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Abstract—Despite ever increasing adoption of distributed sys-
tems, there continues to be a dearth of general purpose tools
for capturing, analyzing, displaying, and communicating the
operational manifestation of complex distributed systems for
other than performance purposes. Such tools could be highly
useful in (for example) reducing the learning curve for new
users of a distributed deployment, enhancing/aiding knowledge
transfer between users or administrators of such a deployment,
comparing differences between versions of a distributed software
package, and comparing disparate competing packages. We
present “LAASER-ttag,” a prototype for noninvasively capturing
the operation of distributed systems in a testbed setting. By lever-
aging and extending a modern Linux tracing toolkit (LTTng), we
effortlessly collect and incorporate into our analyses data from
different subsystems such as disk and network. Our prototype
imposes no source code modification (or recompilation), and
is completely agnostic to the application under study. After
presenting the design and rationale behind LAASER-ttag, we
show select samples of its output across a number of use cases.

I. INTRODUCTION

The widespread adoption of cloud computing technologies
in industry means that many software users now rely on com-
plex, distributed systems to solve their day-to-day problems,
whether they know it or not. There are many instances where
cloud computing technologies have made it easy for general
users to take advantage of distributed systems without having
to face the steep learning curve associated with traditional
parallel processing architectures. Large-data frameworks such
as Hadoop[1] make it easy for users to store and analyze
massive amounts of data in a cluster without having to worry
about the specifics of how data and computations flow through
the system. Open source cluster file systems such as Ceph
or GlusterFS make it easy to present a cluster’s distributed
storage as a single mount point that legacy web servers can
utilize for scale-out storage. Infrastructure-as-a-Service (IaaS)
cloud software such as OpenStack[2] provide a convenient
means of provisioning a cluster’s resources out to end users
in the form of virtual machines. All of these technologies
utilize software frameworks to manage distributed resources
and simplify the amount of work end users must do to take
advantage of a cluster.

While it is important to make distributed systems more
usable, quite often developers want or need to know what
exactly their framework is doing under the hood. For example,
performance-oriented users need to understand how resources
and tasks are scheduled in a framework when refactoring

applications to maximize performance. In situations where
sensitive data is involved, security researchers need to be able
to inspect a framework’s behavior to verify that sufficient
safeguards are in place and that the frameworks do not provide
new opportunities for attackers. Users with high reliability
requirements often need to verify that data and computations
are in fact distributed by a framework in a way that the
system could survive a known number of failures. Finally,
application developers often want to inspect a framework’s
behavior to help discover race conditions and bugs in their
own applications.

While there are many tools available today for analyzing
different aspects of complex distributed software systems,
we have yet to find one that covers all of our needs in a
generic manner. The vast majority of distributed analysis tools
focus on providing performance information. Ganglia, Nagios,
Supermon, OVIS, and Bright Cluster Manager provide an ef-
fective means for collecting runtime performance information
about applications in a cluster. Unfortunately, these statistics
generally do not reveal enough information to infer a detailed
understanding of a distributed application’s low-level behavior.
There are a variety of application-specific instrumentation
and monitoring efforts for specific frameworks, including
Hadoop’s Chukwa and Cassandra’s JMX interface, as well as
approaches that simply parse a specific framework’s log files.
These approaches are extremely insightful for understanding
applications that utilize the intended framework. However,
each has its own learning overhead, and the application-
specific nature of these approaches prohibits generality.

Our research is in developing tools and techniques to help
rapidly understand how different distributed software frame-
works behave. We argue that this work is best accomplished by
finding a middle ground between capturing high-level system
statistics and application-specific instrumentation: instead, use
kernel-level instrumentation to generically capture important,
system-level events in the life of the framework that can be
analyzed offline to extract meaningful behavior over time.

We have prototyped a solution that largely achieves our
goals. By leveraging and extending a modern trace framework
— The Linux Tracing Toolkit, next generation (LTTng)[3], we
have been able to rapidly assemble a relatively non-invasive
high-fidelity platform spanning subsystems such as disk and
network. We have used this platform for collecting, analyzing,
and displaying the operations and interactions carried out by
a variety of distributed software packages.
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The basic reasoning behind leveraging a system-level trace
framework is that system-level calls (e.g. syscalls) are the
well-defined crossings between computer programs and var-
ious subsystems of interest, such as disk and network. Thus
tracing these points is a natural and parsimonious approach
for observing how applications in general treat data.

The version of the prototype covered here focuses almost
exclusively on ‘tag tracking, which refers specifically to
placing short prespecified strings (the so-called ’tracked tags’)
into input data and subsequently observing them they traverse
a cluster during distributed computations. This tag tracking
prototype is part of a larger program (beyond the scope of
this publication) toward ’Live All-encompassing Automated
Scoring and Event Reconstruction’ (LAASER) in computer
network testbeds, and thus we refer to the prototype detailed
here as LAASER-ttag.

The remainder of this paper is structured as follows: Sec-
tion II explains general approach as well as our prototype
platform in great depth. Section III shows our system in
action by showcasing and discussing a variety of tag-tracking
analyses. Section IV comments on the implications of our tool
as well as future directions.

II. APPROACH AND METHODS
A. High Level Design Rationale

At the highest level, our goal for this work is loosely stated.
We desire a solution for recording the detailed operation of
testbed cloud systems in a form which lends itself straightfor-
wardly to high level human understanding. The solution space
for this loosely stated problem is immense. The most natural
starting points, perhaps, lie in using already resident system
functionality such as (on Linux, at least) netstat, ps, and
the /proc filesystem to cobble together snapshots of testbed
nodes as the cluster operates. Other natural (but typically
not system resident) data sources are network packet capture
(e.g. libpcap) and filesystem watches (e.g. inotify).
Pushing these various and disparate datasources through log
aggregators such as Splunk has in fact shown promise, but
in practice causes heavy system loads due to their polling
nature[4].

Avoiding such performance hits is one of the reasons we
chose the path leading to LAASER-ttag, which is based upon
system level tracing. LTTng (the tracing framework we ex-
tended) works by leveraging kernel tracepoints — prespecified
locations in kernel code which call out to functions pro-
vided by custom (LTTng provided) loadable kernel modules
for dumping structured, packed binary, trace entries to disk.
Much more information on system level tracing, including the
list of tracepoints used by LTTng, is available via LTTng’s
documentation[5] or a variety of other sources[6], [7]. Our
prototype only uses a subset of these tracepoints (mainly file
system and network operations).

Tracing, by design, is inherently event driven; upon events
of interest control is transferred to code LTTng provides for
inspecting and recording system state at that instant. Other
event-driven approaches include instrumented library code for
subsystems of interest and custom instrumented application

code[8]. As mentioned in the introduction, we desire a *more
uniform and less invasive’ solution. Now we are prepared to
define these terms more precisely — by uniform we mean that
it should be possible to instrument and analyze a wide variety
of tools according to a common methodology and technology
substrate, and by less invasive we mean that we want to avoid
having to modify or recompile the source code of the tools
under observation. We have achieved these goals with our
prototype. As our system collects data at the operating system
level, it is agnostic to the application under study. For the
exact same reason, it imposes no source code modification (or
recompilations) requirements on the application under study.

The space of possible analyses enabled by trace data is large.
For example, it is straightforward to produce a listing of all
Hadoop (see Section III-A for a more detailed discussion of
Hadoop) components annotated with process ID and role, (e.g.
DataNode) along with a record of all of the files that they
accessed during a distributed computation. Unfortunately, even
for simple computations, this listing can be large and difficult
to visualize. There are many strategies worth exploring for
managing the complexity (and sheer size) in such general
purpose analyses. However, we chose a different path, and
focused our attention on a rather simple analysis — putting
tracked tag observations into the context of operations that
were handling them. This analysis in our experience has a
wonderful filtering effect, and renders our datasets manageable
in size. That we can present both meaningful and readable
timeline graphics (e.g. Figure 2 in Section III-A1) on normal
sized paper is evidence of this filtering effect.

As we subsequently learned throughout development and
testing of LAASER-ttag, even tag tracking presents many
challenges. Foremost is comprehensiveness, for example, in
order to read from disk, applications have a choice in the
routine they employ. They can use the well-known read call,
they can use the scatter-gather readv, or they can use mmap
to map the file and read it as if it were in main memory, among
others. In order for LAASER-ttag to comprehensively catch
every traversal of tracked tags through subsystems of interest
requires covering all of the independent paths that data can
take through a system. Given the limited scope and funding for
LAASER-ttag development, we chose essentially to defer to
LTTng in selecting a sufficient set of tracepoints, and deal with
blind spots as they arise. For example, Section III-B details a
known blind spot of LTTng, memory mapped file I/O.

B. Trace Gathering and Pipeline Specifics

To conduct the analyses described in this study, we use a
(locally) modified version of the Linux Tracing Toolkit next
generation (LTTng)[3]. We made modifications to the 0.19.11
LTTng loadable kernel modules to enable ’tag tracking.” More
specifically, we have enhanced the LTTng modules to search
for each member of a predetermined fixed-size array of strings
(specific strings shown for reference in Table II) upon calls
to, e.g., fs.write, fs.read, net.socket_sendmsg,
net.socket_recvmsg. By strategically seeding input
data with instances of strings from the predetermined list,
our LTTng modules enable reconstructing high fidelity



synchronized[9] timelines of data traversal through network
cards and file systems of an instrumented cluster during
distributed computations.

In Table I we outline the versions of the various LTTng com-
ponents used in our current prototyping cluster. For simplicity,
our traced clusters (so far) have mainly been homogeneous
populations of Ubuntu 11.04 virtual machines. The version of
LTTng that was available when we were building our prototype
(LTTng 0.19.x) required kernel patches that are no longer
required by newer generation LTTng (2.x) releases. As such
we patched Ubuntu’s 2.6.38-9 build with LTTng’s 0.249 kernel
patch set (written against mainline kernel 2.6.38.6).

The machine suite used for the analyses in this paper
consists of a collection of virtual machines. All but one of the
machines (the cluster) perform the distributed computations,
and other than normal system software contain installs of the
various distributed software packages as well as LTTng. The
additional node is the instrumentation control and analysis
machine, and contains scripts for batch-controlling tracing on
the cluster as well as analyzing the collected traces.

Figure 1 depicts our collection scheme and analysis pipeline,
and works as follows:

1) After receiving a command from the instrumentation
control node, individual cluster nodes begin tracing and
storing results to local disk. In our current prototype,
the commands are issued via ssh with a command
such as ssh nodeX lttctl -C sampletrace
-w /home/ltt/sampletrace). We prefer that the
control box reside on a separate control network, such
that commands arrive at (and trace data leaves) cluster
nodes via an independent network interface than cluster
inter-node network traffic proper. This affords stronger
experimental pedigree as the two types of network traffic
are not comingled.

2) Once an experiment has concluded (or periodically, for
long running experiments), the control box commands
each cluster node to stop tracing and proceeds to down-
load the trace results, in their packed binary form, for
subsequent synchronization and analysis. Our current
prototype simply uses scp for downloading individual
traces. In the future we intend to explore LTTng’s
streaming capability.

3) Individual node traces are globally synchronized by
LTTng’s Ittv (trace viewer) tool. This ability to globally
synchronize traces is another notable attribute of, and
one of of the major reasons that we chose, LTTng. Their
global synchronization method is detailed in [9], and
essentially amounts to a clever implementation of [10]
using each cluster node’s TSC (timestamp counter) reg-
ister as a local timestamp along with inter-node events
having a known ordering (TCP packet transmit/receive)
to find a globally consistent linear mapping of each
node’s TSC values to a global time. For simplicity,
we store the globally synchronized event transcript in
Ittv’s textDump format. This text-based format is space
inefficient (especially relative to LTTng’s binary format),
but has been manageable so far. An example line from
the globally synchronized trace is as follows:

4)

fs.read: 356245.554562472
(/home/.../hdfsl/fs_0), 18788,

18766, /.../bin/java, , 18766, 0x0,
SYSCALL { count = 545, fd = 5, therep
= 4194312, ret = 545 }

This event indicates that a filesystem read was carried
by java (pid 18788, tgid 18766, parentpid 18766) on
node "hdfs1’ resulting in a buffer full of 545 characters
which were pulled from tgid 18766’s fifth file descriptor.
The ’therep’ field is detailed below.

As can be inferred from the example trace line above,
accumulating state is necessary to put any individual
event into context. For example, to appropriately ascribe
the example fs.read to a meaningful filename (or
socket, or pipe) requires keeping track of file descriptor
creation events. The corresponding event in this case is
as follows:

fs.open: 356244.909153060
(/home/.../hdfsl/fs_0), 18788,
18766, /.../bin/java, , 18766, 0xO0,

syscaLL { fd = 5,

filename = "/home/ltt/gettysburg.txt"}
To accumulate this state information across the various
cluster machines, we have written a highly modular tool
called LTTngcrunch. For tag tracking, LTTngcrunch’s
operation is fairly simplistic. It consumes the globally
synchronized textual output as shown above, parses
it into an object representation, which is then passed
through a pipeline of user-specified modules. For tag
tracking, our events pass through modules which per-
form file descriptor bookkeeping (for regular files and
TCP/IP sockets) and process bookkeeping. Bookkeeping
refers rather simply to accumulating (python) dictionar-
ies of system state (e.g. file descriptor tables), in order
to decorate an event’s object representation with more
comprehensive information (such as a filename instead
of merely a file descriptor number). Thus, in later stages
of the pipeline, the data need not be traversed serially
in order to retrieve corresponding state. The output of
LTTngcrunch, for ease in portability, is in javascript
object notation (JSON). With some fields omitted for
brevity and readability, the following is an example of
an LTTngcrunch output object:

{count:545, event_type:fs.read,
tgid:18788, pid:18766
local_timestamp:356245.554562472,
fdext:"/home/ltt/gettysburg.txt",
ret:545, seqgid:431501, fd:5,
therep:4194312}

For tag tracking, the most important field in these objects
is the ’therep’ field, which reveals whether tracked tags
were seen in this event. The title ’therep’ is meant to
be interpreted as a predicate (as in predicate logic),
ie. ’is it there?” In this case ’it’ refers to tracked
tags, and therep is interpreted as a bitmask. In other
words, therep being nonzero implies that a tracked tag
was seen in the corresponding operation. For example,
"therep=4194308’ in an £s.read event means that the
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buffer being returned by fs.read since 4194308,y =
0000000010000000000000000000100, = 272 + 2%, and
*fix283” is the 22"¢ and ulr821° the 2"? zero-indexed
entries, respectively, in our prespecified tag array (Ta-
ble II).

The final data refinement step in our pipeline is to store
all of the (now JSON formatted) events where therep is
nonzero in a SQLite database (with a schema detailed
in [11]). This is accomplished by a fairly simple python
script which consumes JSON objects, and writes data
to a SQLite database, appropriately formatted per our
schema. At this point we consider our analysis complete,
and the SQLite product is amenable to interpretation in
any way desired (perhaps, most easily, as a spreadsheet).
It is of note that the number of events where therep is
nonzero is typically orders of magnitude smaller than
the original number of traced events, and as such the
resulting SQLite files are typically small.

The standard fashion in which we inspect the SQLite
files produced by our pipeline is via an in-house de-
veloped timeline generator. We will see a number of
examples of these timelines in subsequent sections (e.g.
Figure 2 in Section III-A1), which depict (global) time
on their vertical axis and contain a column for each
process (thread group id (TGID), more specifically) that
handled a tracked tag. This medium has proved natural
for understanding node-to-node interactions, as well as
intra-node operations, where tracked tags are involved.

C. Limitations

Our system also suffers from a number of minor limitations:

Itt-control 0.88-09242010 Trace daemon, etc.
1tt-modules 0.19.11 (+ in house mods) | Kernel modules
patches 0.249 (targeting 2.6.38.6) Kernel patch set

TABLE I
LTTNG TOOL VERSIONS USED IN OUR PROTOTYPE

The 0.19.X LTTng kernel patches place tracepoints at
the locations where traced functions are about to return
control to their callers. In general this is not a problem,
but in certain cases makes for difficulty in deciphering
results. For example, if a socket is sending data asyn-
chronously (i.e. with the socket option O_NONBLOCK
set), the net.socket_send event typically occurs before the
corresponding net.socket_receive at the other end of the
socket. This is contrary to the order a user of LTTng
comes to expect, because normally the net.socket_receive
will return before the net.socket_send (which blocks until
receipt is confirmed).

While the global time synchronization feature of LTTng
is certainly distinguishing, it is not without its own limita-
tions. For example, every node must exchange traffic with
every other node at least once during each tracing session
(albeit only a few packets for each node pair). This all-to-
all communication requirement scales quadratically with
number of nodes, and may be prohibitive in large clusters.
Tracing has the potential, especially on highly utilized
systems, to produce huge amounts of data. We save
approximately one order of magnitude in storage re-
quirements (versus LTTng in its standard configuration)
by selectively deactivating tracepoints which are non-



essential to our analyses. This savings has been sufficient
to enable all of the experiments we have conducted to
date. If larger savings are needed in the future, it will not
be prohibitively difficult to modify LTTng to selectively
save events produced by, e.g., white listed applications.
This is only one of many potential space saving strategies.

D. Scanning Algorithm

A key challenge in developing an effective tagging systems
is implementing an efficient system for inspecting data that
moves through the instrumentation points. Our needs require
that a small number (30) of fixed-length (6) strings be used as
a search dictionary, and that tags can start at any position in the
stream. Since we have control over the tags used in a system,
we can simplify the search task by using non-overlapping tags
that remove the need for tracking multiple potential hits at the
same time.

We considered multiple strategies for string matching in
the streams. While efficient algorithms such as Boyer-Moore
and Knuth-Morris-Pratt would be ideal, we constructed the
simple but effective approach listed in Algorithm 1. This
scanning algorithm was straightforward to implement and met
our performance objectives. It is invoked in the following
LTTng tracepoints to check for the existence of tracked tags
in input/output buffers:

Algorithm 1 Simplistic scan for fixed length prespecified
strings in a buffer. While this routine has O(nmw), we
reasonably assume m and w as constant. Further, n is also
typically small, and thus this strategy is not time-prohibitive.

Input: a character buffer of length n

Input: a tag array of length m, containing tags with fixed
width w, e.g. Table II

Output: a bitmask b where bit ¢ being set indicates that tag
© exists in the buffer

1: function SCAN-FOR-TTAGS(buffer)

2 for all positions ¢ from 0 ton —w+1do > O(n)
3 for all tags ¢ with pos j in tag array do > O(m)
4 if ¢ =buffer[i : ¢ + w] then > O(w)
5 b+ bV 2 > V denotes bitwise OR
6: end if

7 end for

8 end for

9: return b

10: end function

III. CASE STUDIES

We now present a variety of LAASER-ttag analyses in
order to illustrate its utility in understanding cluster operations.
The scenarios covered in this paper are intentionally short,
simplistic, and involve only a few processes across a small
number of cluster nodes. That they are short is in an effort to
save space, but not at the expense of showcasing a meaningful
set of operations.

0 1 2 3 4 5
yqz958 | wbu365 | ulr821 jrs036 | rkfl68 | jxm820
6 7 8 9 10 11
ori894 yko871 ftu070 srf502 grl148 lyr428
12 13 14 15 16 17
dpp223 roc357 ddj250 viol54 | pzz933 | bjk412
18 19 20 21 22 23
wqvl139 | yvI354 | wfbl50 | bwj563 | fix283 | ogd030
24 25 26 27 28 29
0ie495 ¢gh069 | wyc894 | hpnl20 | riu782 bbt515
TABLE II

CURRENT PROTOTYPE’S TRACKED TAGS ARRAY. FOR EXAMPLE, IF fix283
IS FOUND IN A BUFFER, ALGORITHM 1 WILL RETURN A BITMASK WITH
THE 22nd 0-INDEXED BIT SET. IN THE NOTATION OF ALGORITHM 1,
m = 30 AND w = 6.

A. Hadoop

The case studies in this section were conducted with Apache
Hadoop (http://hadoop.apache.org/). Hadoop is a framework
for distributed processing of large data sets. Hadoop has two
primary components: MapReduce, which is patterned after
Google’s MapReduce, and the Hadoop Distributed File System
(HDFS)[1] which is patterned after Google’s GFS. HDFS is a
replicated block store and functions as the storage layer of the
Hadoop framework. Hadoop MapReduce runs a TaskTracker
process on each node for processing data. It’s JobTracker
process manages the processing tasks. HDFS’s NameNode
server process runs on a single node and stores the metadata
(file names, permissions, replication factors, etc.) for all the
files in the file system. The SecondaryNameNode process
assists the NameNode in compacting the metadata stored on
disk. File content is divided up into blocks and stored by the
DataNode processes running on all the nodes in the cluster.

The case studies in this section were conducted in a cluster
where DataNode and TaskTracker processes were running on
every node and the NameNode, JobTracker, and SecondaryNa-
meNode processes were running on one of those nodes. The
HDFS replication factor was set to two, which means that each
HDEFS block will be replicated to at least two distinct nodes.

1) Simple Tag in Data File: In our first case study, we
traced movement of file content in HDFS. HDFS writes are
performed by a client process that reads files from the local
disk and then sends the file metadata to the NameNode.
The client’s communication with the NameNode is over Java
Remote Procedural Calls (RPCs). The NameNode returns to
the client a list of DataNodes to write each file block. The
client then sends each block and its DataNode list to the
first DataNode in the list using a custom binary protocol.
The DataNodes replicate the blocks they receive to the next
DataNode in the provided list.

Figure 2 shows the output of LAASER-ttag after executing

bin/hadoop dfs —-copyFromLocal

~/Documents/

/user/ltt/gutenberg
from one of our cluster nodes. This command copies all
of the files used in this Hadoop tutorial[12], as well as
two additional files seeded with tracked tags (the Gettysburg
Address and the U.S. Constitution) into an HDFS directory



with path /user/1ltt/gutenberg. The picture shows that
the cluster is configured to replicate blocks to two nodes,
and that the replication is done as a relay (as opposed to a
broadcast). Second, it gives hints as to HDFS’ block structure
and naming scheme, as the block file names and underlying
directory structure imply some sort of hashing scheme.

2) Tag as Username: By placing tracked tags in locations
other than input data, we are able to learn about other aspects
of the system under study. In this case, we set the username
of our HDFS transaction to be a tracked tag. By invoking the
same command as in the previous subsection (Section III-A1),
we observe that in the default HDFS configuration, the user-
name rarely manifests in the network or on disk. Specifically
in this case, the username only traversed the network as
the HDFS client initiated conversation with the NameNode,
and only manifested on disk as the NameNode updated its
filesystem journal (dfs—-root/name/current/edits).
The SecondaryNameNode did not compact the metadata on
disk during the trace.

In contrast, the username manifests much more copiously
in a fairly simple MapReduce job. When a MapReduce job is
submitted by the Hadoop client, the JobTracker instructs the
TaskTracker which part of the job to process. The job’s code
and configuration settings are distributed to the TaskTrackers
via HDFS. By cursory inspection, the username manifests in
a dozen TaskTracker configuration and job specification files,
another dozen logs, and in blocks across all nodes of the
distributed file system. We omit detailed trace graphics for
this case due to space constraints.

3) Tag in Code: As a final case for HDFS, we seeded
executable code (in the form of a Java jar file) with a tracked
tag in order to examine HDFS from yet another angle. Figure 3
shows the analysis produced after running MapReduce job
from the previously mentioned Hadoop tutorial [12]. The
figure shows the distribution of the jar file from the client to
the DataNodes and then from DataNodes to the TaskTrackers.
This analysis, of all we have conducted to date, gives us hope
that it will be possible to use LAASER-ttag data to infer
highly abstracted characterizations of distributed systems at
the distributed-protocol level.

B. Tag in MapReduce job input (with the details of Memory
Mapped File 1/0 shortcomings)

As discussed earlier (Section II-A), while LAASER-ttag
makes a best effort at comprehensively tracking data as it
traverses through our clusters, the current prototype undoubt-
edly has blind spots. As an instructive example, we were
suspicious of one of our early analyses (of a MapReduce
job, analysis figure omitted due to space constraints) in that
there were network send/recv events of tracked tags with-
out preceding filesystem reads. To wit, how can Hadoop
send HDFS blocks out to the network without reading them
first from disk? Digging lightly into the HDFS source re-
vealed that the BlockSender class (BlockSender. java
in hdfs/server/datanode/) reads HDFS blocks from
disk via Java’s “new” I/O (java.nio. x) FileChannel class,
which is Java’s abstraction for memory-mapped file I/O. Since

our current prototype ignores memory-mapped file I[/O (mainly
because LTTng 0.x does not provide a natural tracepoint for
mmap and friends), we essentially missed the disk reads.
Rerunning the same command on an older version of Hadoop
(namely 0.17.2, the last version that did not use Java FileChan-
nel) yielded an analysis in which our system correctly observes
the disk reads before the network sends.

C. GlusterFS

GlusterFS[13] is a popular open source distributed file
system (DFS) that enables users to aggregate a cluster’s
distributed storage resources into one or more mountable
volumes. The software is comprised of a daemon for servers
that manages local storage resources, and a FUSE software
interface for clients that enables end applications to transpar-
ently connect to the data maintained by the system. Unlike
other DFSs, GlusterFS does not utilize a metadata server to
handle data placement within the cluster. Instead, it computes
a hash of a file’s filename to determine which servers in
the cluster are responsible for maintaining the desired data.
GlusterFS can be configured to stripe (discouraged) and/or
replicate (encouraged) data across multiple storage nodes in
the system. If striping is not utilized, a file is stored in its
entirety on a single storage node, as well as every other
replicate storage node. Many users favor GlusterFS because
data files are generally stored as-is in the underlying storage
devices, and could easily be recovered if the GlusterFS system
were to suffer a catastrophic failure.

Figure 4 shows a simple scenario where one cluster node
(node2) performs a shalsum of a file that resides in the
Gluster file system and turns out not to reside on the local
disk, necessitating a network transfer. As was the case with
HDEFS above, this picture can be quite informative to those
not deeply familiar with Gluster’s inner workings. First, it
is straightforward to infer from the reads and writes to/from
/dev/fuse that this Gluster deployment is via a FUSE
filesystem. Second, Gluster appears to use a client-server
model for retrieving data from remote nodes, as ’glusterfs’ on
node2 reaches out to a daemon ’glusterfsd’ on nodel which
in turns invokes its local ’glusterfs’ on nodel.

D. Ceph

Ceph[14] is a relatively new DFS that has received a fair
amount of recent attention due to the inclusion of its client
interface code in the Linux kernel. Ceph was designed to be a
distributed object store upon which additional storage services
such as a DFS could be layered. This object store decomposes
objects into smaller (8MB) blocks that are internally replicated
on multiple storage nodes within the cluster.

The analysis is shown in Fig. 5 presents a scenario nearly
identical to that shown in GlusterFS (Sect. III-C and Fig. 4)
whereby an invocation of shalsum of a file necessitates
network transfer of the desired content via the underlying dis-
tributed file system. In contrast with GlusterFS, the Ceph client
is part of the Linux kernel, as is evident by the kworker thread
contacting the ceph-osd for the file in question. Additionally,
the analysis makes evident that Ceph is journaled, and writes



nodel node3 node4
timestamp client (5386) DataNode (4321) DataNode (4974) DataNode (3223)
177913990248 Fxt fd[“/home/ltt/Document
‘cuments/constitution. txt"]
177914118814 fs.write, port: 43033 fs.read, port: 50010
@ o LI >

177914.124222 Fithf:ét /tm /hadoop-1ltt/df.. .

blk_-4682079582279071532"]
177914.123069 net.sock_sendmsg, port: 37765 fs.read, port: 50010
177914.129604 .7 EST% cmp/hadoop-1tt/dE, . |

...Blk7*4683079582579071532"]
177918947616 Fxt fd["/home/ltt/Document
Documents/gettysburg. £xt"]
177918953351 fs.write, port: 43056 fs.read, port: 50010
@ LI >

177918.953399 Fitw}:é‘fﬁ/tmp/hadoo ~ltt/df.

Blk_-6044091965148605530" ]|
177918.953497 net.sock_sendmsg, port: 37788|[fs.read, port: 50010

@ L >
177918.953917 lFié“?é%ﬁ}tmp/hadoogfltt/df
...blk_-6044091965148605530"]

Fig. 2. A Hadoop client puts two files into an HDFS by submitting them as blocks to its local DataNode. In turn, the local DataNode replicates each block
to a second DataNode somewhere else in the cluster.

nodel node2

timestamp client (23032) DataNode (21779) TaskTracker (22264) DataNode (13727) TaskTracker (13885)

676752.136827

xt gd [ W /home/tracedus%r/h

_adoop-examples—1.0 art]
676752.190692 fs.write, port.58085 fs.read, port: 54325
676752.201531 xt fd "/a /hadoop/tmp/df
Blk_- ["{2Re 539588153 31957
676752.203457 net. sockisendmg,fs .write, port: 36364 fs.read, port: 50010
676754.101922 F;g;ﬁé‘eétmp{
676754.314759 fs.write, port.. : 54325

676754.316275

676763.441011 fs.write, port:.58105 fs.read, porc:;ﬂ}?s
. ter
676763.442767 Fii?é[f/app/hadoop/tmp/ma. .
...T51829_0001/jars/job.jar"]

Fig. 3. Upon invocation of a MapReduce job (by the client on nodel), Hadoop distributes copies of the tagged Jar file to TaskTrackers across the cluster.

nodel node2
timestamp glusterfsd (8436) glusterfs (8516) glusterfs (18597) shalsum (18604)
543829.650762 Fitr?g "/dev/fuse"]
543829.651313 fs.readv, port: 24009 fs.writev, port: 1020

e L °

543829.661239 Fs.pwriteﬁdz )

xt_fd["/tmp/mydump/poison. . .

["/tmp/mydump/poison.txt"]

xt,fd["'/tmp/mydump/poison. .
. ["/tmp/mydump/poison.txt"]

543835.831648 fs.writev, port: 24009 fs.readv, port: 1014
® >

543835.831462 Fs.read

543835.851911 Figf?é%??éev/fuse-w |

Xt fd["/mnt/gvoll/polson
.d["/mnt/gvoll/poison. £xt "]

543835.851921 F

Fig. 4. Taking the hash (shalsum) of a file resident in a Gluster filesystem in this case triggers the underlying DFS to retrieve the file via the network.



nodel

node2 node3

timestamp ceph-osd (1693) ceph-osd (1763)
net.sock_recvmsg, port: 6804

39079.8235817

39079.8251097

s, tev:
39079.8446822 th?;["‘/’Var/lib/ccph/osd/ Iy
. ../ceph/osd/ceph-0/journal"]

39079.8457381

s.writev:
xt_fd["/var/lib/ceph/osd/,. |
...000000__head_73125264__0"]

S.writev:
39079.8469862 xt_fd["/var/lib/ceph/osd/. ..
.. .7ceph/osd/ceph-1/journal®

S.writev:
ext_fd "/Var/]ib/ccgh/ bsd/ . .
...000000__head_731252 "

39079.8475835

. d64 :
39079.8746004 Fif%ﬁiu/m/hb/cepmd/_ |
...000000__head_73125264__0"]

net.sock_sendmsg, port: 6804

39079.8749689

39079.8753097

kworker/0:2 (38) kworker/0:1 (21) shalsum (5339)

.sock_recvmsg, port: 34698

. .7mycephfs/gettysburg.txt"]

S.Tead:
xt_fd["/mnt/mycephfs/gett. . |

Fig. 5.

to the journal are done lazily (upon request, rather than upon
insertion into the filesystem).

IV. DISCUSSION AND CONCLUSIONS

Our research is in developing techniques to help rapidly
understand how different distributed software frameworks be-
have. We have argued that this work is best accomplished by
finding a middle ground between capturing high-level system
statistics and application-specific instrumentation: instead, use
kernel-level instrumentation to generically capture system-
level events in the life of the framework that can be analyzed
offline to extract meaningful behavior over time.

We have presented a prototype system, LAASER-ttag, for
noninvasively and uniformly making sense of data flows
throughout distributed system testbeds. As our system collects
data at the operating system level, it is agnostic to the appli-
cation under study, and imposes no source code modification
(or recompilation) requirements on the application under study.
We have also presented a number of simple case studies carried
out by LAASER-ttag, thereby illustrating its utility.

In addition to diving deeper into any particular distributed
software package (natural follow on steps), there are many
other potential uses for LAASER-ttag.We plan to explore the
space of different analyses. That is, while tag tracking is no
doubt useful, we are interested in characterizing other aspects
of distributed systems operational manifestation. For example,
it would be worthwhile to explore how the overwhelming
number of operations being carried out by a distributed system
every second could be portrayed to human in a summarized
but insightful fashion.

Another direction is in exploring LAASER-ttag as an inde-
pendent data source for finding indicators of anomalous system
activity. We envision pushing LAASER-ttag data through log
aggregators along with more standard system security logs
in order to statistically associate known violations (i.e. the
ground truth provided by LAASER-ttag) with non-obvious
but discriminatory side-effects (i.e. non-obvious indicators that
will reliably manifest in fielded systems).

Taking the hash (shalsum) of a file resident in a Ceph filesystem in this case triggers the underlying DFS to retrieve the file via the network.
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