other users to avoid
the application if it behaves poorly. Google is able to remove any application not only from the
market, but also from users’ phones directly, and has done so recently when users reported malicious
applications [14, 18]. However, recent research [7] shows that many popular applications still leak
their users’ private data.

Android applications are composed of several standard components which are responsible for
different parts of the application functionality. These components include: Activities, which control
UI screens; Services, which are background processes for functionality not directly tied to the UI;
BroadcastReceivers, which passively receive messages from the Android application framework;
and ContentProviders, which provide CRUD operations1 to application-managed data. In order
to communicate and coordinate between components, Android provides a message routing system
based on URIs. The sent messages are called Intents. Intents can tell the Android framework to
start a new Service, to switch to a different Activity, and to pass data to another component.

Each Android application contains an important XML file called a manifest[1]. The manifest
file informs the Android framework of the application components and how to route Intents be-
tween components. It also declares the specific screen sizes handled, available hardware and most
importantly for this work, the application’s required permissions.

Android uses a permission scheme to restrict the actions of applications [2]. Each permission
corresponds to protecting a type of sensitive data or specific OS functionality. For example, the IN-
TERNET permission is required to initiate any network communications and READ PHONE STATE
gives access to phone-specific information. Upon application installation, the user is presented with
a list of required permissions. The user will be able to install the application only if she grants the
application all the permissions. Without modifying the Android OS, there is currently no way to
install applications with only a subset of the permissions they require. Additionally, Android does
not allow any further restriction of the capabilities of a given application beyond the permission

1Create, Read, Update, and Delete operations.
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Figure 1: Creating a Mapping between API Methods and Permissions.

scheme. For example, one cannot limit the INTERNET permission to only certain URLs. This
permission scheme provides a general idea of an application’s capabilities, however, it does not
show how an application uses the resources to which it has been allowed access.

3 Threat Model

In this work we consider a privacy leak to be any transfer of personal or phone-identifying infor-
mation off of the phone. We do not attempt to distinguish personal data used by an application
for user-expected application functionality from unintended or malicious use nor do we attempt to
differentiate between benevolent and malicious leaks. Determining program intent is in general an
unsolvable problem, so we do not attempt to classify leaks as benign or malicious. Identifying per-
sonal data used for expected functionality requires understanding the purpose of the application as
well as the intention of the developer during its creation, neither possible programmatically. Thus
we classify transfer of personal information off of the phone as a privacy leak regardless of its use.
Malware authors may maliciously leak private data, ad libraries may leak it for more targeted ads,
applications may use it for their functionality- we attempt to address the general problem, tracking
sensitive information flow on real applications at large scale. We leave determining privacy leak
intent to future work.

Our work focuses on Android applications leaking private data within the scope of the Android
security model[2]. We are not concerned with vulnerabilities or bugs in Android OS code, the SDK,
or the Dalvik VM that runs applications. For example, a Webkit2 bug that causes a buffer overflow
in the browser leading to arbitrary code execution is outside the scope of our work. Our trusted
computing base is the Android OS, all third party libraries (not included in the APK), and the
Dalvik VM.

2Webkit is a rendering engine used by browsers such as Chrome and Safari.
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Figure 2: AndroidLeaks Analysis Process.
1. Preprocessing. 2. Recursive call stack generation to determine where

permissions are required. 3. Dataflow analysis between sources and sinks.

Our goal is to determine if applications are using the permissions they are granted to leak
sensitive data off the phone. Examples of this include sending the phone’s unique ID number or
location data to an user-analytics firm or to the application developer.

We do not attempt to track private data specific to an application, such as saved preferences
or files, since automatically determining which application data is private is very difficult. Finally,
we do not attempt to find leaks enabled by the collaboration of applications. There are no funda-
mental limitations to AndroidLeaks that prevent it from analyzing the potential collaboration of
applications,

Currently AndroidLeaks does not analyze native code. We do not believe this significantly
affects our results as we found only 6% of Android applications include native code. Potentially
future Android malware could be nearly entirely written in native code to foil existing Java-based
analysis tools. However, a malicious application can not hide its interaction with private data, as
private data on Android may only be obtained by applications through Android’s Java APIs. An
application that accesses private data and immediately passes it to native code is a clear indicator
for further analysis.

4 Methodology

In this section we discuss the architecture and implementation of AndroidLeaks. First we describe
our process of creating our permission mapping — a mapping between Android API calls and
permissions they require to execute. A subset of this mapping is used as the sources and sinks we
include in our later dataflow analysis. By source, we mean any method that accesses personal data;
for example, a uniquely identifying phone number, or location data. We consider a sink to be any
method which can transmit sensitive data off of the phone. In this paper, we focus on network
connections. However, we have identified API methods for SMS and bluetooth sinks for inclusion
in further work.
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4.1 Permission Mapping

To determine if an application is leaking sensitive data, first one must define what should be
considered sensitive data. Intuition and common sense can give a good starting point. However,
in Android we can do much better since access to restricted resources is protected by permissions.
Thus, if we can determine which API calls require a permission that protects sensitive data, it is
likely that the methods are sources of private data.

Ideally this mapping between API methods and the permissions they require would be stated
directly in the documentation for Android. This mapping would be useful for developers because it
would help them better understand what permissions their application will require. Unfortunately,
the documentation is incomplete, and frequently will omit this mapping. To address this issue, we
attempt to automatically build this mapping by directly analyzing the Android framework source
code. Figure 1 visualizes our process.

Intuitively, for a permission to protect certain API functionality, there must be points in the
code where the permission is enforced. In manual analysis of the source, we found a number of
helper functions that enforce a permission, such as Context.enforcePermission(String, int, int),
where the first parameter is the name of the permission. For every method in every class of
the Android framework, we recursively determined the methods called by each method in the
framework, building a call stack of the Android source, a process we call mining. If our mining
encounters one of these enforcement methods, we inspect the value of the first parameter, which
is always a constant in the Android framework, in order to determine the name of the permission
being enforced. We then propagate the permission requirement to all the methods in the current
call stack. The same propagation routine is done if we encounter a method already in our permission
mapping. After mining is complete, we will have a mapping between methods and the permissions
they require. A subset of the methods in this mapping are API methods which are directly available
to developers through the SDK.

To supplement our programmatic analysis, we manually reviewed the Android documentation
to add mappings we may have missed. In particular, at some points in the Android framework, it
may check, but not enforce a permission using a method such as Context.checkPermission(String,
int, int). For each of these points in the code, we determined how the check was used and what
method actually requires that permission and add it to our permission mapping before the mining
process. Currently we have mappings between over 2000 methods and the permissions they require.
We note that this mapping includes both API methods and internal framework methods and that
it is important to include internal framework methods in the mapping because they are accessible
through reflection.

Though this process gave us many mappings, it does not find permission checks that are imple-
mented in native code and can not propagate permission requirements along edges connected by
Intents. While this may seem significant, we note that Android related control flow is outside of the
scope of our current work and that we only found two permissions enforced outside of Java. The
first of these two permissions is Internet, for which we manually added a very complete mapping.
The second is Write External Storage, which is unimportant for our current work.

The primary focus in this paper is finding privacy leaks. However, our permission mapping con-
tains method signatures for almost all permissions, not just the ones that access or can potentially
leak sensitive data. This mapping could be used to aid developers in understanding more precisely
which permissions different application functionality requires. Furthermore, our mapping could be
used to automatically generate an application’s required permissions, saving the developer time
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and assuring a minimal set of permissions. We describe our current effectiveness at automatically
generating required permissions in Section 5.2.

4.2 Android Leaks

In this section we describe our AndroidLeaks process. See Figure 2 for a visual representation. Be-
fore we attempt to find privacy leaks, we perform several preprocessing steps. First, we convert the
Android application code (APK) from the DEX format to a jar using dex2jar [15]. This conversion
is key to our analysis, as WALA can analyze Java byte code but not DEX byte code.

Using WALA, we then build a call graph of the application code and any included libraries.
We iterate through the application classes and determine the application methods that call API
methods which require permissions. We also keep track of which other app methods can call these
app methods that require permissions, as reviewing the callstacks can give insight into the flow
of the application’s use of permissions. If the application contains a combination of permissions
that could leak private data, such as READ PHONE STATE and INTERNET, we then perform
dataflow analysis to determine if information from a source of private data ever reaches a sink.

4.2.1 Taint Problem Setup

The three components of most taint problems are sources, sinks and sanitizers. In our setup, we
rely on the permission mapping we built between API calls and the permissions they require to
categorize permissions relating to location, network state, phone state, and audio recording as
sources.

Android has two categories of location data: coarse and fine. Coarse location data uses trian-
gulation from the cellular network towers and nearby wireless networks to approximate a device’s
location, whereas fine location data uses the GPS module on the device itself. We do not differen-
tiate between coarse and fine location data for two reasons. First, when we created our permission
mapping, we discovered that methods that require ACCESS COARSE LOCATION will accept
ACCESS FINE LOCATION instead. Second, because in practical use, using wireless networks can
allow a coarse location fix to get as precise as 50 meters or less. We believe this to be almost as
sensitive as fine location data.

We labeled all methods that require access to the Internet as sinks. However, our initial mapping
contained very few mappings. We discovered that the Internet permission is enforced by the
sandbox, which will cause any open socket command to fail if the Internet permission has not been
granted. Since this permission is handled by native code, we were unable to automatically find
many Internet permission mappings. A complete Internet mapping is very important, since it is
the primary way to leak private data, so we manually went through the documentation for the
android.net, java.net and org.apache packages and added undiscovered methods to our mapping.

We do not include any sanitizers in our analysis for several reasons. Most importantly, we
wanted to find paths where sensitive data is leaked off the phone regardless of if it has been
processed in some way. Furthermore, we do not believe most applications will attempt to sanitize
sensitive information they are sending to third parties. Lastly, recognizing application-specific data
sanitization methods is difficult and not worth pursuing at this stage of our work.
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4.2.2 Taint Analysis

First, we use WALA to construct a context-sensitive System Dependence Graph (SDG) and then
add a context-insensitive heap dependency overlay. Using the resulting SDG, we compute forward
slices for the return value of each source method we identify in the application. We then analyze
the slice to determine if any parameters to sink methods are tainted, meaning that they are data
dependent on the source method. If such a dependency exists, then private data is most likely
being leaked and we record it.

Unfortunately, WALA’s built-in SDG and forward slicing algorithms alone are not sufficient to
do taint tracking. In order to accomplish this, we used the following approaches:

Handling Callbacks Most sources are API methods, however, callbacks are used extensively
in Android and there are some that will be called with private data as a parameter. For example,
location information can be accessed either directly by asking the LocationManager for the last
known location or by registering with the LocationManager as a listener. If the latter, the Loca-
tionManager provides regular updates of the current location to the registered listener. For API
methods labeled as sources, we were able to taint the return values of these methods, however, for
callbacks this approach does not work since neither the return value of the callback nor the return
value of the registration is tainted. Instead, we identified calls to the register listener method and
then inspected the parameters to determine the type of the listener. We then tainted the param-
eters of the callback method for the listener’s class. This approach allows us to compute forward
slices for both types of access in the same way.

Taint-Aware Slicing Rather than modify WALA internally as done in [17], we decided to
analyze the computed slices and compute new statements from which to slice. We implemented
the following logic to compute these new statements:

1. Taint all objects whose constructor parameters are tainted data.

2. Taint entire collections if any tainted object is added to them.

3. Taint whole objects which have tainted data stored inside them.

By applying these propagation rules to the slice computed for the source method, we create a set
of statements that are tainted but are not be included in the original slice. We then compute forward
slices for each of these statements and all others derived in the same manner from subsequent slices
until we encounter a sink method or run out of statements from which to slice.

Of our propagation rules, the third rule causes the most propagation of taint and is therefore
the largest source of false positives. An example of a false positive we saw often occurred when
Activities became tainted. Since Activities are responsible for coordinating all the functionality for
a UI screen, if any part of that screen uses the Internet, there is a potential leak. While it may seem
like this rule should be removed in order to prevent such false positives, it’s important to note that
without it, our taint analysis would likely find no leaks. Preventing over tainting while properly
tracing information flow is a difficult problem with static analysis, especially when objects handle
both tainted and non-tainted. We note that [17], on which our taint analysis was based, also has
high false positives in certain cases.
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Figure 3: Leaks by Source Location

5 Evaluation

We evaluated AndroidLeaks on a body of 23,838 unique Android applications. The official Android
Market[11] has many free applications but Google has created mechanisms to discourage automated
crawling. Fortunately, the application distribution model of Android applications works in our favor
— there are many third-party Android market sites. To automatically download APKs, we wrote
crawlers for both American and Chinese market sites, including SlideMe[16] and GoApk[3]. During
crawling, we found that many applications, identified by their SHA1 hashes, are present in multiple
markets.

Out of these 23,838 apps we were unable to analyze 4,142 due to invalid bytecodes in the dex2jar
converted APKs. There were also 1,607 apps which required no permissions. These apps do not
have the ability to gain access to sensitive data nor leak information so we exclude them from the
analysis described in this section. We found potential privacy leaks in 3,258 of the remaining 18,089
apps.

Using AndroidLeaks on one server-grade computer we were able to analyze all 18,089 apps in
under 26 hours- almost 700 APKs per hour. Collectively we processed over 531,000 unique Java
classes.

We chose to focus on 4 types of privacy leaks: uniquely identifying phone information, location
data, wifi state and recorded audio. This data can be used to uniquely identify a phone and possibly
link it to a physical identity. Combined with location and microphone data, a malicious application
could record information about the user: who they are, what they do, and where they go.
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Figure 4: Leaks by Type

5.1 Potential Privacy Leaks Found

We found a total of 9,631 leaks in 3,258 Android applications. 2,387 of these are unique leaks,
varying by source, sink or code location. 6,156 were leaks found in ad code, which comprises 64%
of the total leaks found. In Figure 3 we show the source of leaks of phone and location data, divided
into application and ad libraries. Figure 4 shows a breakdown of the leaks we found by leak type.
We do not include pie charts for Wifi and record audio leaks because all were found in application
code.

5.1.1 Verification

Due to the large number of APKs analyzed and leaks found, it is fundamentally difficult to verify
the correctness of all our results due to time constraints. Since APKs are comprised of both ad
code and application code, and both may leak, we chose to initially focus on verifying leaks found
in ad code to gain a maximum amount of insight into the accuracy of our results. Ad code is
almost always a third-party library that is included with application code by the developer, and
a given ad library should be the same between applications. Therefore, by confirming an ad leak
as a true or false positive we can reuse that result for all occurrences of that same leak. Thus we
initially focused on verifying the most common unique leaks to determine the veracity of the largest
number of leaks. We identify leaks by the 3-tuple: source method, method the source method is
called from, and the sink method.

We manually traced 48 leaks in various versions of the Mobclix, adHUBS, Millennial Media, and
Mobclick libraries to assess the accuracy of AndroidLeaks’s results. Of these, we were able to verify
24 to be valid leaks in ad code. The false positives tended to occur most commonly in applications
that contained many ad libraries in addition to the one in which we were analyzing. As multiple ad
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libraries may populate UI components on the same screen, our analysis may conservatively say that
it’s possible for sensitive data accessed by one ad library to propagate to its containing Activity or
other ad libraries that share the same Activity. We suspect that the false positives are due to our
taint propagating too far and reaching sinks in these other libraries.

The 24 leaks described above are collectively repeated 3057 times and occur in 1606 unique
applications. Therefore at least a third of the potential leaks AndroidLeaks discovered are confirmed
true positives and at least half of the total reported leaky APKs have confirmed leaks.

We also verified a small random set of 20 applications containing each leak type in application
code to confirm AndroidLeaks is successful at finding leaks in application code as well. Several of
the microphone leaks we verified turned out to be in IP camera applications, such as ”SuperCam”
or ”IP Cam Viewer Lite.” We believe this to be the first findings of sensor data being leaked off
the phone.

It is important to note that AndroidLeaks reports potential privacy leaks but cannot automat-
ically verify its results. Manual verification by the application developer or a security researcher is
almost always required to determine the veracity of the findings. To ease this process, AndroidLeaks
specifies the containing class and method as well as the relevant method call for each leak’s source
and sink. AndroidLeaks can guide and focus a manual reviewer’s time to allow her to analyze many
times more applications than she could manually.

5.1.2 Ad Libraries

Nearly every ad library we looked at leaked phone data and, if possible, location information as
well. We hypothesize that nearly any access of sensitive data inside ad code will end up being
leaked, as ad libraries provide no separate application functionality which requires accessing such
information.

As an application developer, knowledge of the types of private information an ad library may
leak is valuable information. One may use this knowledge to select the ad library that best re-
spects the privacy of users and possibly warn users of potential uses of private information by the
advertising library. Clearly, it’s important to determine the types of sensitive data accessed by ad
libraries and how it is used.

One solution is to watch an application which uses a given ad library using dynamic analysis,
such as TaintDroid. However, one runs into fundamental limitations of dynamic analysis, such
as difficulty in achieving high code coverage. Even with maximum possible code coverage using
dynamic taint analysis, there is a further problems on Android. Many ad libraries we examined
check if the application they were bundled with has a given permission, oftentimes location. Using
this information, they could localize ads, potentially increasing ad revenue by increasing click
through. However, there is nothing preventing ad libraries for checking if they have access to any
number of types of sensitive information and attempting to leaking them only if they are able. A
dynamic analysis approach could watch many applications with a malicious advertising library and
never see this functionality if none of the applications declared the relevant permissions. Using
our static analysis approach we do not have this limitation and would be able to find these leaks
regardless of the permissions required by the application being analyzed.

Ad libraries tend to be distributed to developers in a precompiled format, so it is not easy for
an application developer to determine what information the ad library uses for user analytics. This
is important for developers that include ad libraries in highly privileged applications because the
developer is ultimately responsible for any information leaked by libraries they choose to include.
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Leak Type Unique Leaks % of all Leaks # apps with leak % apps with leak

Phone 8558 88.9% 2939 16.2%
Location 959 9.96% 434 2.40%
WiFi 59 0.61% 36 0.20%
Record Audio 55 0.57% 32 0.18%

Table 1: Breakdown of Leaks by Type

Type of Leak

Ad Library Phone Location Wifi Microphone # apps using % apps using

Mobclix � O X X 597 3.3%
Mobclick � O X X 436 2.4%
adHUBS � O X X 442 2.4%
Millennial Media � O X X 162 0.9%

Table 2: Ad Library Leaks by Type. �: found by our analysis, 0: missed by analysis but
found manually, X: not found by either

Additionally, a developer wanting to use an ad library is forced to use the ad library as it comes,
with no option to remove features or modify the code. Since there is no mechanism in Android
that allows one to restrict the capabilities of a specific portion of code within an application — all
ad libraries have privilege equal to the application with which they are packaged. We note that a
need for sand-boxing a subset of an application’s code is not an issue specific to Android; it is an
open issue for many languages and platforms. However, the issue is especially relevant on mobile
platforms because applications commonly include unverified third-party code to add additional
features, such as ads.

5.2 Discovering Required Permissions

The Permission Mining step of our analysis could be used by Android developers as a tool to
help automatically generate the permissions their application needs. Though our mapping is
incomplete, the initial results are promising for discovering required permissions are promising.
For the following stats, we excluded any developer-defined permissions or permissions internal
to Android or Google and not specified on the Android manifest page. On the permissions we
focused on for detecting privacy leaks, including INTERNET, READ PHONE STATE, and AC-
CESS [COARSE—FINE] LOCATION, we recovered the exact permissions for 14562 out of 16,471,
or 88.4%. Over all of the 115 permissions currently defined in the Android documentation, our
analysis is able to recover 5468 out of 16,471, or 33.2%. Out of the applications declaring no per-
missions, our analysis found 82 applications with method calls which require permissions. This is
including some permissions we currently have no mappings for and most which we made little effort
to improve the mapping for beyond the initial permission mapping creation. One could potentially
recover developer defined permissions by examining the permission checks in application code and
the filters declared in the application manifest. We leave this problem open for future work.

Likely Developer Permission Errors Android gives developers the flexibility to define per-
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missions specific to their application to allow the applications to share functionality with other
applications in a mediated fashion. However, as developers must manually specify the permissions
their application needs and they are not restricted to the default permissions declared by An-
droid, there is room for developer error. While it’s impossible to definitively say that a permission
was incorrectly specified without manually reviewing the code, we found a number of permissions
that appear to be typographical errors, including ”WRITE EXTERNAL STOREAGE,” ”AC-
CESS COURSE LOCATION” and ”andoird.permission.ACCESS COARSE LOCATION”. Out
of 23,838 there were 551 unique permissions declared. Based solely on the permission names and
without manual verification, we estimate at least 125 of these to be developer errors. These findings
support the value of our ability to automatically recover an application’s required permissions.

Two interesting questions can be raised about these results: 1) are developers over privileging
their applications and 2) do developers ever under-privilege their applications. Currently, our in-
complete mapping causes us to occasionally miss the requirement of certain permissions, incorrectly
leading us to believe an application declares more permissions than it needs. On the other hand, if
our mappings are incorrect and we say a method requires a permission when it does not, we may
falsely believe an application declares fewer permissions than it needs. These two issues make it
difficult to calculate exactly how effective we are at recovering permissions, though these issues do
not significantly affect our statistics described above. While we do not know the exact extent of
the occurrence of the above two problems, we do have some concrete examples in which developers
have not declared permissions their application needs. While these are only a very small percentage
of the total applications, they lend credence to the possibility that there may be more instances of
both problems and that this functionality would be of use to developers.

5.3 Miscellaneous Findings

Having a large number of Android applications allows us analyze them for other trends such as
prevalence and types of ad code or other libraries, frequency of permissions being requested and a
number of other statistics. We describe a number of interesting findings in the following sections.

5.3.1 Unique Android Static Analysis Issues

During the course of our analysis, we found several issues unique to Android that impacted our
false positive and false negative rate. A common programming construct in ad libraries is to check
if the currently running application has a certain permission before executing functionality that
requires this permission. Many ad libraries do this to serve localized ads to users if the application
has access to location data. An analysis which does not take this into account would find all such
libraries as requiring access to location data and would possibly find leaks involving location data
when in reality neither are valid because the application does not have access to location data.

5.3.2 Native Code

Native code is outside the scope of our analysis, however, it is interesting to see how many appli-
cations actually use native code. The use of native code is discouraged by Android as it increases
complexity and may not always result in performance improvements. Additionally, all Android
APIs are accessible to developers at the Java layer and so the native layer provides no extra func-
tionality. Nevertheless, we found that out of 23,838 applications, 1,457 (6%) of applications have
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at least one native code file included in their APK. Of the total 2,652 shared objects in APKs, a
majority (1,533, 58%) of them were not stripped. This is interesting because stripping has long
been used to reduce the size of shared libraries and to make them more difficult to reverse engineer,
however, a majority of the applications we downloaded contained unstripped shared objects. This
may be a result of developers using C/C++ who aren’t familiar with creating libraries.

6 Limitations

6.1 Approach Limitations

There are several inherent limitations to static analysis. Tradeoffs are often made between speed,
precision, and false positives. We chose to have AndroidLeaks err on the side of false positives rather
than false negatives as we intend for results to be manually verified. Thus, while it could assist,
we do not intend for AndroidLeaks alone to be an Android market ”gatekeeper” that applications
must pass to be published or a definitive reporter to users of leaking applications.

While a dynamic approach would have high precision due to the fact that privacy leaks are
directly observed at run-time, having high code coverage is a challenging problem. Dynamic analysis
tools[7] tend to be manually driven, which does not scale to potentially tens of thousands of Android
applications, as was our goal. Combining AndroidLeaks with a dynamic approach could have great
potential, as AndroidLeaks could quickly scan many applications and determine candidates for
further analysis. We leave this open to future work.

6.2 Implementation Limitations

Incomplete permission mapping Our mappings between API methods and permissions has
a high coverage of the Android API but is potentially incomplete. Without testing every single
Android API call and every native library function in several executing environments, it’s difficult
to tell if we are missing or have extra methods in our mapping. The Android OS has been evolving
at a rapid rate, releasing a new version every few months. Maintaining a complete mapping in such
a rapidly changing environment adds further difficulties. Our results demonstrate the usefulness
and efficacy of our current permission mapping, though possibly incomplete, and we leave refining
out mapping to future work.

Android-specific control and data flows AndroidLeaks does not yet analyze Android-
specific control and data flows. This includes Intents, which are used for communication between
Android and application components, and Content Providers, which provide access to database like
structures managed by other components.

Analysis dependencies As mentioned in Section 5, we are unable to run our analysis on a
portion of applications as a result of invalid bytecodes in the dex2jar converted APKs. We rely
on both dex2jar and WALA working for us to analyze an application. Though it is possible for
a malicious developer to purposefully create an APK that dex2jar incorrectly converts, we do not
believe this is an important threat as there is no fundamental technical obstacle to creating a more
reliable dex2jar. Additionally, our analysis does not inherently rely on dex2jar, another tool that
more effectively converts the dex format to Java byte code could easily be swapped in.
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7 Future Work

Android-specific control and data flow As described in Section 6, there are several unique
ways execution may flow in Android that we plan to handle in the future. Using Intents, one
method can call another, either directly by name or indirectly by type of desired task. Both cases
are more complicated to analyze than standard control flow. In the former case, we would need to
introspect on the values of the arguments in Intent passing and in the latter case we would need
to build up a model of both the application’s configured environment and potentially the other
installed applications on the phone to know what would be called.

Permission mapping The permission mapping is a very important part of our work and its
precision and completeness directly affect our results, creating both false positives and negatives.
While our current mapping is sufficient for the scope of our current work, it will need to be improved
moving forward. Once we have Android-specific control flow integrated into our analysis, we should
be able to drastically improve the mapping.

8 Related Work

Chaudhuri et. al. present a methodology for static analysis of Android applications to help identify
privacy violations in Android with SCanDroid[10]. They used WALA to analyze the source code
of applications, rather than Java byte code as we do. While their paper described mechanisms to
handle Android specific control flow paths such as Intents which our work does not yet handle,
their analysis was not tested on real Android applications.

Egele et. al. also perform similar analyses with their tool PiOS[13], a static analysis tool for
detecting privacy leaks in iOS applications. They ran into a similar inter-procedural problems,
where methods were being routed through a dynamic dispatch function in the Objective-C runtime
and they had to develop a method to statically follow private data as it propagated through different
components of an application. PiOS ignored leaks in ad libraries, claiming that they always leak,
while one of the focuses of our work is giving developers insights into the behavior of ad libraries.
To our knowledge, PiOS presented the largest public analysis of smartphone applications before
this paper, analyzing 1,400 PiOS applications whereas we analyzed over 18,000.

In comparison to AndroidLeaks’s static analysis approach, TaintDroid [7] detects privacy leaks
using dynamic taint tracking. Enck et. al. built a modified Android operating system to add
taint tracking information to data from privacy-sensitive sources. They track private data as it
propagates through applications during execution. If private data is leaked from the phone, the taint
tracker records the event in a log which can be audited by the user. Many of the differences between
AndroidLeaks and TaintDroid are fundamental differences between static and dynamic analysis.
Static analysis has better code coverage and is faster at the cost of have a higher false positive
rate. One benefit of AndroidLeaks over the implementation of TaintDroid is that AndroidLeaks is
entirely automated, while TaintDroid requires manual user interaction to trigger data leaks. We
believe that AndroidLeaks and TaintDroid are in fact complementary approaches, AndroidLeaks
can be used to quickly eliminate applications for dynamic testing while flagging areas to test on
applications that are not eliminated.

Zho et. al. presented a patch to the Android operating system that would allow users to
selectively grant permissions to applications [19]. Their patch gives users the ability to revoke
access to, falsify, or anonymize private data. While an interesting approach, it is unlikely that
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this patch will be incorporated into stock Android because it may damage Android’s economic
model. Most free applications are supported by advertising which are driven by user analytics.
Therefore, any scheme that disrupts user analytics or advertising will negatively impact developers
who monetize their applications through advertising. However, for users capable of flashing their
own ROMs, this is potentially a robust way to limit applications.

Enck et. al. in a yet unpublished work, studied 1,100 free Android applications using a com-
mercial tool for static analysis [8]. Because they used a commercial tool but never described its
analysis algorithms, it’s impossible to compare the merit of analyses directly. From their prelimi-
nary results, we can note that Androidleaks is faster and therefore can run on a much larger scale.
While just their decompilation took approximately 20 days on 1,100 applications, our conversion
and analysis time for 18,000 applications was under 26 hours.

Felt et. al. in a yet unpublished work, investigate permission usage in 940 Android applications
using their tool STOWAWAY[9]. In order to determine the API method to permissions mapping,
the generated unit tests for each method in the Android API. They then executed these tests and
observed whether or a permission was required. This dynamic approach is very precise, however,
may be incomplete because dynamic testing may not be run in an environment that requires the
permission. Combining their mapping with our statically generated one could produce a very
complete and precise mapping.

9 Conclusion

As Android gains even greater market share, its users need a way to determine if personal infor-
mation is leaked by third-party applications. Whereas iOS incorporates a review and approval
process, Android relies on user regulation and a permissions model that limits applications’ access
to restricted resources. Our primary goal was to analyze privacy violations in Android applica-
tions. Along the way, we identified a mapping between API methods and the permissions they
require, created a tool to discover the permissions an application requires, accumulated a database
of over 23,000 Android applications and detected over 9000 potential privacy leaks in over 3,200
applications.
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