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What is Vector Processing

"Vector processing is a complication to computing,
invented to make number crunchers go faster.”

Most of the elementary vector operations consist of a
series of independent calculations for all elements of the
operand vectors, and so may be performed in parallel.
Vector processing may thus be seen as one particular

form of parallel computing.
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The IBM 3090-600E Vector Facility

e fast scalar performance for compute intensive
applications

® six processors, each with a vector facility and 64 KB
cache memory

® 256 megabytes of memory
e 1 gigabyte of expanded storage
e 115 gigabytes of disk storage

e cach application may use up to 999 megabytes of
virtual memory
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The IBM 3090-600E Vector Facility

e the dynamic range is 1077 to 107 7®

e provides a decimal precision from 6 to 7 (short) digits
to 13 to 14 (long) decimal digits

® cycle time of 17.2 nanoseconds
e theoretical peak performance of 116 megaflops
e Jikely ESSL peak performance of 75 megaflops

® realistic vector program performance goal of 40 to 50
megaflops
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The IBM 3090 Vector Facility

® 16 32-bit data vector registers or 8 64-bit registers (for
single or double precision data)

e these 16 vector registers operate on up to 128 data
elements (the section size) of 4 bytes each

e three other vector registers:
e vector mask register
e vector activity count
e vector status register

® 171 vector assembler instructions

¢ FORTRAN code using REAL=*8 data has access to
three compound vector instructions, which execute
two FLOPs per cycle (after pipeline startup):
e multiply and add
« multiply and subtract
e multiply and accumulate

® most other vector instructions execute one FLOP per
cycle (after pipeline startup) '
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Vector Facility Registers

vector

mask 16 multipurpose

register registers

VMR VR O VR 1 VR 14 VR 15

® the vector mask register is 1 bit wide

® the vector registers are 32 bits wide and may be
paired for a width of 64 bits

® the section size Z is 128 elements
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What is a Vector?

e a VECTOR is a group of elements in an array

® a vector is partitioned into a SECTION in order to
execute on the vector hardware. The section size on
the IBM 3090E is 128 elements.

® the spacing between successive elements in a vector is
called STRIDE. For example, the vector A(1), A(2),
A(3)... has stride 1.

THe ARRAY A(100.200) 1s LAID OUT IN STORAGE AS:

A(1,1) AC(2.1) A(3,1)....AC100,1) AC2,1) A(2.2)...

A(1,1) A(2,1) <=== sTRIDE 1
A(1,1) AC(1,2) <=== sTRIDE 100

e an INDUCTION VARIABLE is any INTEGER=*4
| variable that is incremented or decremented by a fixed
amount each time through a loop, such as with the

index of a DO loop. This is also referred to as an
INDUCTIVE SUBSCRIPT.




DO 10 I = 1.N
10 ACI) = SCAL

THE SUBSCRIPT EXPRESSION [*] 1S A NON-INDUCTION
SUBSCRIPT HERE!
DO 10 I = 1.N
10 A(I*I) = SCAL



® only DO loops can be vectorized

e the basic unit of vectorization is the statement —
there is no partial vectorization within a FORTRAN
statement

® in a DO loop, the calculations in one iteration of the
loop must ‘not depend on a previous iteration.

For example, this loop vectorizes

DO 10T = 1,90
CAI) = ACT) + CCI) * 3
10 CONTINUE

while this one does not
DO 201 = 1,90

C(I+1) = ACT) + C(I) * 3
20  CONTINUE
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Scalar Computation For a DO Loop

e registers for scalar arithmetic hold only one element
at a time

e to add two vectors A and B, each element in vector B
has to be added individually to the appropriate
element in the vector A, and then assigned to the
appropriate element in vector C.

For example,

DO 10 I = 1.N
C(I) = ACT) + BC(D)
10  CONTINUE

the sequence of instructions for this DO loop,
executed in scalar mode would be:

LOAD ELEMENT COUNT(N)
LOAD a(i) INTO scalar register
ADD b(i) INTO scalar register
STORE c(i) FROM scalar register
DECREMENT COUNT BY 1

IR S
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Vector Computation for a DO Loop
® vector registers can hold up to 128 elements

e vectorizing a DO loop produces instructions that
operate on groups of data elements.

The sequence of instructions in vector mode is:

LOAD ELEMENT COUNT (N)

LOAD a(1) — a(128) INTO vector register
ADD b(1) — b(128) TO VECTOR register
STORE c(1) — ¢(128) FROM vector register
DECREMENT COUNT by 128

MRS
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Vector Registers

Provide a FAST storage location for operands, available
to the pipeline on a one cycle per operand set basis.

VR1 VR2
A(128) B(128)
o ° °
| A(7) B(7)
. A(6) B(6)
A(5) B(5)
|
| £
A(4),B(4)
A(3),B(3)
A(2).B
(2),B(2)
A(1),B(1)
o S

i
]}E
\
|
|
|
|
|
I
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Vector Sectioning — the Basic Action of Vectorization

DO 10 J = 1.N
10 AQJ) = B(D)

becomes sectioned as:

Do 10 J = 1,N.Z

DO xx gv = JLJ*MIN(N-J,Z-1).1
XX ACov) = B(uy)
10  CONTINUE

® the innermost (DO xx) loop is executed in the vector
registers in groups of Z (128) elements at a time

e the outer loop increment is Z instead of 1 so that the
vector instructions in the loop are executed
approximately N/Z times rather than the N times
required by the equivalent scalar loop.

® the remaining iterations (i.e., when N is not an integer
multiple of Z) are also processed in the vector

registers

e the MIN is the “sectioning overhead.”
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Tools for Vectorization

e VS FORTRAN Version 2 Release 3 Compiler

e Interactive Debugger (IAD)

e Engineering and Scientific Subroutine Library (ESSL)

e Assembler Listing
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Vectorization Strategy

® time your program to find where it spends most of its
time (the hot spots)

e compile your program with VS FORTRAN Version
2, using the vector option on all or just key routines

and then run it.

® ook at the vector report to see which loops were

vectorized
1.  were key loops vectorized?
2. what prevented vectorization?

® compare vector to scalar execution times
® assess performance expectations

® if necessary and potentially fruitful, modify your
program to increase vectorization
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Vector Content

the Vector Content of a program is that percentage of the
scalar code that vectorizes.

| ® assume, for example, that 60% of your scalar code
| | vectorizes

e assume further that this 60% has a vector to scalar
speedup of 4

scalar code vectorizable code
40 minutes 60 minutes scalar
opt(3)
4x
40}minutes 1_5
min

scalar time _ 100

- = =1.82
vector time 55

program speedup =
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Vector Performance Formulas

scalar code vectorizable code
X Y vtime{scal)
X vtime{vect)
vvectime

Y = vtime(scal) - X
= vtime(scal) - ( vtime(vect) - vvectime )
= vtime(scal) - vtime{vect) + vvectime

% vectorizable = Y /7 vtime(scal) * 100
good vector content = 75% +

vector speedup = Y / vvectime
good vector /scalar speedup = 3to 5

program speedup = vtime(scal) 7 vtime(vect)
good program speedup = 1.5to 3.0
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Vector Performance Considerations — Amdahl's Law
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Quick Timing

READY MESSAGE

when no errors occur, the CMS ready message is of
the form:

R; T=M.MM / N.NN HH:MM:SS

where m.mm is elapsed CPU in seconds and n.nn -is
elapsed CPU plus overhead in seconds (since the last
CMS ready message).

INDICATE USER

issue the command INDICATE USER before and |
after running a program to determine approximate
overall time and vector time. |

VTIME elapsed CPU since LOGON in mmm:ss
VVECTIME
elapsed vector CPU since LOGON in
mmm:ss (a subset of VIIME)
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The FORTRAN Version 2 Compiler

® can automatically vectorize eligible statements in DO
loops

e only statements in DO loops can be vectorized

o will select the single DO loop in a nest of loops
whose vectorization will lead to the fastest
execution

® will use vector versions of most intrinsic math
functions

® can use optimization level 2 or 3 with vectorization;
default is OPT(3)

® generates a vector report which shows the
vectorization decisions made by the compiler
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Compiling with the Vector Options

NOVECTOR is the FORTVS2 default. The VECTOR
opticn and suboptions must be specified.

Syntax:
FORTVS2 progNAME (OPT(213) '
VECTOR (VECTOR SUBOPTIONS)
OTHER COMPILER OPTIONS...
Example:

FORTVS2 MULT (OPT(3) VECTOR (REPORT (XLIST))
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Vector Suboptions

REPort ( TERM LIST XLIST SLIST STAT)

TERM

LIST

XLIST

SLIST

STAT

IVA

Flags vectorized loops and shows how those
loops were restructured. Display is at the
terminal.

Same as TERM, but information is placed
in the LISTING file.

Produces detailed information about why
loops were not vectorized, put in the
LISTING file.

Shows vectorized loops and statements in
the format of the entire source program;
placed in the LISTING file.

A vector statistics table is placed in the
LISTING file.

Produces a Program Information File, which is
required by IAD to use Interactive Vectorization Aid



Introduction to Vectorization 27-

functions.
e SIZE (ANY|LOCAL|n)
Specifies the section size to be used.

ANY uses the section size of the machine on
which the routine is running.

LOCAL .uses the section size of the machine that
compiled the program

n used to specify an explicit section size. Must
be the same as the machine’s actual section
size.



Vector Suboptions Example
FORTVS2 TEST (OPT(3) VECTOR(REPORT(TERM))
WOULD DISPLAY AT THE TERMINAL!

SCAL ----- DO 10 T = 1.N
I ACI+500) = ACI) + 1.0

FORTVS2 TEST (OPT(3) VEC(SIZE(LOCAL)REP(XLIST)>
wouLD PLACE IN THE LISTING FiLE:

VECT ----- DO 10 I = 1.N
. l A(1+500) = ACI) + 1.0
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Sample Timing Analysis

| PROGRAM FTVECT

| PARAMETER (N=20000, M1=120C, M2=175, M3=425)
| REAL*4 D(N), E(N), DOTPR, SUM

| REAL*4 ACM1,M2), B(M2,M3), C(MI,M3)

DO 10 I=1.M1
DO 10 J=1.,M2
ACL,J) = NINTCFLOATCI-J))
10  CONTINUE

D0 15 I=1,M2
DO 15 J=1,M3
B(I,J) = 1.0/SQRT(FLOAT(I)/FLOAT(J))
15  CONTINUE

DO 20 I=1.N
D(I) = SINCFLOAT(I) /7 2.0)
E(I) = COSCFLOAT(I) * 2.0)
20  CONTINUE

DOTPR = 0.0
SUM = 0.0

DO 30 I=1.5
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SUM = SUM + DCI) /7 ECID)
30  CONTINUE

DO 35 I=1.Ml
DO 35 J=1,M3
DO 35 K=1.,M2
C(1,d) = CCIL,J) + ACLLK) * BCKLJ)
35  CONTINUE

DO 40 I=1.N
DOTPR = DOTPR + (D(I) * E(I))
40  CONTINUE

DO 50 I=1.,1200
DO 50 J=1,200
C WRITE (10,51) C(I.J)
50 CONTINUE
51  FORMAT (F15.5)

DO 55 1=5000., N, 5000
WRITE (6.,56) I, D(I), ECI)
55  CONTINUE

56  FORMAT(' I =',I5," D(I)=",F8.2," E(I) =

'JF8.2)

WRITE (6,%) 'SUM: ", SUM
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WRITE (6.*) 'DOT PRODUCT: ' DOTPR
WRITE (6.,*) "MATRIX MULTIPLY: ',C(M1.,M3)

STOP
END

FORTYS2 FTVECT (opPT(3)
VS FORTRAN VERSION 2 ENTERED., 09:48:11

**FTVECT** END OF COMPILATION 1 *%wus*
VS FORTRAN VERSION 2 EXITED.  09:48:11

Reapy; T1=0.,12/0.15 09:48:11

LOAD FTVECT (CLEAR

Reapy; T=0,08/0.11 09:48:23

IND USER ,

USERID=BEBO MACH=370 STOR=0006M VIRT=V XSTORE=NONE

IPLSYS=CMSR5C  DEVNUM=0015

PAGES: RES=000914 WS=000590 LOCK=000000 RESVD=000000

NPREF=000035 PREF=000000 READS=000040 WRITES=000047

XSTORE=000048 READS=000436 WRITES=000630 MIGRATES=000047

CPU 00: CTIME=00:47 VTIME=000:42 TTIME=000:44 [0=001721
RDR=000000 PRT=000053 PCH=000000
VVECTIME=000:07 TVECTIME=000:07
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Reapy; T=0,01/0.01 09:48:28

START

DMSLIO0740I EXECUTION BEGINS...

[ = 5000 DCI)=  -0.65 ECI)=  -0.95

I = 10000 DCI)=  -0.99 ECI) = 0.81
| I = 15000 DCI)=  -0.85 ECI)=  -0.60
| | [ =20000 D)= -0.31 E(I)= 0,32
: SUM: -8.36326027

DOT PRODUCT: -0.393103242

MATRIX MULTIPLY: 587375.500

Reapy; T=26.01/26.16 09:49:15

IND USER

USERID=BEBO MACH=370 STOR=0006M VIRT=V XSTORE=NONE

IPLSYS=CMSR5C  DEVNUM=0015

PAGES: RES=000899 WS=000864 LOCK=000000 RESVD=000000

NPREF=000034 PREF=000000 READS=000040 WRITES=000047

XSTORE=000048 READS=000436 WRITES=000630 MIGRATES=000047

CPU 00: CTIME=00:48 VTIME=001:08 TTIME=001:10 10=001743
RDR=000000 PRT=000073 PCH=000000
VVECTIME=000:07 TVECTIME=000:07

Reapy; T=0,01/0,01 09:49:25

FORTYS2 FTVECT ( VECTOR (LEVEL(2) REPORT(TERM))
VS FORTRAN VERSION 2 ENTERED. 09:50:18
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| ‘ (1) USE OF VECTOR REQUIRES OPT(2) OR OPT(3), OPTIMIZATION
| LEVEL HAS BEEN

SET T0 3.
SCAL  #ommmmmn DO 10 I=1,Ml
SCAL [ #-mmmm- DO 10 J=1,M2
¥ ACTLL ) = NINTCFLOAT(I-J))
|
VECT  #ocommee DO 15 I=1,M2
o R DO 15 J=1,M3
I B(I,J) = 1.0/SQRT(FLOAT(I)/FLOATCJ))
_
VECT  #ommmee DO 20 1=1,N
| DCI) = SINCFLOATCI) /7 2.0)
| ECI) = COSCFLOATCI) * 2.0)
SCAL  #-mmmom-e DO 30 [=1,5
| SUM = SUM + DCI) / ECI)
VECT  #ommomee DO 35 I=1,M1
SCAL  f+=mmmmn DO 35 J=1,M3
SCAL | 1+ommm- DO 35 K=1,M2
i CC(LY) = CCLLJ) *+ ACLLK) * BCKLJ)
X
9
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VECT  +----mmo DO 40 I=1.N
DOTPR = DOTPR + (D(I) * ECI))

UNAN DO 55 1=5000., N, 5000

THE DO-LOOPS HAVE BEEN PROCESSED AS INDICATED,
**FTVECT** END OF COMPILATION 1 #*#=ww»

VS FORTRAN VERSION 2 EXITED. 09:50:34

Reapy; T=0,18/0,23 09:50:34

LOAD FTVECT (CLEAR

Reapy; T1=0,10/0.13 09:50:56

IND USER

USERID=BEBO MACH=370 STOR=0006M VIRT=V XSTORE=NONE

IPLSYS=CMSR5C  DEVNUM=0015

PAGES: RES=000916 WS=000695 LOCK=000000 RESVD=000000

NPREF=000034 PREF=000000 READS=000040 WRITES=000047

XSTORE=000047 READS=000489 WRITES=000712 MIGRATES=000047

CPU 00: CTIME=00:49 VTIME=001:09 TTIME=001:11 10=001858
RDR=000000 PRT=000130 PCH=000000
VVECTIME=000:07 TVECTIME=000:07

Reapy; T=0,01/0.01 09:51:02
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i
l
l
1
t
i

START
DMSLIO7401 EXECUTION BEGINS. ..
I = 5000 D(I) = -0.65 E(I) = -0.95
I = 10000 D(I) = -0.99 E(I) = 0.81
[ = 15000 D(I) = -0.85 E(I) = -0.60
I = 20000 D(I) = -0.31 E(I) = 0.32
SUM: -8.36326027
DOT PRODUCT: -0.393156052

MATRIX MULTIPLY:  587375.500

Reapy; T=7.87/7.94 09:51:18

IND USER

USERID=BEBO MACH=370 STOR=0006M VIRT=V XSTORE=NONE

IPLSYS=CMSR5C - DEVNUM=0015

PAGES: RES=000904 WS=000856 LOCK=000000 RESVD=000000

NPREF=000034 PREF=000000 READS=000040 WRITES=000047

XSTORE=000044 READS=000492 WRITES=000712 MIGRATES=000047

CPU 00: CTIME=00:50 VTIME=001:17 TTIME=001:19 10=001888
RDR=000000 PRT=000150 PCH=000000 |
VVECTIME=000:14 TVECTIME=000:14

Reapy; T=0.01/0.01 09:51:24




vtime (scalar) = 26.01
vtime (vector) = 7.87
vvectime = 7.0

vtime (scalar) 26.01
vtime (vector) 7.87

program speedup =

=2601-7.87+7.0
=2514
% vectorizable = Y *100
vtime(scalar)
2514 .-
- 2601 00
= 966%
Y
vector speedup =
vvectime
2514

70

= 3.59

3.3
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Sample Hot Spot Analysis

FORTVS2 FTVECT
VS FORTRAN VERSION 2 ENTERED., 17:12:25

**FTVECT** END OF COMPILATION 1 ®*®%»®*
VS FORTRAN VERSION 2 EXITED.  17:12:25

READY

Q TXTLIB
TXTLIB = NPACKLIB VSF2FORT CMSLIB  TSOLIB

READY;

LOAD FTVECT

READY;

START (DEBUG ,

DMSLI07401 ExecuTioN BEGINS...

AFF0101 VS FORTRAN VERSION 2 RELEASE 3 INTERACTIVE DEBUG
AFFO111 5668-806 (C) COPYRIGHT IBM CORP., 1985, 1988
AFF0131 LICENSED MATERIALS-PROPERTY OF IBM

AFF296E THE AFFON FILE CANNOT BE READ:; FILE IGNORED.
AFF9951 WHERE: FTVECT.5 |
AFFO01A FORTIAD

ENDDEBUG SAMPLE(Y)

[ =_5000 D(I)= -0.65 E(CI)
[ = 10000 D(I) = -0.99 EC(ID)

"0-95
0.81
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[ = 15000 D(CI) = -0.85 E(I) = -0.60
[ = 20000 D(CI) = -0.31  E(D) = 0.32
SUM: -8.36326027
DOT PRODUCT: -0.393103242

MATRIX MULTIPLY:  587375.500
AFF3061 PROGRAM HAS TERMINATED: RC ( 0)
AFFOO1A FORTIAD

» »

LISTSAMP ™,
AFF5501 PROGRAM SAMPLING INTERVAL WAS 4 MS; TOTAL NUMBER

OF SAMPLES WAS 42627.
AFF5511 DIRECT SAMPLES:

AFF5551 STATEMENT SAMPLES RUNIT ZTOTAL
AFF5571 FTVECT.ENTRY/EXIT 0 0.00 0.00
AFF5571 FTVECT.S 0 0.00 0.00
AFF5571 FTVECT.6 3 0,01 0.0l
AFF5571 FTVECT.7 82 0.19 0.19
AFF5571 FTVECT.8/10 4 0,01 0.0l
AFF5571 FTVECT.S | 0 0.00 0.00
AFF5571 FTVECT.10 1 0.00 0.00
AFF5571 FTVECT,11 42 0,10 0.10
AFF5571 FTVECT.12/15 5 0.01 0.01
AFF5571 FTVECT,13 0 0.00 0.00
AFF5571 FTVECT.14 4 0.01 0,01
AFF5571 FTVECT.15 5 0,01 0.01
AFF5571 FTVECT.16/20 1 0.00 0.00
AFF5571 FTVECT.17 0 0.00 0.00
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AFF5571 FTVECT.18 0 0.00 0.00
AFF5571 FTVECT.19 0 0.00 0.00
AFF5571 FTVECT.20 0 0.00 0.00
AFF5571 FTVECT.21/30 0 0.00 0.00
AFF5571 FTVECT.22 0 0.00 0.00
AFF5571 FTVECT.23 4 0,01 0.0l
AFF5571 FTVECT. 24 1268 2,98 2.97
AFF5571 FTVECT.25 37729 88.60 88.51
AFF5571 FTVECT.26/35 3421 8.03 8.03
AFF5571 FTVECT.27 0 0.00 0.00
AFF5571 FTVECT.28 4 0,01 0.01
AFF5571 FTVECT.29/40 0 0.00 0.00
AFF5571 FTVECT.30 0 0.00 0.00
AFF5571 FTVECT.31 5 0,01 0.0l
AFF5571 FTVECT.32/50 7 0.02 0,02
AFF5571 FTVECT.34 0 0.00 0,00
AFF5571 FTVECT.35 0 0.00 0,00
AFF5571 FTVECT.36/55 0 0.00 0,00
AFF5571 FTVECT.38 0 0.00 0.00
AFF5571 FTVECT.39 0 0.00 0.00
AFF5571 FTVECT,40 0 0,00 0.00
AFF5571 FTVECT.41 0 0.00 0.00
AFF5571 FTVECT. 42 0 0.00 0.00

AFFO01A FORTIAD
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FTVECT LISTING

1LEVEL 2.3.0 (MAR 1988) VS FORTRAN JUN
12, 1989 17:12:25
PAGE 1
OOPTIONS IN EFFECT: NOLIST NOMAP NOXREF NOGOSTMT NODECK
SOURCE TERM OBJECT FIXED TRMFLG SRCFLG NOSYM NORENT
SDUMP(ISN) NOSXM NOVECTOR IL(DIM)

NOTEST NODC NOICA NODIRECTIVE NODBCS NOSAA

) OPT(0) LANGLVL(77) NOFIPS
FLAG(I) AUTODBL(NONE) NAME(MAIN) LINECOUNT(56)

CHARLEN(500)
0 IF DO ISN
LTUUUL TS PO 200 U byoiiin, TUTTT 6...
0 1 PROGRAM FTVECT
2 PARAMETER (N=20000, M1=1200,
M2=175, M3=425)
3 REAL*4 D(N), E(N), DOTPR, SUM
y REAL*4 ACM1,M2), B(M2,M3), C(M1,M3)
5 DO 10 I=1,M1
6 DO 10 J=1,M2
| 7 ACT,J) = NINTCFLOATCI-J))
| 8 10 CONTINUE

9 DO 15 I=1.M2
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1 10 DO 15 J=1.M3
2 11 B(I.J) =
1.0/SQRT(FLOAT(I )/FLOAT(J))
2 12 15  CONTINUE
13 DO 20 I=1.N
1 14 D(1) = SINCFLOATCI) / 2.0)
1 15 ECI) = COSCFLOAT(CI) * 2.0)
1 16 20  CONTINUE
17 DOTPR = 0.0
18 SUM = 0.0
19 DO 30 I=1.5
1 20 SUM = SUM + D(I) / ECID
1 21 30 CONTINUE
22 DO 35 I=1.,Ml
1 23 DO 35 J=1.M3
2 24 DO 35 K=1,M2
3 25 C(I.Jd) = CCI1.J) + ACLLK) *
B(K.J)
3 26 35  CONTINUE
27 DO 40 I=1.N
1 28 DOTPR = DOTPR + (D(I) * E(I))
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1 29 40  CONTINUE
30 DO 50 1-1,1200
1 3 DO 50 J=1,200
WRITE (10,51) C(1,J)
2 32 50 CONTINUE
33 51  FORMAT (F15.5)
34 DO 55 1=5000, N, 5000
1 735 WRITE (6,56) I, D(1), ECI)
1 36 55 CONTINUE
37 56 FORMATC' I = ',15, D(I) =
',F8.2," E(1) = ',F8.2)
1LEVEL 2.3.0 (MAR 1988) VS FORTRAN JUN
12, 1989 17:12:25 NAME:FTVECT
PAGE: 2
0 IF DO ISN |
TR N P 200t SO Gl T 6....
0 38 WRITE (6,*) 'SUM: ,SUM
39 WRITE (6,*) 'DOT PRODUCT:
' ,DOTPR
40 WRITE (6,*) 'MATRIX MULTIPLY:
', C(MLLM3)
41 STOP
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| 42 END

| 0*STATISTICS*  SOURCE STATEMENTS = 42, PROGRAM SIZE =
| 3340064 BYTES, PROGRAM NAME = FTVECT  PAGE: 1,

} 0*STATISTICS*  NO DIAGNOSTICS GENERATED.

| O**FTVECT** END OF COMPILATION 1 ##»»e»

| TIME STAMP: 89,16317.12.25
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The Stages of Vector Compilation

A DO loop must pass four stages of qualification before it
can be compiled into vector instructions:

1. ANALYSIS ELIGIBILITY STAGE "UNAN’

the compiler determines whether or not the DO
loop can be analyzed

2. RECURRENCE DETECTION STAGE 'RECR’

loops are analyzed for data dependences that inhibit
vectorization

3. OPERATIONS SUPPORT STAGE "UNSP’

loops are checked for hardware and compiler
support of all operations

4. ECONOMIC ANALYSIS STAGE 'ELIG’
the compiler makes decisions about which loops to

vectorize based upon whether scalar mode or vector
mode is faster
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The Stages of Vector Compilation (Graphically)
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N Terminology

Dependence
A dependence exists when the order in which
statements are executed is important to the
results of the program. Data dependencies are
caused by multiple references to the same
location in storage.

Indirect Addressing
The situation when the subscript of an array is
itself an array element.

Induction Variable
any integer variable that is incremented or
‘decremented by a fixed amount, such as the
index of a DO loop. Induction variables other
than the DO loop variables are called auxiliary
induction variables.

Loop Distribution
| the process of rewriting a DO loop into two or
more smaller DO loops.
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Recurrence

A data dependence that inhibits vectorization.

Scalar Expansion

a scalar variable that is replaced with a
temporary vector.

Section Size

Stride

Vector

the number of elements used by the vector
registers (128 on the 3090)

Statement Inhibitors

constructs for which no vector instructions exist
or for which the compiler does not have the
ability to generate the required instruction
sequence.

the interval between the data elements as they
are fetched or stored by a program.

a group of elements obtained by subscripting
through an array.
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Vector Inhibitors
constructs that restrict vectorization analysis
either for entire loops or for individual
statements.

Vector Length
the number of elements of an array that are
referenced by a vector instruction. It may also
be thought of as the number of iterations of a
loop that 1s being vectorized.
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Vector Report
e UNAN - rejected for vectorization analysis

e UNSP — unsupported for vectorization by the
compiler or hardware

e RECR — ineligible for vectorization because of
recurrence

e ELIG — eligible, but not chosen for vectorization

e VECT - vectorized
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A
|
1
|

The Analysis Eligibility Stage
e DO loops are checked for operations which inhibit
further analysis of the loop. Up to eight innermost

levels of a nest of loops are analyzed.

e a loop will be flagged "UNAN’ if it contains any of
the loop inhibitors:

e loops other than DO loops

e branches out of a loop, around an inner loop, or
backwards within a loop

e [I/O statements
e subroutine calls

e external, non-intrinsic function references

e ASSIGN, ENTRY, RETURN, PAUSE or STOP
| statements

» computed or assigned GOTO statements
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e« DO loop parameters which are not INTEGER%4

e DO loop parameters which are in
EQUIVALENCE statements

e character data
e comparisons of COMPLEX data

e loops with more than 8 nested levels
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Loops Other Than DO Loops

® Jloops other than DO loops are not vectorized.

® recognize constructs which can be stated as DO loops
and re-write them for vectorization.

e re-write this:

[ =1
25 IF(I.GT.N) GOTO 26
B(I) = X(I) ** ACI) * C
I[=1+1
60TO 25
26 CONTINUE

as a DO loop:

DO 25 1 = 1.N _
BCI) = X(I) ** ACI) * C
25  CONTINUE
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Branch Out of Loop ( Pre-mature Exit)

e try distributing/re-structuring the loop. Re-write this:

UNAN+-—-——-—- DO 40 J = 1.N
I X(J) = YW - Z)
l IF (X(J).LT.0,) GOTO 50
I ROOT(J) = SART(X(J))
Fomome 40 CONTINUE
50 JLAST = J -1

|
| as this (if it executes faster):

VECT#---nmm-- DO 41 J = LN
|
b 41 TEMPX(J) = Y(J) - Z(D)
- UNAN+-------- DO 42 J = 1N
: |
L #omen 42 IF ¢ TEMPX(J).LT.0) GOTO 51

51 JLAST = J -1
IF ¢ JLAST.EQ.0) GOTO 52
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VECT+-=mmmemee DO 43 J = 1,JLAST
| X(J) = TEMPX(J)
S 43 ROOT(J) = SQRT(X(J))

1 IF ¢ JLAST.EQ.N ) GOTO 53

52 XCJLAST + 1) = TEMPX(JLAST + 1)
53 CONTINUE
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I/ O Statements

® ]/O statements are not analyzed by the compiler for
vectorization

® move the I/O statement out of the loop

e Re-write this:

UNAN+-——————- DO 30 T = 1N
l ACT) = C(1) ** 2
| B(I) = CCI) ** 0.5

I WRITE (6.*) ACI),B(I)
Fomemm 30 CONTINUE

as this:

VECT+-------- DO 30 I = 1.N
I ACL) = C(I) ** 2
| B(I) = CCI) ** 0.5
oo 30 CONTINUE

UNAN+-—---o- DO 31 1 = 1.N
I WRITE (6.*) A(I), B(I)
tommm e 31  CONTINUE
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Subroutine Calls

e the compiler can’t analyze a loop with a subroutine
call, because vector inhibitors could be present in the
subroutine. If a DO loop containing a subroutine call
is a hotspot, try bringing the subroutine in line.

e Re-write this:

COMMON Y

UNAN+-—-——-—- DO 40 J = 1.N
| X(J) = YU) - Z{D)
| CALL SUBC J, X(J)., Z¢J))

Fomm oo 40 CONTINUE

SUBROUTINE SUB( IND, A, B)
COMMON Y
Y(IND) = A + B

as this:
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COMMON Y
VECT+-------- DO 40 J = 1.N
I X(J) = YW) - ZAJ)

I YW) = X)) + ZA)
l ] L] 1 ) '
WEEELE 40  CONTINUE
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\ Recurrence Detection Stage

e a data dependence occurs when two statements (or

| iterations of the same statement) refer to the same
| data location

e some data dependences inhibit vectorization; they are
called recurrences.

e a recurrence is flagged as 'RECR’ on the XLIST-ing.

® by changing your code, it may be possible to
eliminate a recurrence and vectorize the changed
code.
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Forms of Recurrence

e a reference in one iteration of a DO loop to an array
element whose value was changed in an earlier
iteration. For example,

DO 100 I = 1,1000
C(I+1) = C(I)> * 3
100 CONTINUE

e an induction variable that modifies inner DO loop
parameters. For example,

Do 500 J
DO 400 K

1,1000
1.J

e any dependences that prevent interchanging the order
of nested DO loops.
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Operations Support Stage

Loops are checked for hardware and compiler support of
all operations.

| These operations PREVENT vectorization (loop
inhibitors) and the loops containing them will be flagged
as "UNSP’:

e data types’
REAL*16
COMPLEX*32 (EXCEPT COMPARES)

LOGICAL"1

® any intrinsic functions with REAL=*16 or
COMPLEX=%32 arguments

o [NTEGER=*2 governed by an IF statement

® relational expressions that need to be stored. For
example,

L = A.GE.B
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e intrinsic functions from the families: DIM, MOD,
SIGN, NINT, ANINT, MAX, MIN

® non-inductive subscripts governed by an IF statement

e non-inductive subscripts to an INTEGER=*2 array
e misaligned data
e |F statements with redundant parentheses

® any intrinsic function when the NONINTRINSIC
option is specified
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These Use the Vector Hardware

e data types

REAL*4 REAL*8
COMPLEX*8 COMPLEX*16
soME INTEGER*2

INTEGER™4 LOGICAL*4

e mathematical operations
REAL**REAL DOUBLE**DOUBLE
® intrinsic functions

SQRT DCOTAN ABS NOT DPROD
DABS AIMAG  REAL EXP DATAN
DREAL  DEXP CABS IBCLR  AINT
CDABS  IBSET  DINT DBLE DLOG
COMPLX AMAX1  SIN DLOG10 IEOR
DSIN ATAN2  IFIX CONJG  MAX1
INT DCONJG AMIN1  DCOS HFIX
DMIN1I  DTAN IABS ISHFT ~ DFLOAT

DSQRT  ATAN
IAND  DIMAG
SNGL  ALOG

ALOG10 IDINT
DCOMPLX DMAX1
DATAN2 COS
IOR FLOAT
MIN1
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These Do Not Use the Vector Hardware

e these operations and functions are evaluated using
scalar routines. Their use in vector mode could slow
down your program.

e mathematical operations

INTEGER ** INTEGER

INTEGER / INTEGER

REAL ** INTEGER

DOUBLE ** INTEGER

COMPLEX ** INTEGER

(DOUBLE COMPLEX) ** INTEGER

COMPLEX ** COMPLEX

(DOUBLE COMPLEX)> ** (DOUBLE COMPLEX)
i COMPLEX DIVIDE

DOUBLE COMPLEX DIVIDE

® ntrinsic functions

ACOS SINH DGAMMA CDCOS  CSQRT  DACOS  DSINH
ALGAMMA CSIN CDSQRT  ASIN ERF DLGAMA  CDSIN
IBCLR  DASIN  DERF TANH CEXP IBSET  COTAN
ERFC DTANH  CDEXP  ISHFT  COSH DERFC  TAN
CLOG DCOSH  GAMMA  CCOS CDLOG
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Some Examples — Taking Advantage of the Vector
Hardware

e indirect addressing to handle non-constant stride or
randomly ordered elements. This is sometimes called

scatter/gather.
VECT+----mm-- DO 10 J = 1N ,

| B(J) = A(J) + P * C(J**2)
tomae 10  CONTINUE

‘ VECT+--mmom - DO 15 J = 1N

| ! Y(J) = Z(C INDCY))

| L 15  CONTINUE

|

| .

| ® operations under mask.

] VECT#—mooomem DO 20 J = 1,N

I IFC B(J).GT.XOLD ) THEN

I B(J) = A(J) =+ P * C(J)
I ENDIF

tom 20 CONTINUE
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Non-Inductive Subscripts Governed by IF

® non-inductive subscripts governed by an IF prevent
vectorization

UNSP+---—mm - DO 20 J = 1.N
I IFC B(J).GT.XOLD ) THEN
| B(J) = A(J) + P * C(J**2)
I ENDIF
Fommm 20  CONTINUE

UNSP THE ARRAY(S) "C"” ARE USED IN
CONDITIONALLY EXECUTED
| CODE AND HAVE NON-INDUCTIVE SUBSCRIPT EXPRESSIONS

e recode with instructions which are supportable for
vectorization: |

VECT+---mmm- DO 20 J = 1.N

| l CT = C(J**2)

| I IFC B(J).6T.XOLD ) THEN
I B(J) = AQJ) + P * CT
l ENDIF

WEEELE 20  CONTINUE
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® the Economic Analyzer is the name given to the code
in the VS FORTRAN Version 2 compiler that
estimates the number of cycles (cost) that will be
expended to execute given sections of code.

e the choice of which regions to vectorize, if any, is
based upon the calculations of the cycles for all
possible combinations of nested loops (to a level of 8).

e ’'ELIG’ indicates that the loop was found eligible for
vectorization, but has been chosen to run in scalar
mode.
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Example of Economic Analysis
Consider the following program involving integer

divisions:

INTEGER™4 K(100), J(100)
REAL*4 X(100), Z(100)

DO 30 I = 1,100

JCI) = JCDH/KCD)

Z(I) = KD/ XD
30 CONTINUE

STOP
END

the Economic Analyzer determines the following,

INTEGER*4 K(100), J(100)
REAL*4 X(100)>, Z(100)

ELIG*-------- DO 30 T = 1,100  SCALAR FASTER {
A JCI) = J(I)/K(1) THAN VECTOR
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VECTt=-wvome- DC 30 I = 1,100
LT Z(1) = KCDH/X(D)
STOP
END

ILX0148K 0004 ELIG CODE THAT WAS ELIGIBLE TO EXECUTE
IN VECTOR MODE

WAS DETERMINED TO EXECUTE MORE EFFICIENTLY IN SCALAR,
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Good Vector Programming Practices

® time your program so you know where to spend your
efforts.

e check that your data and intrinsic functions can use
the vector hardware.

e use ESSL whenever possible.

e try to eliminate vector inhibitors.
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Succeeding in the Recurrence Detection Stage

e during the Recurrence Detection Stage the compiler

REJECTS any DO loop for vectorization and flags it
as 'RECR’ if it contains:

e an induction variable that modifies inner DO loop
parameters

e any dependencies that prevent loop interchange.

« unbreakable recurrences

e the first two points have to do with the way outer
loop vectorization is executed. No matter which loop
is chosen as the vector loop, vectorization actually
occurs at the innermost loop level, in sections of 128
(or fewer) data elements. |
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An Induction Variable that Modifies an Inner Loop
Parameter

| If an induction variable in an outer loop modifies an
inner DO loop parameter, that outer loop cannot be
moved to the innermost loop level. Therefore,
vectorization cannot occur on that outer loop.

Consider, for example,
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Loop Interchange — Preventing Dependencies

[f program results would change by moving an outer loop
to the innermost level, vectorization is prohibited on the
outer loop. This is called a loop interchange preventing
dependence.

Consider the following two pieces of code, which differ
only in their DO loop order:

DO 15T = 1.N DO 15 J = 1.M
DO 15 J = 1M DO 15 I = 1.N
15 A(I-1,J+1) = ACLL D) 15 A(I-1.,4+1) = ACL, D)

[t}
]

1
i)

thetr execution in scalar mode would be as follows:

AC0.2) = ACL.1) AC0.2) = A(1,1)
A(0.3) = A(1,2) A(1,2) = AC2,1)
A(1,2) = AC2,1) AC0,3) = A(1.2)
A(1.,3) = A(2,2) A(1.3) = A(2,2)

Data element A(0,3) contains different values, depending
upon the order of the DO loops. The outer DO loop
cannot be moved to the innermost level, and therefore it
cannot be vectorized.
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What Exactly is a Recurrence?

'i e for example:

| DO 99 J = 1,100
A(d+1) = AQJ) + B

99  CONTINUE

® results:

ScALAR EXEcCuUTION

VECcTOR EXECUTION

% FETCH A(1) FETCH A(1)

@ compuTe A(1) + B(1) FETCH A(2)

| STORE A(2) ETC.

1 FETCH A(2) compute A(1l) + B(1)
z coMPUTE A(2) * B(2) coMpuTE A(2) + B(2)
'é SsTORE A(3) ETC,

{ ETC, STORE A(2)

é STORE A(3)

| ETC,

note that in scalar execution, A(2) is stored before it
is fetched.
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® in vector execution, A(2) would be fetched before it is
stored. The wrong value of A(2) would be used for
the computation!

® vectorization is prohibited due to the recurrence on
A.

® a recurrence is a data dependence which prevents
vectorization.
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Data Dependencies

a DEPENDENCE exists when the order in which

statements are executed may change the results of the
program.

data dependences are caused by multiple references to
the same location in storage.

a dependernce occurs by:
e the execution of successive statements or

e the successive execution of a single statement
during different iterations of a DO loop.
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Data Dependences

i
|
|
|
|

e data dependences are caused by multiple references to
the same location in storage.

e this is a time-shot of one storage location:

FETCH] STOREl STORE2 FETCH2 FETCH3 TIME
STORE FOLLOWED BY FETCH! TRUE DEPENDENCE

FETCH FOLLOWED BY STORE: ANTI-DEPENDENCE

STORE FOLLOWED BY STORE! OUTPUT DEPENDENCE
FETCH FOLLOWED BY FETCH! INPUT DEPENDENCE

e the recurrence analysis stage examines storage
reference patterns. The order in which stores and

fetches are done in scalar mode has to be maintained
in vector mode.
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True Dependences

e a true data dependence is a store to a memory
location followed by a fetch from that location.

Statement T depends upon statement S if S defines a
value and T references it:

w
>
li

® S must execute before T, because S defines a value
used by T. The execution of T depends on the
execution of S being completed.

® a single statement true dependence is of the form:
ACd+1) = . . AW, .

® a single statement true dependence is a recurrence. It

prevents vectorization.
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Anti-Dependencies

e an anti-dependence is a fetch from a memory location
followed by a store to that location. Statement T

depends upon statement S if S references a value and
T defines it:

® S must execute before T because S must reference X
before T redefines it.

e a single statement anti-dependence is of the form:

A(J“l) N IA(J)I "o
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Anti-Dependencies (cont.)

e for example,

VECT+-~---——- DO 30 J = 1.N
I A(J-1) = AQJ) + B(D)
D Rt 30 CONTINUE
o
ScALAR ExEcuTION VECTOR EXxECuTION
FETCH A(1) FETCH A(1)
coMpuTeE A(1) + B(1) FETCH A(2)
sTore A(CO) ETC,
FETCH A(2) compute A(l) + B(1)
coMPuTE A(2) + B(2) coMpuTe A(2) + B(2)
sTORe A(l) ETC,
ETC, sTORE A(0)
sTORE A(1)
ETC.

e the order of fetches and stores is preserved in vector
execution. A single statement anti-dependence WILL
vectorize.
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Single Statement Dependencies

a true dependence is a store to a memory location
followed by a fetch.

a single statement true dependence is of the form:

RECR+-------- DO 10 J = 1.N
' A(J+l) N |A<J>l '
Fommme 10 CONTINUE

a single statement true dependence WILL NOT
vectorize.
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an anti-dependence is a fetch from a memory
location followed by a store.

a single statement anti-dependence is of the form:

VECT+----—--- DO 10 J = 1.N
l A(J—l) = |A(J)| v
oo 10 CONTINUE

a single statement anti-dependence WILL vectorize.
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Multiple Statement Dependences

e a dependence can occur by the execution of successive
statements.

| ® the compiler will consider all valid statement
re-orderings within a loop when it does the recurrence
analysis.

e the compiler examines the order of fetches and stores
in a DO loop to determine whether it can safely
vectorize the loop.
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Multiple Statement Dependences (cont.)

EXAMPLE 1: an anti-dependence on A

VECT+~-v-m--- DO 30 J = 1.N
l ACJ) = B(J) + CWJd)
I EC(d) = AQd+1)
Fomm e 30 CONTINUE

e the compiler will reorder the two statements and

thereby preserve the order of fetches and stores on Al
The loop WILL vectorize.

EXAMPLE 2: a true dependence on A and an
anti-dependence on B

VECT+---=mmmu DO 30 J = 1.N

| A(J+1) = B(J) + C(D)
......... [ B(J) = AWJ)

R et 30 CONTINUE

| e the compiler determines that the order of fetches and
| stores is preserved with vector execution and WILL
vectorize the loop.
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Multiple Statement Dependencies : Two Anti-Dependencies

| ® example:

| RECR+----mmum- DO 30 J = 1.N

| ACJ) = BA) + C)
| B(J) = ACJ+1)
S 30 CONTINUE

® scalar execution:

A(1) = B(1) + C(1) FETCH B(1) AND sTore A(1)
B(1) = A(2) FETCH A(2) AND STORE B(1)
AC2) = B(2) + C(2) FETCH B(2) AND sTORE A(2)
B(2) = A(3) FETCH A(3) AND sTOReE B(2)
ETC.

® vector execution (1st attempt):

; AC1) = B(1) + C(1) FETCH B(1) AND sTORE A(1)
% A(2) = B(2) + C(2) FETCH B(2) AND sTORe A(2)
% ETC.
| B(1) = A(2) FETCH A(2) AND sTORE B(1)
| B(2) = A(3) FETCH A(3) AND sToORe B(2)

ETC.
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loop):
B(1) = A(2) FETCH A(2) AND sTore B(1l)
B(2) = A(3) FETCH A(3) anp sTorRe B(2)
ETC,
A(l) = B(1) + C(1) FETCH B(1) AnD sTore A(1)
A(2) = B(2) + C(2) FETCH B(2) AND sTORE A(2)
ETC.

the order of fetches and stores on B has changed!

a forward and a backward anti-dependence form a
cycle of dependences. This is a recurrence that
prevents vectorization.

however, a scalar temporary may be used to “break”
this type of recurrence. This technique is known as
node splitting.
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Scalar Expansion

Scalar Expansion is the replacement of a scalar variable T
by a vector temporary whose elements are all equal to the
original scalar.

Some Rules:
e the scalar variable must be local to the loop in which

it is used. ,
e it cannot use values defined before the loop. The first
reference to T must be a store (i.e., T = ...).

e it cannot be used after the loop. The first reference to
T after the loop, if any, must also be a store.
e it cannot be in COMMON or EQUIVALENCEdA.

The Model:

30  CONTINUE
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Node Splitting

® scalar temporaries can be used to break recurrences.

This technique is known as node splitting.

® the compiler expands the scalar temporaries into

vector temporaries.

RE-WRITE THIS:

RECR+-- DO 30 J = 1.N
I ACJ) = B(IHX+CWD)
I B(J) = A(J+1)
+-30 CONTINUE

® scalar execution:

A(1) = B(1) + C(1)
B(1) = A(2)
A(2) = B(2) + ((2)
B(2) = A(3)

ETC.,

As THIs:!

VECT*-- D0 30 J = 1,N
| T = B(J)+C(J)
| B(J) = A(J+1)
| A = T
+-30  CONTINUE

FETCH B(1) AND sTorRe A(1l)
FETCH A(2) AND sToRe B(1l)
FETCcH B(2) AND sTore A(2)

FETCH A(3) AND sToORE B(2)
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Node Splitting (cont.)

®
RE-WRITE THIS! As THIS!
RECR+-- DO 30 J = 1.N VECT+-- DO 30 J = 1.N
I A(J) = B(JI)H)+C(J) I T = BCH)+C(D)
| - B(J) = A(J+1) I B{J) = A(J+]1)
+-30 CONTINUE | ACl) = T

+-30 CONTINUE

® vector execution with node splitting:

T(1) = B(1) + C(1) FETCH B(1)
T(2) = B(2) + C(2) FETCH B(2)
ETC.
B(1) = A(2) FETCH A(2) AND sToRe B(1)
B(2) = A(3) FETCH A(3) AND sTORe B(2)
ETC,
A(l) = T(D) sTORE A(1)
= T(2) : STORE A(2)

A(2)

e the order of fetches and stores has been preserved.
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Partial Sums

GIVEN:
SUM = 0.0
VECT+-------- DO 30 J = 1.N
| SUM = SUM + A(J) * B(J)
Ao 30 CONTINUE

e the accumulation on SUM is called a reduction
operation.

e SUM carries a recurrence: a single statement true
dependence.

e there is a hardware solution called partial sums which
| works around this inherent recurrence.

® integer partial sums are not vectorized because they
o are faster in scalar. To allow the rest of a loop to
vectorize, change to REAL=*S8.

® the order in which data elements are added using

partial sums is not the same as scalar addition. Since
floating point addition is not commutative, results are
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slightly different in vector and scalar modes. To

prevent vectorization, use the compiler option
NOREDUCTION.,
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|
I The Use of Scalar Temporaries
I

® accumulators should be scalar temporaries rather than
array references since temporaries don’t have to be
stored.

e Re-write this:

VECT+-------- DO 15 I = 1.LEN
I DO 15 J = 1.LEN
I C(I,J4) = 0.0

I DO 15 K = 1.LEN
! C(I.,J) = C(1.J) + ACLLK) * B(K,J)
oo 15 CONTINUE

as this:
VECT+-wemeaa DO 15 1 = 1,LEN
| DO 15 J = 1.LEN
| TEMP = 0.0

I DO 17 K = 1.LEN

1 TEMP = TEMP + ACILK) * B(K.J)
I 17 CONTINUE
I C(I,J) = TEMP
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oo 15 CONTINUE

e or use this ESSL subroutine:

CALL DGEMULCA,LEN,'N’,B,LEN,'N’,C,LEN,LEN,LEN,LEN)

i
2
!
i
i
E
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Summary on Recurrence

® Accurate recurrence detection requires that the
compiler know as much as possible about the nature
of subscript calculations for the array variables used
within a loop. This requires information about:

e the dimensionality of arrays
e the parameters of the DO loops

e expressions used to calculate the subscripts of each
array reference

If information about these factors is not available to
the compiler, the optimum degree of vectorization
may not be achieved.

® the compiler determines when it is safe to interchange
loops, when it is safe to distribute a loop into multiple
loops and when it is safe to reorder statements within
a loop.

e if an outer loop cannot safely be moved to the
innermost loop level, vectorization cannot occur on
the outer loop.
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a single statement true dependence of the type
ACd+1) = .. A, .,

is a recurrence that prevents vectorization.

a single statement anti-dependence of the type
A(J-1) = ,..ACd). .,

vectorizes.

if the compiler flags a loop with multiple statements
as a recurrence, you can try introducing temporaries
to break that recurrence.

the compiler often cannot analyze complicated array
subscripts, EQUIVALENCEJ arrays, or arrays using
indirect addressing. In such instances, the compiler
may flag a loop as a recurrence, even though no
recurrence occurs. You can override these “fake”
recurrences with compiler directives, so long as you
are sure that no recurrences actually occur.
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Vector Compiler Directives

e compiler directives are used to override decisions
made by the compiler and to give additional
information to the compiler.

e there are three compiler directives:

e ASSUME COUNT (n) : specifies a value that the

compiler can use as an estimate for the iteration
count of a loop

B . PREFER
e VECTOR - specifies that a particular loop in
a nest will be the best choice for a vector loop

(if eligible)

e« SCALAR - specifies that a particular loop
should not be chosen for vector execution

‘‘‘‘‘‘‘‘‘

« IGNORE

« RECRDEPS — specifies that potential
recurrences can be ignored in determining
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eligibility for vectorization

e EQUDEPS — specifies that the compiler
should assume that variables used in

EQUIVALENCE statements do not give rise
to recurrences

¢ ON and OFF keywords may be used with ASSUME
COUNT and PREFER. Otherwise, a directive applies
only to the DO loop immediately following it.
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How To Use Vector Directives

e a directive is used with a so-called trigger-string,
which is a character string defined by the user. Its
purpose is to allow the compiler to distinguish a
comment from a directive.

e the syntax of a vector compiler directive is :

Ctrigger-string keyword additional-information

C indicates a comment line and is immediately
followed by the trigger-string. The keywords are
ASSUME COUNT, PREFER and IGNORE.

® 3 directive is activated by the @ PROCESS
DIRECTIVE statement. The @PROCESS statement
is placed before the first statement of EACH program
unit (main program or subprogram) that uses a
directive. The @ must be in column one.




o introduction to Vectorization -99-

e a directive can be treated as a comment by omitting
the @PROCESS DIRECTIVE statement or by
specifying @PROCESS NODIRECTIVE.

e cach type of directive pertains to just one stage:

[ DIRECTIVE STAGE
y
1 ASSUME COUNT EconoMIic ANALYSIS
PREFER EconoMmIc ANALYSIS

IGNORE REcURRENCE DETECTION




,,,,,,,,
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Directives : Where Added Information is Useful

use ASSUME COUNT for:
® unknown trip count:

DO 20 J = M.NLL <--- HOW MANY ITERATIONS?

use PREFER for:

e overriding the compiler’s economic decision: by timing
your code, you might determine that the compiler
made the wrong decision.

COMPLEX C.D <--- COMPLEX DIVISION

DO 20 K = 1.N IS SLOW IN VECTOR MODE
D(K) = CC(K) / D(K)

use IGNORE RECRDEPS for:

e unknown loop index upper bound : recurrence
conditions may depend on its value.

Do 10 J
A(J+50)

1.N <--- WHAT 1S THE s1ze ofF N?
ACJ) * B(J) <--- RECURRENCE IF N > 50

e unknown DO increment : recurrences may depend on
the direction of the increment.
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DO 10 J = MUNLL <--- WHAT IS THE SIGN OF L?
A(J-1) = AQd) + BWd) <--- RECURRENCE IF L 1Is

NEGATIVE
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Directives : Where Added Information is Useful

® unknown auxiliary induction variable : recurrences
may depend on its value.

DO 10 J = 1.N
ACJ) = ACK) * B(J) <--- RECURRENCE IF K < J
K=K+ M <--- WHAT ARE K AnD M?

e unknown Subscript offset : recurrences may depend on
the value of the offset.

DO 10 J = 1,N
A(+M) = AWD) <--- RECURRENCE IF 0 < M < N

e when arrays are EQUIVALENCEAd : the compiler
always assumes dependence among equivalenced
arrays.

EQUIVALENCE (A(50). B(1))

7| DO 10 J = 1.N <--— NO RECURRENCE., BUT THE
5 A(J) = B(J) COMPILER THINKS THERE
1s!

e unknown indirect addressing subscripts :
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DO 10 J = 1.N

A(J) = ACK(J)) + BWJ) <--- IS THERE A RECURRENCE?
ACK(J)) = ACK(J)) + B(J) <-—- ARE THE A's

INDEPENDENT?
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Using Directives : Rules of Thumb

|
1 ® use them for hotspots. Don’t clutter your program
where they are not needed.

| e use ASSUME COUNT rather than PREFER where
appropriate.

e double check to insure that IGNORE is used safely.




e
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Summary : When to Use Directives

e the ASSUME COUNT and PREFER directives will
not affect program results. Use them for:
e unknown trip counts
e vector loop selection
« when the compiler makes the wrong economic
decision

® make sure that you ARE outsmarting the compiler
before you use PREFER.

e program results could change if you use IGNORE
incorrectly. It can be used for:
e« unknown loop index upper bound
e unknown DO increment
e« unknown DO auxiliary induction variable
increment
 unknown subscript offset
e unknown equivalence-induced dependencies
e unknown indirect-addressing dependencies
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Poor Vector Performance

[f vectorization gives poor performance gains, consider
the following:

1. the storage reference pattern is poor (stride
considerations)

2. the vector lengths are too short

3. there are too many IF statements

4. too many loop structures are inappropriate for
vectorization

5.  inefficient handling of sparse arrays
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Stride Considerations

stride is a very important consideration for vector
performance since arrays with small strides can be moved
from virtual storage to vector registers and back much
more efficiently than arrays with large strides.

the stride can be positive, negative or zero. For positive
and negative strides, it is possible to specify vector
elements beyond the range of an array thereby leading to
| unpredictable results and/or program errors.

Methods:

e data re-structuring — re-organize arrays to optimize
stride

e data re-structuring using temporaries
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Data Re-Structuring to Minimize Stride

since FORTRAN multi-dimensional arrays are stored in
column-major form, the first subscript of an element
always varies most rapidly and the last subscript always
varies the least rapidly.

therefore, one way of minimizing stride is to insure that
the dimension of an array that is the desired target for
vectorization is the left-most dimension.

Given:

PROGRAM STRIDE
REAL*Y4 A(5.,10,1000), B(5,10,1000)

DO 10 K

= 1,1000
DO 10 J = 1,10
D010 I = 1.5

A(IJJ;K) = A(IJJJK) + B(IJJJK)
10  CONTINUE

re-write as:

PROGRAM STRIDE
REAL*4 A(1000.,10.5), B(1000.,10.5)
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10

DO 10 K
DO 10 J
DO 10 I

AK,J,T) = ACKLJLT) + BCKL LT

CONTINUE

i}

1,1000
1,10
1.5
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Vector Length Considerations

vectorization of a loop with a large vector length has a
much greater payoff than vectorization of a short loop.

for very short loops, vectorization may result in poorer
performance than scalar

Methods:
e use the ASSUME COUNT directive
e use dual path code

e create longer vectors through EQUIVALENCE,
copying into temporary vectors, etc.

® climinate loop unrolling
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Dual Path Directives
if the loop count varies from small to large, depending
upon your initial data, you could code a dual path to

select scalar or vectorized loops.

for example:

(@PROCESS DIRECTIVE (’'*VDIR')

IF (N.LT.20) GOTO 30

C*VDIR ASSUME COUNT (100)

DO 10 K = 1.N
COMPUTATIONS
10  CONTINUE
6OTO 40

C*VDIR ASSUME COUNT (5)

30 DO 11 K = 1.N
COMPUTATIONS

11 CONTINUE

40  CONTINUE
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Using Equivalence to Combine Multiple Dimensions

re-write this:

as this:

99

99

DIMENSION A(10.8.9), B(10.8.9)

DO 99 I

= lJlO
DO 99 J = 1.8
DO 99 K = 1.9

ACLLJLK) = ACLLJLK) + BCTLJLK)

DIMENSION A(10.8.9), B(10.8.9)
DIMENSION AA(80.9), BB(80.9)
EQUIVALENCE (A(1.1.1), AA(1.1))
EQUIVALENCE (B(1.1,1), BB(1.1))
DO 99 1J = 1.80

DO 99 K = 1.9

AACTJ.K) = AACIJ,K) + BB(IJ.K)

-112-
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IF Statement Considerations

e a vectorized IF uses the vector mask register.

e all computations, for every iteration of the loop, are
performed for every IF, THEN and ELSE clause.

e at the end of the loop, only the results corresponding
to the correct IF conditions are stored, using the |
vector mask register.

e vectorized IFs perform well when there is no ELSE
clause and the IF condition is usually true.

e because all computations are performed, a vectorized
IF may result in divide-by-zero interrupts or
subscripts out of range.
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Methods for Dealing with IFs

try eliminating the need for IFs.
try moving [Fs outside the vector loop.
try using separate loops for each IF condition

try creating temporary vectors containing values
which satisfy the IF conditions. Do computations on
the temporary vectors, then copy the results back to
the original vectors.

you might have to use the PREFER SCALAR
directive if you determine that a loop containing IF
statements is faster in scalar mode.
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Eliminating IFs

This example shows how one might eliminate an IF
whose purpose is to test for some boundary condition.

re-write this:

DO 10 K = 1,N

DO 20 J = 1.M

IF (¢(J,EQ.1).0R.(J.EQ.M)) THEN

X(J,K) = 0.
ELSE

XL KY = ALK * BOJLKD
ENDIF

20  CONTINUE

10 CONTINUE
as this:

DO 10 K = 1.N
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X(1,K) = 0.
DO 20 J = 2.M-1

X(LK) = ACLK) * B(LK)

3 20 CONTINUE
7 X(MLK) = 0,

lllll

10  CONTINUE
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Separate Loops for IFs
Generating an identity matrix can be handled like this:

re-write this:

DO 10 I = 1.N
DO 10 J = 1.N
IF (I.EQ.J)> THEN
X(I,J) = 1,
ELSE
X(1,J) = 0,
ENDIF
10  CONTINUE
as this:
DO 10 I = LN
DO 10 J = LN
X(I.J) = 0.
10  CONTINUE
DO 20 T = 1.N
X(I,I) = 1.

20  CONTINUE
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Inner vs. Outer Loop Considerations

e vectorizing a loop means that sectioning occurs on
(according to) that loop’s index.

e conceptually, this may be viewed as creating another
loop at the innermost level.

e for example, this DO loop:

REAL*8 A(1000,100)

VI O DO 15 1 = 1,1000
| DO 15 J = 1,100
| ACLLI). L
Fommm e 15 CONTINUE

is treated by the compiler as:

DO 15 T = 1,1000,128
DO 15 T = 1,100
. JAC1:128,0). .,

15  CONTINUE
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| Inner vs. Outer Loop Considerations (cont.)

e the left-most array dimensions should have the largest
values.

e with two-dimensional arrays, make the outer loop
correspond to the left-most array subscript.

e for example, re-write this:

REAL*8 A(1000.100).

B(1000,100)
REAL*8 X(1000)
DO 10 J = 1,100
VECT+------—-~ DO 10 I = 1,1000
| ACI,J) = X(I) + B(I,J)
A 10 CONTINUE
as this:
VECT+--=eem - DO 10 I = 1.,1000

I DO 10 J = 1,100
[ ACI,J) = X(I) + B(I,J)
Fommme - 10 CONTINUE
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e there is an advantage to OUTER loop vectorization if
it reduces the number of times the vector X has to be
loaded thereby optimizing vector register usage.

e the compiler will ordinarily vectorize on the left-most
dimension.
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programs that deal with sparsely stored data can
sometimes show a performance degradation when
vectorized depending upon the methods used to
manipulate the data.

Methods:

e indirect addressing

e compress and expand

e inhibit vectorization
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Indirect Addressing

Given:

SUBROUTINE SPARSE(MASK.A,B.C)
LOGICAL™4 MASK(1000)
REAL*4 A(1000), B(1000), €(1000)

Do 10 I = 1,1000
IF (MASK(I)) THEN
A(I) = B(1) + CCD)

ENDIF
CONTINUE

Re-write as:

SUBROUTINE SPARSE(MASK.A,B,C)
LOGICAL*4 MASK(1000)
REAL*4 A(1000), B(1000), C(1000)
INTEGER*4 TCOUNT, INDX(1000)
TCOUNT = 0
D0 9 I = 1,1000
IF (MASKCI)) THEN
TCOUNT = TCOUNT + 1
INDX(TCOUNT) = 1
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ENDIF
9  CONTINUE

DO 10 T = 1,TCOUNT

ACINDX(I)) = BCINDXCI)) + CCINDX(CI))
10 CONTINUE
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Interactive Vectorization Analysis (IVA)

Vector tuning can be assisted by gathering vector length
and stride information at run time using IAD.

| Before IAD can gather vector tuning information, you
| must create a Program Information File (PIF) by using
the IVA suboption.

FORTVS2 FILENAME (OPT(3) VECTOR(IVA))

To collect and view the vector length and stride
information, use the following IAD commands:

VECSTAT

activates recording of vector length and stride
for all loops (VECSTAT *.x ON)

| LISTVEC
displays average length and stride for vectors
—————— (actual vs. compiler estimates). (LISTVEC =*.x)
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Summary : Your Vector Migration Effort

® time your program

e Jlocal program modifications

ESSL calls

workarounds for vector inhibitors
reorder DO loops

use temporaries

vector directives

e global program restructuring

re-think program organization
re-think data organization
algorithmic changes



Introduction to Vectorization -126-

Set Expectations

e keep efforts focused on good payback potential: work
with hotspots

® be realistic: remember that good vector program
speed-ups are 1.5-3.

¢ analyze program performance:
e program speed-up

percent vectorized

vector speed-up

e know when to quit!!



Introduction to Vectorization -127-

Test Case 1: Avoid Variable Offsets in Arrays
Given:

SUBROUTINE TEST(A,N,IBASEL,IBASE2)
REAL*4 A(1000)

INTEGER™*4 N, IBASE1, IBASEZ2

= ].JN

= ACI+IBASE1l) * A(I+IBASE2)

=
(o]
>
~ O
Yumand
~r G
I {

10 CONTINUE

Re-write:

SUBROUTINE TEST(AO,A1,A2,N,ISIZE0,ISIZEL,ISIZE2)
REAL*4 AOCISIZEO), AI(ISIZE1l), A2(ISIZE2)
INTEGER*4 N, ISIZEO,ISIZEL, ISIZE2
DO 10 J = 1.N
AOCI) = ALCI) * A2(I)
10 CONTINUE
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Test Case 2: Avoid Indirect Addressing
Given:
DO 10 I = 1.N
10 ACINDXCID) = ACINDX(ID) + .
Re-write:

DO g~I = llN
9 TEMPACI ) = ACINDX(I))

DO 10 I = 1.N
10 TEMPA(I) = TEMPACI) + . . .

DO 11 I = 1.N
11 ACINDX(I)) = TEMPA(I)
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Test Case 3: Using Variable Increments

Given:

IVAR = 1
DO 10 I = 1.N
ACIVAR) = ACIVAR) + . . .,
IVAR = IVAR + ISTEP
10 CONTINUE

Re-write:

@PROCESS DIRECTIVE('DIR')
IVAR = 1
*DIR IGNORE RECRDEPS(A)
DO 10 T = 1,N
ACIVAR) = ACIVAR) + . .
IVAR = IVAR + ISTEP
10 CONTINUE
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| Test Case 4: Using Adjustably Dimensioned Arrays
| Given:

SUBROUTINE TEST(A,N.M)
| REAL*4 A(N,M)
'''''' DO 10 J = 1.M
DO 10 I = 1.N
ACLLY) = ACTLD) + 0
10 CONTINUE

1]

Re-write:

@PROCESS DIRECTIVE('DIR')
SUBROUTINE TEST(ALN.,M)
REAL*4 A(N.M)

*DIR IGNORE RECRDEPS(A)

DO 10 J = 1.M
DO 10 T = 1.N
ACLLY) = ACTLDD) + 0 0
10 CONTINUE
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Test Case 5: Arvay EQUIVALENCE
Given:

SUBROUTINE TEST
REAL*4 A(100). B(1000)
EQUIVALENCE (A(1),B(101))
DO 10 I = 1,100
ACI) = B(I) * 10,0
10 CONTINUE

Re-write as:

SUBROUTINE TEST
REAL*4 A(100), B(1000)
EQUIVALENCE (A(1),B(101))
DO 10 I = 1,100
B(I+100) = B(I) * 10.0
10 CONTINUE

or.

(@PROCESS DIRECTIVE('DIR")
SUBROUTINE TEST
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REAL*4 AC100), B(1000)
EQUIVALENCE (A(1).B(101))
*DIR IGNORE RECRDEPS
DO 10 T = 1,100
A(I) = B(I) * 10.0
10 CONTINUE

n
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Test Case 6: Scalar EQUIVALENCE
Given:

SUBROUTINE TEST
REAL*4 AC100),B(100)
INTEGER*4 PARAM,P1,P2,. .
COMMON /PCOM/ PARAM(10)
EQUIVALENCE (PARAM(1),P1), (PARAM(2),P2),. . .
DO 10 1 = 1M

A(P1) = A(P1) * B(I)
§ 10 CONTINUE

Re-write:

SUBROUTINE TEST

REAL*4 A(100),B(100)

) INTEGER*4 PARAM,P1.P2,. .
i COMMON /PCOM/ PARAM(10)

P1 = PARAM(1)
P2 = PARAM(2)
DO 10 I = 1.M

ACI+P1) = A(I+P1) + B(I)
10 CONTINUE
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PARAM(1)
PARAM(2)

P1
P2
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Test Case 7: Restrict Optimization to Improve Partial
Vectorization

Given:

SUBROUTINE TEST(A,B.X.Y)
REAL*4 A(100),B(0:100),X(100),Y(100)

DO 10 I = 1,100
ACT) = ACT) + XCI) * Y(I)
BC(I) = B(I-1) + X(I) * YCI)

10 CONTINUE
Re-write:

SUBROUTINE TEST(A.B.X.Y)
REAL*4 A(100),B(0:100),X(100),Y(100)
DO 10 I
ACD)
2 B(I)
10 CONTINUE

1,100
ACL) + X(I) * Y(D)
B(I-1) + X(I) * YCI)
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Test Case 8: Scalar Expansion for Partially Vectorizable

Loops
Given:

SUBROUTINE TEST(ALB.X.Y)

REAL*4 A(100),B(0:100).%¢100),Y(100)

DO 10 I = 1,100
T= X(I) * Y(I)
ACT) = ACT) + T
B(I) = B(I-1) + T

10 CONTINUE
Re-write:

SUBROUTINE TEST(A,B.X,Y)
REAL*4 A(100),B(0:100).X¢100).Y(100)
REAL*4 TT(100)
DO 10 T = 1,100
TT(I) = X(I) * Y(ID)
ACD) = ACT) + TTCD)
B(I) = B(I-1) + TT(I)
10 CONTINUE
T =TT

"
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Test Case 9: Scalar Expansion for Non-Local Scalars
Given:

SUBROUTINE TEST(A.B)
REAL*4 A(100),B(101)
T = B(1)
DO 10 T = 1,100
ACL) = T
T = B(I+1)
10 CONTINUE

Re-write:

SUBROUTINE TEST(A.B)
REAL*4 A(100).,B(101)
REAL*4 TT(0:100)

ACT) = TT(I-1)
TT(I) = B(I+1)
10 CONTINUE
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