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What is Vector Processing 

“Vector processing ‘is a  complication to computing, 
invented to make number crunchers go faster.” 

.:.. __: ‘. , 

Most o f the e lementary vector operations consist o f a  
series of independent calculations for a ll e lements of the 
operand vectors, and so may be performed in parallel. 
Vector processing may thus be seen as one particular 
form  of parallel computing. 
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The IBM  3090400E Vector Facility 
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fast scalar performance for compute intensive 
applications 

s ix processors, each with  a  vector facility and 64 KB 
cache memory 

256 megabytes of memory 

1 g igabyte of expanded storage 

115 g igabytes of d isk storage 

each application may use up to 999 megabytes of 
v irtua l memory 
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The IBM 3090400E Vector Facility 
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the dynamic range is 10f7” to 1O-78 

provides a decimal precision from 6 to 7 (short) digits 
to 13 to 14 (long) decimal digits 

cycle time of 17.2 nanoseconds 

theoretical peak performance of 116 megaflops 

likely ESSL peak performance of 75 megaflops 

realistic vector program performance goal of 40 to 50 
megaflops 
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The IBM 3090 Vector Facility 
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16 32-bit data vector registers or 8 64-bit registers (for 
single or double precision data) 

these 16 vector registers operate on up to 128 data 
elements (the section size) of 4 bytes each 

three other vector registers: 
0 vector -mask register 
0 vector activity count 
0 vector status register 

17 1 vector assembler instructions 

FORTRAN code using REAL*8 data has access to 
three compound vector instructions, which execute 
two FLOPS per cycle (after pipeline startup): 
0 multiply and add 
0 multiply and subtract 
0 multiply and accumulate 

most other vector instructions execute one FLOP per 
cycle (after pipeline startup) 
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Vector Facility Registers 

vector 
mask 
f egistef 

VMR 

w 
: 
: : * . 

VR 0 

w 

16 multipurpose 
registers 

VR 1 VR 14 

: 
. . . . . . . : 

: . . . . . . . : . 
: . . . . . . . : . 

l the vector mask register is 1 bit wide 

0 the vector registers are 32 bits wide and 
paired for a width of 64 bits 

VR 15 

w 

may be 

0 the section size 2 is 128 elements 

x 
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What is a Vector? 

0 

0 
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a VECTOR is a group of elements in an array 

a vector is partitioned into a SECTION in order to 
execute on the vector hardware. The section size on 
the IBM 3090E is 128 elements. 

the spacing between successive elements in a vector is 
called STRIDE. For example, the vector A(l), A($ 
A(3)... has stride 1. 

THE ARRAY A(lOO,ZOO) IS LAID OUT IN STORAGE AS: 

A(l,l) A(2,l) <=== STRIDE 1 

A(l,l) A(1,2) <=== STRIDE 100 

l an INDUCTION VARIABLE is any INTEGER*4 
variable that is incremented or decremented by a fixed 
amount each time through a loop, such as with the 
index of a DO loop. This is also referred to as an ’ 
INDUCTIVE SUBSCRIPT. I 
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THE SUBSCRIPT EXPRESSION I IS AN INDUCTION VARIABLE 

HERE: 

DO 10 I = 1,N 

10 A(I) = SCAI- 

THE SUBSCRIPT EXPRESSION I*1 IS A NON-INDUCTION 

SUBSCRIPT HERE: 

DO 10 I = 1,N 

10 A(I*I) = SCAL 
L 
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What Does Vectorizable Mean? 

0 only DO loops can be vectorized 

0 the basic unit of vectorization is the statement - 
there is no partial vectorization within a FORTRAN 
statement 

0 in a DO loop, the calculations in one iteration of the 
loop must-not depend on a previous iteration. 

For example, this loop vectorizes 

DO 10 I = 1,90 

cm = A(I) + C(I) * 3 

10 CONTINUE 

while this one does not 

DO 20 I = 1190 

C(I+l) = A(I) + C(I) * 3 

20 CONTINUE 
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Scalar Computation For a DO Loop 

0 registers for scalar arithmetic hold only one element 
at a time 

0 to add two vectors A and B, each element in vector B 
has to be added individually to the appropriate 
element in the vector A, and then assigned to the 
appropriate element in vector C. 

For example, 

DO 10 I = 1,N 

C(I) = A(I) + B(I) 

10 CONTINUE 

the sequence of instructions for this DO loop, 
executed in scalar mode would be: 

1. LOAD ELEMENT COUNT(N) 
2. LOAD a(i) INTO scalar register 
3. ADD b(i) INTO scalar register 
4. STORE c(i) FROM scalar register 
5. DECREMENT COUNT BY 1 
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Vector Computation for a DO Loop 

a vector registers can hold up to 128 elements 

a vectorizing a DO loop produces instructions that 
operate on groups of data elements. 

The sequence of instructions in vector mode is: 

1. LOAD ELEMENT COUNT (N) 
2. LOAD a( I) - a(128) INTO vector register 
3. ADD b( 1) - b(128) TO VECTOR register 
4. STORE c(1) - ~(128) FROM vector register 
5. DECREMENT COUNT by 128 
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Vector Registers 

Provide a FAST storage location for operands, available 
to the pipeline on a one cycle per operand set basis. 

VRl 
I w  

1 

VR2 

Bt 128) 
l 
l 

B(7) 
B(6) 
B(5) 



introduction to Vectorization -15- 

Vector Sectioning - the Basic Action of Vectorization 

DO 10 J = 1,N 

10 A(J) = B(J) 

becomes sectioned as: 

DO 10 J = l,N,Z 

DO xx JV = J.J+MIN(N-J,Z-1Ll ' 

x-x A(Jv) = B(Jv) 

10 CONTINUE 

0 

a 

0 

0 

the innermost (DO xx) loop is executed in the vector 
registers in groups of 2 (128) elements at a time 

the outer loop increment is Z instead of 1 so that the 
vector instructions in the loop are executed 
approximately N/Z times rather than the N times 
required by the equivalent scalar loop. 

the remaining iterations (i.e., when N is not an integer 
multiple of Z) are also processed in the vector 
registers 

the MIN is the “sectioning overhead.” 
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Tools for Vectorization 

@ VS FORTRAN Version 2 Release 3 Compiler 

l Interactive Debugger (IAD) 

l Engineering and Scientific Subroutine Library (ESSL) 

l Assembler Listing 
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Vectorization Strategy 

a time your program to find where it spends most of its 
time (the hot spots) 

0 compile 
2, using 

your program with VS FORTRAN Version 
the vector option on all or just key routines 

and then run it. 

0 look at the vector report to see which loops were 
vectorized 

I. were key loops vectorized? 

2. what prevented vectorization? 

0 compare vector to scalar execution times 

a assess performance expectations 

0 if necessary and potentially fruitful, modify your 
program to increase vectorization 
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Vector Content 

the Vector Content of a program  is that percentage of the 
scalar code that vectorizes. 

0 assume, for example, that 60%  of your scalar code 
vectorizes 

0 assume further that this 60%  has a vector to scalar 
speedup of 4 

scalar code vectorizable code 

40 m inutes 60 m inutes scalar 
optC3) 

40 m inutes 15 
m in 

program  speedup = scalar time 100 =-= 1.82 
vector time 55 
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Vector Performance Formulas 

scalar code vector&able code 

x Y vtime(sca1) 

t 
x vtime(vect) 

vvectime 
L 

Y = vtimefscal) - X 
= vtimefscal) - ( vtime(vect1 - vvectime 1 
= vtime(sca1) - vtime(vect) + vvectime 

X vectorizable = Y / vtime(sca1) l 100 
good vector content = 75% + 

vector speedup = Y 1 vvectime 
good vector/scalar speedup = 3 to 5 

program speedup = vtimefscal) 1 vtimefvect) 
good program speedup = 1.5 to 3.0 

I-. ::! 

; 
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Vector Performance Considerations - AmdahPs Law 

Program 
Speedup 

Design Point % Vecto riid 

5 

4 

3 

2 

I 

7 a 9 

Vector/Scalar SPEEDUP 
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Level Of Effort 

.:. __’ : 
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Quick Timing 

l READY MESSAGE 

when no errors occur, the CMS ready message is of 
the form: 

R; T=M,MM / N,NN HH:MM:SS 

where m.mm is elapsed CPU in seconds and n.nn is 
elapsed CPU plus overhead in seconds (since the last 
CMS ready message). 

l INDICATE USER 

issue the command INDICATE USER before and 
after running a program to determine approximate 
overall time and vector time. 

VTIME elapsed CPU since LOGON in mmm:ss 
VVECTIME 

elapsed vector CPU since LOGON in 
mmm:ss (a subset of VTIME) 
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T h e  F O R  T R A N  Vers ion  2  C o m p ile r  

c a n  a u to m a tica lly vec tor ize  e lig ib le  sta te m e n ts in  D O  
loops  

0  o n ly sta te m e n ts in  D O  loops  c a n  b e  vec to r ized  

0  w ill se lec t th e  s ing le  D O  l oop  in  a  n e s t o f l oops  
w h o s e  vec tor iza tio n  w ill l ead  to  th e  fas tes t 
execu tio n  

w ill u s e  vec to r  vers ions  o f m o s t intr insic m a th  
fu n c tio n s  

c a n  u s e  o p tim izatio n  leve l  2  o r  3  w ith  vec tor iza tio n ; 
d e fa u lt is O P T(3)  

g e n e r a tes  a  vec to r  repo r t w h ich shows  th e  
vec tor iza tio n  dec is ions  m a d e  by  th e  c o m p ile r  
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Compiling with the Vector Options 

NOVECTOR is the FORTVS2 default. The VECTOR 
opticn and suboptions must be specified. 

Syntax: 

FORTVSZ PROGNAME (OPTW3) 
- VECTOR (VECTOR SUBOPTIONS) 

OTHER COMPILER OPTIONS,,, 

Example: 

FORTVSZ MULT (OPT(3) VECTOR (REPORT (XLIST)) 
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Vector Suboptions 

l REPort ( TERM LIST XLIST SLIST STAT) 

TERM 

LIST 

XLIST 

SLIST 

STAT 

l IVA 

Flags vectorized loops and shows how those 
loops were restructured. Display is at the 
terminal. 

Same as TERM, but information is placed 
in the LISTING file. 

Produces detailed information about why 
loops were not vectorized, put in the 
LISTING file. 

Shows vectorized loops and statements in 
the format of the entire source program; 
placed in the LISTING file. 

A vector statistics table is placed in the 
LISTING file. 

Produces a Program Information File, which is 
required by IAD to use Interactive Vectorization Aid 
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functions. 

l SIZE (ANYILOCALln) 

Specifies the section size to be used. 

ANY uses the section size of the machine on 
which the routine is running. 

LOCAL -uses the section size of the machine that 
compiled the program 

n used to specify an explicit section size. Must 
be the same as the machine’s actual section 
size. 
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Vector Suboptions Example 

FORTVS2 TEST (OPT(3) VECTORtREPORTtTERM)) 

WOULD DISPLAY AT THE TERMINAL: 

SCAL ----- DO 10 I = LN 

I A(I+500) = A(I) + 110 

FORTVSZ TEST (OPT(3) VEC(SIZE(LOCAL)REP(XLIST)) 

WOULD PLACE IN THE LISTING FILE: 

VECT ----- DO 10 I = 1,N 

.qr I A(I+500) = AU> + LO 

I 
.:c:- -./ 
..I:‘:.::: 

.-. _.:I 
..; 

, 
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Sample Timing Analysis 

PROGRAM FTVECT 

PARAMETER (N=ZOOOO, Ml=lZOC, M2=175, M3=425) 

REAL*4 D(N), E(N), DOTPR, SUM 

REAL*4 A(Ml,MZ), B(MZ,M3), C(Ml,M3) 

DO 10 I=l,Ml 

DO 10 J=l,MZ 

-A(I,J) = NINT(FLOAT(I-J)) 

10 CONTINUE 

DO 15 I=l,M2 

DO 15 J=l,M3 

B(I,J) = l,O /SQRT(FLOATW/FLOAT(J)) 

15 CONTINUE 

DO 20 I=l,N 

D(I) = SIN(FLOAT(I> / 280) 
E(I) = COS(FLOAT(1) * 200) 

20 CONTINUE 

DOTPR = 080 

SUM = 0,O 

DO 30 1=1,5 
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SUM = SUM + D(I) / E(I) 

30 CONTINUE 

DO 35 I=l,Ml 

DO 35 J=l,M3 

DO 35 K=l,MZ 

C&J) = C(I,J) + A(I,K) * B(K,J) 

35 CONTINUE 

DO 40 I=l,N 

DOTPR = DOTPR + (D(I) * E(I)> 

40 CONTINUE 

DO 50 1=1,1200 

DO 50 J=1,200 

C WRITE (10,51) C(I,J) 

50 CONTINUE 

51 FORMAT (F15,5) 

DO 55 1=5000, N, 5000 

WRITE (6,56> I, D(I), E(I) 

55 CONTINUE 

56 FORMATV I = ',15/ D(I) = '/F8,2,' E(I) = 

',F8,2) 

WRITE (6,") 'SUM: 'AUM 



/ 

;...I ! 
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WRITE (6,") 'DOT PRODUCT: ',DOTPR 

WRITE (6,") 'MATRIX MULTIPLY: ',C(Ml,M3) 

STOP 

END 

FORTVS2 FTVECT (OPT(3) 

VS FORTRAN VERSION 2 ENTERED, 09:48:11 
- 

""FTVECT*" END OF COMPILATION 1 ****** 

VS FORTRAN VERSION 2 EXITED, 09:48:11 

READY; T=0,12/0,15 09:48:11 

LOAD FTVECT (CLEAR 

READY; T=0,08/0,11 09:48:23 

IND USER 

USERID=BEBO MACH=370 STOR=0006M VIRT=V XSTORE=NONE 

IPLSYS=CMSR5C DEVNUM=0015 

PAGES: RES=000914 WS=OOO590 LOCK=000000 RESVD=OOOOOO 

NPREF=000035 PREF=OOOOOO READS=000040 WRITES=000047 

XSTORE=000048 READS=000436 WRITES=000630 MIGRATES=000047 

CPU 00 : CTIME=00:47 VTIME=000:42 TTIME=000:44 IO=001721 

RDR=OOOOOO PRT=000053 PCH=OOOOOO 

VVECTIME=000:07 TVECTIME=000:07 
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READY; T=O,Ol/O,Ol 09:48:28 

START 

DMSLI07401 EXECUTION BEGINS,,, 

I = 5000 D(I) = -0865 E(I) = -0,95 
I = 10000 D(I) = -on99 E(I) = 0,81 

I = 15000 D(I) = -0185 E(I) = -0,60 

I = 20000 D(I) = -0,31 E(I) = 0832 

SUM: -8836326027 

DOT PRODUCT: -08393103242 

MATRIX MULTIPLY: 587375,500 
READY; T=26,01/26,16 09:49:15 

IND USER 

USERID=BEBO MACH=370 STOR=0006M VIRT=V XSTORE=NONE 

IPLSYS=CMSR5C DEVNUM=0015 

PAGES: RES=000899 WS=OOO864 LOCK=000000 RESVD=OOOOOO 

NPREF=000034 PREF=OOOOOO READS=000040 WRITES=000047 

XSTORE=000048 READS=000436 WRITES=000630 MIGRATES=000047 

CPU 00: CTIME=00:48 VTIME=001:08 TTIME=OOl:lO IO=001743 

RDR=OOOOOO PRT=000073 PCH=OOOOOO 

VVECTIME=000:07 TVECTIME=000:07 

READY; T=O,Ol/O,Ol 09:49:25 

FORTVS2 FTVECT ( VECTOR (LEVEL(?) REPORTCTERM)) 

VS FORTRAN VERSION 2 ENTERED, 09:50:18 
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(I> USE OF VECTOR REQUIRES OPT(2) OR OPT(3), OPTIMIZATION 

LEVEL HAS BEEN 

SET TO 3, 

SCAL 

SCAL 

VECT 

SCAL 

VECT 

SCAL 

VECT 

SCAL 

SCAL 

+ ------- DO 10 I=l,Ml 
I+------ DO 10 J=l,M2 

I I A(I,J) = NINT(FLOAT(I-J)) 

I 

+-------- DO 15 I&M2 

I+------ DO 15 J=l,M3 

II B(I,J) = l,O/SQRT(FLOAT(I>/FLOAT(J)) 

+------- DO 20 I&N 

I D(I) = SIN(FLOAT(1) / 280) 

I E(I) = COS(FLOAT(1) * 210) 

+------- ~0 30 I45 

I SUM = SUM + D(I) / E(I) 

+------- DO 35 I=l,Ml 
I+------ DO 35 J=l,M3 
1 I+----, DO 35 K=l,M2 

III C(I,J) = C(I,J) + AU,K) * B(K,J) 

II 



, 
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VECT +------- DO 40 I=l,N 

I DOTPR = DOTPR + (D(I) * E(I)) 

UNAN DO 55 1=5000, N, 5000 

THE DO-LOOPS HAVE BEEN PROCESSED AS INDICATED, 

**FTVECT""' END OF COMPILATION 1 ****** 

VS FORTRAN VERSION 2 EXITED, 09:50:34 

READY; T=OJ8/0,23 09:50:34 

LOAD FTVECT (CLEAR 

READY; T=OJO/OJ3 09:50:56 

IND USER 

USERID=BEBO MACH=370 STOR=0006M VIRT=V XSTORE=NONE 

IPLSYS=CMSRSC DEVNUM=0015 

PAGES: RES=000916 WS=OOO695 LOCK=000000 RESVD=OOOOOO 

NPREF=000034 PREF=OOOOOO READS=000040 WRITES=000047 

XSTORE=000047 READS=000489 WRITES=000712 MIGRATES=000047 

CPU 00: CTIME=OO:49 VTIME=001:09 TTIME=OOl:ll IO=001858 

RDR=OOOOOO PRT=000130 PCH=OOOOOO 

VVECTIME=000:07 TVECTIME=000:07 

READY; T=O1O1/O~O1 09:51:02 
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! 
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START 

DMSLI07401 EXECUTION BEGINS,,, 

I = 5000 D(I) = -0,65 E(I) = -0,95 
I = 10000 D(I) = -0099 E(I) = 0181 
I = 15000 D(I) = -0‘85 E(I) = -0e60 
I = 20000 D(I) = -0131 E(I) = OS32 
SUM: -8036326027 
DOT PRODUCT: -08393156052 

MATRIX MULTIPLY: 587375,500 
READY; T=7;87/7,94 09:51:18 

IND USER 

USERID=BEBO MACH=370 STOR=0006M VIRT=V XSTORE=NONE 

IPLSYS=CMSR5C DEVNUM=0015 

PAGES: RES=000904 WS=OOO856 LOCK=000000 RESVD=OOOOOO 

NPREF=000034 PREF=OOOOOO READS=000040 WRITES=000047 

XSTORE=000044 READS=000492 WRITES=000712 MIGRATES=000047 

CPU 00: CTIME=00:50 VTIME=001:17 TTIME=001:19 IO=001888 

RDR=OOOOOO PRT=000150 PCH=OOOOOO 

VVECTIME=000:14 TVECTIME=000:14 

READY; T=O,Ol/O,Ol 09:51:24 
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Sample Timing Analysis (cont.) 

vtime (scalar 1 = 26.0 1 
vtime (vector) = 7.87 
vvectime = 7.0 

vtime (scalar) 26.0 1 
program speedup = 

vtime (vector 1 
= 7.87 = 3.3 

Y = vtimefscalar )-(vtimehector I-vvectime) 
= 26.0 l-7.87+7.0 
= 25.14 - 

9% vectorizable = Y * 100 
vtimekcalar 1 

25.14 
= 26.01 * loo 

= 96.6% 

Y 
vector speedup = 

vvectime 

25.14 = 
7.0 

= 3.59 
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Sample Hot Spot Analysis 

FORTVSZ FTVECT 

VS FORTRAN VERSION 2 ENTERED, 17:12:25 

""FTVECT"" END OF COMPILATION 1 ****** 

VS FORTRAN VERSION 2 EXITED, 17:12:25 L 

READY; - 

Q TXTLIB 

TXTLIB = NPACKLIB VSF2FORT CMSLIB TSOLIB 
READY; 

LOAD FTVECT 

READY; 

START (DEBUG 

DMSLI07401 EXECUTION BEGINS,,, 

AFFOlOI 

AFFOllI 

AFF0131 

AFF296E 

AFF9951 

AFFOOlA 

VS FORTRAN VERSION 2 RELEASE 3 INTERACTIVE DEBUG 

5668-806 (0 COPYRIGHT IBM CORPS 1985, 1988 

LICENSED MATERIALS-PROPERTY OF IBM 

THE AFFON FILE CANNOT BE READ; FILE IGNORED, 

WHERE: FTVECT,5 

FORTIAD 

ENDDEBUG SAMPLE(Q) 

I =._ 5000 D(I) = -0865 

I = 10000 D(I) = -0899 

E(I) = -0095 

E(I) = 0881 
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1 = 15000 D(I) = -0,85 E(I) = -0160 

I = 20000 D(I) = -0831 E(I) = Oh32 

SUM: -8136326027 

DOT PRODUCT: -0a393103242 

MATRIX MULTIPLY: 587375,500 

AFF3061 PROGRAM HAS TERMINATED; RC ( 0) 

AFFOOlA FORTIAD 

LISTSAMP *-a* 

AFF5501 PROGRAM SAMPLING INTERVAL WAS 4 MS; TOTAL NUMBER 

OF SAMPLES WAS 42627, 

AFF5511 DIRECT SAMPLES: 

AFF5551 STATEMENT SAMPLES XUNIT XTOTAL 

AFF557I FTVECT,ENTRY/EXIT 0 0,oo 0,oo 

AFF5571 FTVECTs5 0 0,oo 0,oo 
AFF5571 FTVECTo6 3 0,Ol 0801 

AFF5571 FTVECTv7 82 0,19 0,19 

AFF5571 FTVECT,8/10 4 0801 0801 
AFF5571 FTVECTo9 0 0,oo 0,oo 

AFF5571 FTVECTJO 1 0,oo 0100 
AFF5571 FTVECTJl 42 0810 0810 

AFF5571 FTVECTJ2/15 5 0101 0801 
AFF557I FTVECTJ3 0 0800 0800 -, 
AFF5571 FTVECTJ4 4 OtOl 0801 

AFF5571 FTVECTJ5 5 0101 OtOl 
AFF5571 FTVECTJ6/20 1 0800 0,oo 
AFF5571 FTVECTJ7 0 0,oo OS00 
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AFF5571 FTVECTB18 

AFF5571 FTVECTv19 

AFF5571 FTVECTs20 

AFF5571 FTVECT,21/30 

AFF5571 FTVECTn22 

AFF5571 FTVECTa23 

AFF5571 FTVECTn24 

AFF5571 FTVECT,25 
******Y****+++**** 

AFF5571 FT-VECT,26/35 
** 

AFF5571 FTVECTt27 

AFF5571 FTVECTu28 

AFF5571 FTVECT,29/40 

AFF5571 FTVECTa30 

AFF5571 FTVECTt31 

AFF5571 FTVECT,32/50 

AFF5571 FTVECTa34 

AFF5571 FTVECTt35 

AFF5571 FTVECT,36/55 

AFF5571 FTVECTt38 

AFF5571 FTVECTs39 

AFF5571 FTVECTn40 

AFF5571 FTVECTa41 

AFF5571 FTVECTt42 

AFFOOlA FORTIAD 

4 

1268 

37729 

3421 8103 8103 

0 

4 

0 

0 

5 

7 

0 

0 

0 

0 

0 

0 

0 

0 

0,oo 0,oo 

0,oo 0800 

otoo 0,oo 

0800 0,oo 

0,oo 0,oo 

0001 0101 

2198 2897 * 

88,60 88851 

0,oo 

0001 

0800 

0,oo 

0101 

0802 

on00 

0,oo 

O&O0 

0,oo 

on00 

0900 

0,oo 

0800 

0800 

on01 

0,oo 

0,oo 

0801 

0102 

0800 

0800 

0800 

0,oo 

0 IO0 

0100 

0100 

0800 



/ 
! introduction to Vectorization -4u- 

‘-.. I 
_! 

, 
.T ! 

QUIT 

READY; 

. 
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FTVECT LISTING 

1LEVEL 2,300 (MAR 1988) 

12, 1989 17:12:25 

PAGE: 1 

VS FORTRAN JUN 

OOPTIONS IN EFFECT: NOLIST NOMAP NOXREF NOGOSTMT NODECK 

SOURCE TERM OBJECT FIXED TRMFLG SRCFLG NOSYM NORENT 

SDUMP(ISN) NOSXM NOVECTOR IL(DIM> 

NOTEST NODC NOICA NODIRECTIVE NODBCS NOSAA 
L 

OPT(O) LANGLVL(77) NOFIPS 

FLAG( I > AUTODBL(NONE) NAMECMAIN) LINECOUNT(56) 

CHARLEN(500) 

0 IF DO ISN 
* * 1 2 3 4 5 6 ,,,I III IIIIll8,I ,,,,,l‘ll 1111‘1111 111111111 lllI1IIIt III 

0 1 PROGRAM FTVECT 

2 PARAMETER (N=20000, M1=1200, 

M2=175, M3=425) 

3 REAL"4 D(N), E(N), DOTPR, SUM 

4 REAL*4 A(Ml,M2). B(M2.M3), C(Ml,M3) 

5 DO 10 I=l,Ml 

1 6 DO 10 J=l,M2 

2 7 A(I,J) = NINTtFLOATU-J)) 

2 8 10 CONTINUE 

9 DO 15 I=l,MZ 
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1 
I 

1 10 DO 15 J=l,M3 

2 11 B(I,J) = 

l,O/SQRT(FLOAT(I)/FLOAT(J)) 

2 12 

13 

1 14 

1 15 

1 16 

17 

18 

19 

1 20 

1 21 

22 

1 23 

2 24 

3 25 

B(K,J) 

3 26 

27 

1 28 

15 CONTINUE 

DO 20 I=l,N 

D(I) = SIN(FLOAT(1) / 2tO) 

E(I) = COS(FLOAT(1) + 2nO) 

20 CONTINUE 

DOTPR = 000 

SUM = 010 

DO 30 1=1,5 

SUM = SUM + D(I) / E(I) 

30 CONTINUE 

DO 35 I=l,Ml 

DO 35 J=l,M3 

DO 35 K=l,M2 

C(I,J) = C(I,J) + A(I,K) * 

35 CONTINUE 

DO 40 I=l,N 

DOTPR = DOTPR + (D(I) * E(I)) 
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1 29 40 CONTINUE 

1 

2 

30 DO 50 1=1,1200 

31 DO 50 J=1,200 

C WRITE (10,51> C(I,J) 

32 50 CONTINUE 

33 51 FORMAT (F15,5> 

1 

1 

L 

'rF8,2,' 

34 DO 55 1=5000, N, 5000 

35 WRITE (6,56) I, D(I), E(I) 

36 55 CONTINUE 

37 56 FORMAT(' I = 75,’ D(I) = 

E(I) = ‘,F8,2) 

1LEVEL 2,310 (MAR 1988) VS FORTRAN JUN 

12, 1989 17:12:25 NAME:FTVECT 

PAGE: 2 

0 IF DO ISN 

* 0 II,, III 1 III,,,,,, 2 3 ,11,,1,,# ,,1,11,,0 4 III,,,,,, 5 111111111 6 I,,, 

0 38 WRITE (6,") 'SUM: ',SUM 

39 WRITE (6,") 'DOT PRODUCT: 

',DOTPR 

40 WRITE (6,") 'MATRIX MULTIPLY: 
',C(Ml,M3) 

41 STOP 
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42 END 

0"STATISTICS" SOURCE STATEMENTS = 42, PROGRAM SIZE = 

3340064 BYTES, PROGRAM NAME = FTVECT PAGE: 1, 
0”STATISTICS” NO DIAGNOSTICS GENERATED, 

0""FTVECT"" END OF COMPILATION 1 +***** 
TIME STAMP: 89,16317,12,25 



Introduction to Vectorization -45- -. 

The Stages of Vector Compilation 

A DO loop must pass four stages of qualification before it 
can be compiled into vector instructions: 

1. 

2. 

3. 

4. 

ANALYSIS ELIGIBILITY STAGE ‘UNAN’ 

the compiler determines whether or not the DO 
loop can be analyzed 

* 

RECURRENCE DETECTION STAGE ‘RECR’ 

loops are analyzed for data dependences that inhibit 
vectorization 

OPERATIONS SUPPORT STAGE ‘UNSP’ 

loops are checked for hardware and compiler 
support of all operations 

ECONOMIC ANALYSIS STAGE ‘ELIG’ 

the compiler makes decisions about which loops to 
vectorize based upon whether scalar mode or vector ’ 
mode is faster 
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The Stages of Vector Compilation (Graphically) 

0 s 

0 S 
. 

0 S 

0 S 
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Terminology 

Dependence 
A dependence exists when the order in which 
statements are executed is important to the 
results of the program. Data dependencies are 
caused by multiple references to the same 
location in storage. 

Indirect Addressing 
The s ituation when the subscript of an array is 
itself an array element. 

Induction Variable 
any integer variable that is incremented or 
decremented by a fixed amount, such as the 
index of a DO loop. Induction variables other 
than the DO loop variables are called auxiliary 
induction variables. 

Loop Distribution 
the process of rewriting a DO loop into two or 
more smaller DO loops. 



. . 
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Recurrence 
A data dependence that inhibits vectorization. 

Scalar Expansion 
a scalar variable that is replaced with a 
temporary vector. 

Section Size 
the number of elements used by the vector 
registers (128 on the 3090) 

Statement Inhibitors 
constructs for which no vector instructions exist 
or for which the compiler does not have the 
ability to generate the required instruction 
sequence. 

_-. . . .I\ 

I 

Stride 

Vector 

the interval between the data elements as they 
are fetched or stored by a program . 

a group of elements obtained by subscripting 
through an array. 
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Vector Inhibitors 
constructs that restrict vectorization analysis 
either for entire loops or for individual 
statements. 

Vector Length 
1 / :._: I : _. :-: 1 

the number of elements of an array that are 
referenced by a vector instruction. It may also 
be thought of as the number of iterations of ,a 
loop that is being vectorized. 
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Vector Report 

UNAN - rejected for vectorization analysis 

UNSP - unsupported for vectorization by the 
compiler or hardware 

RECR - ineligible for vectorization because of 
recurrence 

ELIG - eligible, but not chosen for vectorization 

VECT - vectorized 
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The Analysis Eligibility Stage 

0 

0 
..I 

, 

DO loops are checked for operations which inhibit 
further analysis of the loop. Up to eight innermost 
levels of a nest of loops are analyzed. 

a loop will be flagged ‘UNAN’ if it contains any of 
the loop inhibitors: 

loops other than DO loops 

branches out of a loop, around an inner loop, or 
backwards within a loop 

I/O statements 

subroutine calls 

external, non-intrinsic function references 

ASSIGN, ENTRY, RETURN, PAUSE or STOP 
statements 

computed or assigned GOT0 statements 
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. . 
. -../ .; 

! 

DO loop parameters which are not INTEGER*4 

DO loop parameters which are in 
EQUIVALENCE statements 

character data 

comparisons of COMPLEX data 

loops with more than 8 nested levels 
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Loops Other Than DO Loops 

l loops other than DO loops are not vectorized. 

0 recognize constructs which can be stated as DO loops 
and re-write them for vectorization. 

l re-write this: 

I=1 

25 IF(I,GT,N) GOT0 26 

B(I) = X(1> ** AU) * C 

I = I+1 

GOT0 25 

26 CONTINUE 

as a DO loop: 

DO 25 I = LN 

B(I) = X(I) *+ A(I) * C 

25 CONTINUE 

-i . . 
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Branch Out of Loop (Pue-mature Exit) 

0 try distributing/re-structuring the loop. Re-write this: 

UNAN+------se. DO 40 J = 1,N 

I X(J) = Y(J) - Z(J) 

I IF (X(J)oLTnOd GOT0 50 

I ROOT(J) = SQRT(X(J)) . 
& + -----40 CONTINUE 

50 JLAST = J - 1 

as this (if it executes faster): 

VECT+----- DO 41 J = 1,N 

I 
+---,- 41 TEMPX(J) = Y(J) - Z(J) 

UNAN+m-..--- DO 42 J = 1,N 

I 
+---- 42 IF ( TEMPXtJhLTnO) GOT0 51 

51 JLAST = J - 1 

IF ( JLAST,EQtO) GOT0 52 



/ Introduction to Vectorization -55 

VECT+-------- DO 43 J = 1,JLAST 

I I X(J) = TEMPXtJ) 
-I.----- 43 ROOT(J) = SQRT(X(J>> 

1 
I IF ( JLAST,EQoN > GOT0 53 

I 52 X(JLAST + 1) = TEMPXCJLAST + 1) 
I 

53 CONTINUE -_ 
: -' : 

I 

:. -... - 
:y 

_:. I 
I 
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1/0 Statements 

l I/O statements are not analyzed by the compiler for 
vectorization 

0 move the I/O statement out of the loop 

* Re-write this: 

- UN/j\+-----m-m 

I 
I 

I 
+-----30 

as this: 

l/EC-l-+-------- 
l 

I 
+----- 30 

UNAN+.m-~~.m.m- 

I 
+----- 31 

DO 30 I = l,N 

A(I) = C(I) ** 2 

B(I) = C(I) ** On5 

WRITE (61") AU LB(I) 

CONTINUE 

DO 30 I = 1,N 

A(I) = C(I) *+ 2 

B(I) = C(I) ** 0e5 

CONTINUE 

DO 31 I = 1,N 

WRITE (6,“) A(I), B(I) -. 

CONTINUE 
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Subroutine Calls 

0 the compiler can’t analyze a loop with a subroutine 
call, because vector inhibitors could be present in the 
subroutine. If a DO loop containing a subroutine call 
is a hotspot, try bringing the subroutine in line. 

* Re-write this: 

COMMON Y 

UNAN+---me---- DO 40 J = 1,N 

I X(J) = Y(J) - Z(J) 

I CALL SUB( J, X(J), Z(J)) 

I I I t I I 
+-----40 CONTINUE 

SUBROUTINE SUB( IND, A, B) 

COMMON Y 

Y(IND> = A + B 

as this: 
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COMMON Y 

VECT+-------- DO 40 J = LN 

I X(J) = Y(J) - Z(J) 

I Y(J) = X(J) + Z(J) 

I I I I I I 
+----- 40 CONTINUE 
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Recurrence Detection Stage 

0 a data dependence occurs when two statements (or 
iterations of the same statement) refer to the same 
data location 

some data dependences inhibit vectorization; they are 
called recurrences. 

a recurrence is flagged as ‘RECR’ on the XLIST-ing. 

by changing your code, it may be possible to 
eliminate a recurrence and vectorize the changed 
code. 

. . . . . . . . . 
I.‘_ 
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Forms of Recurrence 

0 a reference in one iteration of a DO loop to an array 
element whose value was changed in an earlier 
iteration. For example, 

DO 100 I = 1,lOOO 

C(I+l) = C(I) * 3 

- 100 CONTINUE 

0 an induction variable that modifies inner DO loop 
parameters. For example, 

DO 500 J = 1,lOOO 

DO 400 K = 1,J 

I , I I I 

0 any dependences that prevent interchanging the order 
of nested DO loops. 
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Opevations Support Stage 

Loops are checked for hardware and compiler support of 
all operations. 

These operations PREVENT vectorization (loop 
inhibitors) and the loops containing them will be flagged 
as ‘UNSP’: 

l data types- 

REAL"16 

COMPLEX*32 (EXCEPT COMPARES) 

LOGICAL"1 

l any intrinsic functions with REAL46 or 
COMPLEX*32 arguments 

l INTEGER*2 governed by an IF statement 

l relational expressions that need to be stored. For 
example, 

L = A,GE,B 

i ’ ?,. 
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I 0 

0 

I 0 

0 

intrinsic functions from the families: DIM, MOD, 
SIGN, NINT, ANINT, MAX, MIN 

non-inductive subscripts governed by an IF statement 

non-inductive subscripts to an INTEGER*2 array 

misaligned data 

IF statements with redundant parentheses 

any intrinsic function when the NONINTRINSIC 
option is specified 

: . . 

(..I 
._.I-_ ., 

.::1 
-_ 
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These Use the Vector Hardware 

l data types 

I ._ 
.‘_ .:.,.’ 

REAL*4 REAL*8 

COMPLEX*8 COMPLEX"16 

SOME INTEGER*2 

INTEGER*4 LOGICAL*4 

/ 

I 

.: _= 

.I 
:. . 
.,T-,,-: : 

, 

0 mathemati’cal operations 

REAL**REAL DOUBLE*"DOUBLE 

0 intrinsic functions 

SQRT 

DABS 

DREAL 

CDABS 

COMPLX 

DSIN 

INT 

DMINl 

DCOTAN 

AIMAG 

DEXP 

IBSET 

AMAXl 

ATANZ 

DCONJG 

DTAN 

ABS 

REAL 

CABS 

DINT 

SIN 

IFIX 

AMINl 

IABS 

NOT 

EXP 

IBCLR 

DBLE 

DLOGlO 

CONJG 

DCOS 

ISHFT 

DPROD 

DATAN 

AINT 

DLOG 

I EOR 

MAX1 

HFIX 

DFLOAT 

DSQRT ATAN 

IAND DIMAG 

SNGL ALOG 

ALOGlO IDINT 

DCOMPLX DMAXl 

DATANZ COS 

IOR FLOAT 

MINl 
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These Do Not Use the Vector Hardware 

l these operations and functions are evaluated using 
scalar routines. Their use in vector mode could slow 
down your program. 

l mathematical operations 

INTEGER ** INTEGER 

INTEGER / INTEGER 

REAL ** INTEGER 

DOUBLE ** INTEGER 

COMPLEX ** INTEGER 

(DOUBLE COMPLEX) ** INTEGER 

COMPLEX ** COMPLEX 

(DOUBLE COMPLEX) ** (DOUBLE COMPLEX) 

COMPLEX DIVIDE 

DOUBLE COMPLEX DIVIDE 

0 intrinsic functions 

ACOS SINH DGAMMA CDCOS CSQRT DACOS DSINH 

ALGAMMA CSIN CDSQRT ASIN ERF DLGAMA CDSIN 

IBCLR DASIN DERF TANH CEXP IBSET COTAN 

ERFC DTANH CDEXP ISHFT COSH DERFC TAN 

CLOG DCOSH GAMMA CCOS CDLOG 
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Some Examples - Taking Advantage of the Vector 
Hardware 

a indirect addressing to handle non-constant stride or 
randomly ordered elements. This is sometimes called 
scatter/gather. 

VEC-j-+-------- 
I 
+----- 10 

l/EC-+-------- 
l 
+----- 15 

a operations under mask. 

VEC-+----m-m- 
I 
I 
I 
+----- 20 

DO 10 J = 1,N 

B(J) = A(J) + P * C(J*W 

CONTINUE 

DO 15 J = 1,N 

Y(J) = Z( IND(J>) 

CONTINUE 

DO 20 J = 1,N 

IF( B(J),GTrXOLD > THEN 

B(J) = A(J) + P + C(J) 

ENDIF 

CONTINUE 
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Non-Inductive Subscvipts Governed by IF 

0 non-inductive subscripts governed by an IF prevent 
vectorization 

UNSp+----em--- DO 20 J = 1,N 

I IF( B(J)uGTaXOLD > THEN 

I B(J) = A(J) + P + C(J""2) 
- I ENDIF 

+----- 20 CONTINUE 

UNSP THE ARRAY(S) "C" ARE USED IN 

CONDITIONALLY EXECUTED 

CODE AND HAVE NON-INDUCTIVE SUBSCRIPT EXPRESSIONS 

0 recode with instructions which are supportable for 
vectorization: 

VEC-+-------- DO 20 J = 1,N 

I CT = C(J*"2) 

I IF( B(J),GT,XOLD > THEN 

I B(J) = A(J) + P * CT 

I ENDIF 
+----- 20 CONTINUE 
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The Economic Analysis Stage 

0 

0 

0 

the Economic Analyzer is the name given to the code 
in the VS FORTRAN Version 2 compiler that 
estimates the number of cycles (cost) that will be 
expended to execute given sections of code. 

the choice of which regions to vectorize, if any, is 
based upon the calculations of the cycles for all 
possible combinations of nested loops (to a level of 8). 

‘ELIG’ indicates that the loop was found eligible for 
vectorization, but has been chosen to run in scalar 
mode. 

. ., :_ :.._ 
:.~:L 
., .: -. 

I 
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Example of Economic Analysis 

Consider the following program involving integer 
divisions: 

INTEGER*4 K(lOO), J(100) 

REAL*4 X(100), Z(100) 

DO 30 I = 1,100 

J(I) = J(I)/K(I) 

Z(I) = KCIVXU) 

30 CONTINUE 

STOP 

END 

the Economic Analyzer determines the following, 

INTEGER"4 K(lOO), J(100) 

REAL*4 X(100), ZUOO) 

ELIG+-------- DO 30 I = 1,100 SCALAR FASTER 
+--em---- JU > = J(I)/K(I) THAN VECTOR 
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. . . : 

I 

VE(--+-v-s----- DO 30 I = 1,100 
+-ea.----- Z(I) = K(1 )/X(1 > 

STOP 

END 

ILX0148K 0004 ELIG CODE THAT WAS ELIGIBLE TO EXECUTE 

IN VECTOR MODE 

WAS DETERMINED TO EXECUTE MORE EFFICIENTLY IN SCALAR, 
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Good Vector Programming Practices 

a time your program so you know where to spend your 
efforts. 

0 check that your data and intrinsic functions can use 
the vector hardware. 

e use ESSL whenever possible. 

0 try to eliminate vector inhibitors. 

.- 
: -’ 

_. 
:L 
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Succeeding in the Recuvvence Detection Stage 

l during the Recurrence Detection Stage the compiler 
REJECTS any DO loop for vectorization and flags it 
as ‘RECR’ if it contains: 

0 an induction variable that modifies inner DO loop 
parameters 

l any dependencies that prevent loop interchange. 

l unbreakable recurrences 

0 the first two points have to do with the way outer 
loop vectorization is executed. No matter which loop 
is chosen as the vector loop, vectorization actually 
occurs at th.e innermost loop level, in sections of 128 
(or fewer) data elements. 
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An Induction Variable that Modifies an Inner Loop 
Parameter 

If an induction variable in an outer loop modifies an 
inner DO loop parameter, that outer loop cannot be 
moved to the innermost loop level. Therefore, 
vectorization cannot occur on that outer loop. 

Consider, for example, 
. 

RECR +------- DO 10 J = 1,100 
VE(-T I+------ DO 10 K = LJ 

I I C(J,K) = A(J,K) * B(J,K) 
+--- ---10 CONTINUE 

.-.:5 -: 
1: .:, _; 
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Loop Interchange - Preventing Dependencies 

If program results would change by moving an outer loop 
to the innermost level, vectorization is prohibited on the 
outer loop. This is called a loop interchange preventing 
dependence. 

.  1 

:  i 
. : : .  

.i Consider the following two pieces of code, which differ 
only in their DO loop order: 

c 

DO 15 I = 1,N DO 15 J = 1,M 
I DO 15 J = 1,M DO 15 I = 1,N 

15 AU-l,J+l) = AU,J> 15 AU-l,J+l) = AU,J) 

their execution in scalar mode would be as follows: 

/ 
1 A(0,2) = A(U) A(0,2) = A&l) 
! 
I A(0,3) = A&2) A(1,2) = A(2J) 

AU,21 = A(2,l) A(0,3) = A(L2) 

;...,.A 1 AU,31 = A(2,2) A(L3) = A(2,2) : ._ . . , ^! 

Data element A(0,3) contains different values, depending 
upon the order of the DO loops. The outer DO loop 
cannot be moved to the innermost level, and therefore it 
cannot be vectorized. 
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What Exactly is a Recurrence? 

l for example: 

DO 99 J = 1,100 

A(J+l) = A(J) + B(J) 
99 CONTINUE 

0 results: 

SCALAR EXECUTION 

FETCH A(1 > 

COMPUTE A(1) + B(1) 

STORE A(2) 

FETCH A(2) 

COMPUTE A(2) + B(2) 

STORE A(3 > 

ETC, 

VECTOR EXECUTION 

---------------- 

FETCH A(1 > 

FETCH A(2 > 

ETC 8 

COMPUTE A(1) + B(l) 

COMPUTE A(2) + B(2) 

ETC, 

STORE A(2 > 

STORE A(3 > 

ETC, 

l note that in scalar execution, A(2) is stored before it 
is fetched. 



Introduction to Vectorization -75 

0 

0 

0 

in vector execution, A(2) would be fetched before it is 
stored. The wrong value of A(2) would be used for 
the computation! 

vectorization is prohibited due to the recurrence on 
A. 

a recurrence is a data dependence which prevents 
vectorization. 
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Data Dependencies 

0 

0 

a 

a DEPENDENCE exists when the order in which 
statements are executed may change the results of the 
program. 

data dependences are caused by multiple references to 
the same location in storage. 

a dependence occurs by: 
0 the execution of successive statements or 

l the successive execution of a single statement 
during different iterations of a DO loop. 
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.- 

Data Dependences 

i 
l data dependences are caused by multiple references to 

the same location in storage. 

a this is a time-shot of one storage location: 

-----I--------I-------l-------l-------l-------> _ 

I- I I I I 

FETCH1 STORE1 STORE2 FETCH:! FETCH3 TIME 

STORE FOLLOWED BY FETCH: TRUE DEPENDENCE 

FETCH FOLLOWED BY STORE: ANTI-DEPENDENCE 

STORE FOLLOWED BY STORE: OUTPUT DEPENDENCE 

FETCH FOLLOWED BY FETCH: INPUT DEPENDENCE 

0 the recurrence analysis stage examines storage 
- reference patterns. The order in which stores and 

fetches are done in scalar mode has to be maintained 
in vector mode. 
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True Dependences 

0 

0 

0 

0 

a true data dependence is a store to a memory 
location followed by a fetch from that location. 
Statement T depends upon statement S if S defines a 
value and T references it: 

s: x = 
T: = x 

S must execute before T, because S defines a value 
used by T. The execution of T depends on the 
execution of S being completed. 

a single statement true dependence is of the form: 

A(J+l) = , , ,A(J), t , 

a single statement true dependence is a recurrence. It 
prevents vectorization. 
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Anti-Dependencies 

0 

0 

l 

an anti-dependence is a fetch from a memory location 
followed by a store to that location. Statement T 
depends upon statement S if S references a value and 
T defines it: 

S: = x 
T: X = 

- 

S must execute before T because S must reference X 
before T redefines it. 

a single statement anti-dependence is of the form: 

A(J--1) = , , aA( a 0 
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Anti-Dependencies (cont.) 

l for example, 

VECT+----s-m- DO 30 J = 1,N 

I A(J-1) = A(J) + B(J) 

+-------30 CONTINUE ., :. - / 
: . 

SCALAR EXECUTION 

___------------- 

FETCH A(1 > 

COMPUTE AU> + B(1) 

STORE A(0 > 

FETCH AU > 

COMPUTE A(2) + B(2) 

STORE A(1 > 

ETC, 

VECTOR EXECUTION 

____------------ 

FETCH A(1) 

FETCH A(2) 

ETC, 

COMPUTE A(1) + B(l) 

COMPUTE A(2) + B(2) 

ETC, 

STORE A(0 > 

STORE A(1 > 

ETC, 

0 the order of fetches and stores is preserved in vector 
execution. A single statement anti-dependence WILL 
vectorize. 
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Single Statement Dependencies 

a true dependence is a store to a memory location 
followed by a fetch. 

a s ingle statement true dependence is of the form: 

- 
RECR+-------- DO 10 J = 1,N 

I A(J+l) = , , ‘A(J), , 

+-------lo CONTINUE 

a s ingle statement true dependence WILL NOT 
vectorize. 



‘- I Introduction to Vectorization -82- 

an anti-dependence is a fetch from a memory 
location followed by a store. 

a single statement anti-dependence is of the form: 

VECT+--s-s--- DO 10 J = 1,N 

I A(J-1) = 8 , aA( 

+-------lo CONTINUE 
” 

- a single statement anti-dependence WILL vectorlze. 
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Multiple Statement Dependences 

0 a dependence can occur by the execution of successive 
statements. 

I 

‘I : -.._I / 

l the compiler will consider all valid statement 
re-orderings within a loop when it does the recurrence 
analysis. 

0 the compiler examines the order of fetches and stores 
in a DO loop to determine whether it can safely 
vectorize the loop. 
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Multiple Statement Dependences (cont.) 

EXAMPLE 1: an anti-dependence on A 

VECJ-+----e-m DO 30 J = 1,N 

I A(J) = B(J) + C(J) 

I E(J) = A(J+l) 
+ -------30 CONTINUE 

L 

0 the compiler will reorder the two statements and 
thereby preserve the order of fetches and stores on A! 
The loop WILL vectorize. 

EXAMPLE 2: a true dependence on A and an 
anti-dependence on B 

VECT+------- DO 30 J = 1,N 

I A(J+l) = B(J) + C(J) 

I B(J) = A(J) 
+-------30 CONTINUE 

a the compiler determines that the order of fetches and 
stores is preserved with vector execution and WILL 
vectorize the loop. 
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Multiple Statement Dependencies : Two Anti-Dependencies 

0 example: 

/ 

. 
.: .., 

..:, 
-:, .:.. 

I 
- j 

RECR+-------we DO 30 J = 1,N 

I A(J) = B(J) + C(J) 

I B(J) = A(J+l) 

+-------30 CONTINUE 

l scalar execution: 

A(1) = B(1) + C(1) FETCH B(1) AND STORE Ml) 

B(1) = A(2) FETCH A(2) AND STORE B(l) 

A(2) = B(2) + C(2) FETCH B(2) AND STORE A(2) 

B(2) = A(3) FETCH A(3) AND STORE B(2) 

ETC, 

0 vector execution (1st attempt): 

A(1) = B(l) + C(l) FETCH B(1) AND STORE A(1) 

A(2) = B(2) + C(2) FETCH B(2) AND STORE A(2) 

ETC a 

B(1) = A(2) FETCH A(2) AND STORE B(1) 

B(2) = A(3) FETCH A(3) AND STORE B(2) 

ETC, 
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0 

0 

0 

the order of fetches and stores on A has changed!! 

vector execution (2nd attempt - re-ordered DO 
loop): 

B(1) = A(2) FETCH A(2) AND STORE B(1) 

B(2) = A(3) FETCH A(3) AND STORE B(2) 

ETC, 

A(1) = B(1) + C(1) FETCH B(1) AND STORE A(1) 

A(2) =-B(2) + C(2) FETCH B(2) AND STORE A(2) 

ETC, 

the order of fetches and stores on B has changed! 

a forward and a backward anti-dependence form a 
cycle of dependences. This is a recurrence that 
prevents vectorization. 

however, a scalar temporary may be used to “break” 
this type of recurrence. This technique is known as 
node splitting. 
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Scalar Expansion 

Scalar Expansion is the replacement of a scalar variable T 
by a vector temporary whose elements are all equal to the 
original scalar. 

i’ 
Some Rules: 
0 the scalar variable must be local to the loop in which 

. 

0 

0 

0 

it is used 
it cannot 
reference 
it cannot 

use values defined before the loop. The first 
to T must be a store (i.e., T = . ..). 
be used after the loop. The first reference to 

;-:- :’ 
. . ..T . . I. 

. . . . 

T after the loop, if any, must also be a store. 
it cannot be in COMMON or EQUIVALENCEd. 

The Model: 

DO 30 J = 1,N 

30 CONTINUE 
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Node Splitting 

0 scalar temporaries can be used to break recurrences. 
This technique is known as node splitting. 

a the compiler expands the scalar temporaries into 
vector temporaries. 

RE-WRITE THIS: As THIS: 

-------------- -------- 

RECR+-- DO 30 J = 1,N VECT+-- DO 30 J = 1,N 

I A(J) = B(J)+C(J> I T = B(J>+C(J) 

I B(J) = A(J+l) 

+-30 CONTINUE 

l scalar execution: 

A(1) = B(l) + C(l) 

B(1) = A(2) 
A(2) = B(2) + C(2) 

B(2) = A(3) 

ETC 1 

I B(J) = A(J+l) 

I A(J) = T 

+-30 CONTINUE 

FETCH B(1) AND STORE A(1) 

FETCH A(2) AND STORE B(l) 

FETCH B(2) AND STORE A(2) 

FETCH A(3) AND STORE B(2) 
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Node Splitting (cont.) 

RE-WRITE THIS: As THIS: 

-------------- -------- 

RECR+-- DO 30 J = 1,N VECT+-- DO 30 J = LN 

I A(J) = B(J)+C(J> I T = B(J)?C(J) 

I - B(J) = A(J+l) I B(J) = A(J+l) 

+-30 CONTINUE I A(J) = T 

+-30 CONTINUE 

0 vector execution with node splitting: 

T(1) = B(1) + C(1) FETCH B(1) 

T(2) = B(2) + C(2) FETCH B(2) 

ETC, 

B(1) = A(2) FETCH A(2) AND STORE B(1) 

B(2) = A(3) FETCH A(3) AND STORE B(2) 

ETC, 

A(1) = T(l) STORE A(1 > 

A(2) = T(2) STORE A(2 > 

l the order of fetches and stores has been preserved. 
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Partial Sums 

: . , : .- .-i 
_I 

-,. :  ~ 

_, 
. ..-.:.:J 
_. . . .., 

I 

GIVEN: 

SUM = 0,O 
VECT+-------- DO 30 J = 1,N 

I SUM = SUM + A(J) + B(J) 
+ -------30 CONTINUE 

0 the accumulation on SUM is called a reduction 
operation. 

l SUM carries a recurrence: a single statement true 
dependence. 

a there is a hardware solution called partial sums which 
works around this inherent recurrence. 

0 integer partial sums are not vectorized because they 
are faster in scalar. To allow the rest of a loop to 
vectorize, change to REAL& 

0 the order in which data elements are added using 
partial sums is not the same as scalar addition. Since 
floating point addition is not commutative, results are 
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slightly different in vector and scalar modes. To 
prevent vectorization, use the compiler option 
NOREDUCTION. 
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The Use of Scalar Temporaries 

0 accumulators should be scalar temporaries rather than 
array references since temporaries don’t have to be 
stored. 

l Re-write this: 

VECT;----s--s 

I 

I 

I 

I 
+-----15 

as this: 

VECT+---w---w 

I 

I 

I 

I 

I 17 

I 

DO 15 I = 1,LEN 

DO 15 J = 1,LEN 

C&J) = 080 

DO 15 K = 1,LEN 

C(I,J) = C(I,J) + A(I,K) * B(K,J) 

CONTINUE 

DO 15 I = 1,LEN 

DO 15 J = 1,LEN 

TEMP = Or0 

DO 17 K = 1,LEN 

TEMP = TEMP + A&K) * B(K,J) 

CONTINUE 

C(I,J) = TEMP 
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+----45 CONTINUE 

0 or use this ESSL subroutine: 

CALL DGEMUL(A,LEN,'N',B,LEN,'N',C,LEN,LEN,LEN,LEN) 
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Summary on Recurrence 

l Accurate recurrence detection requires that the 
compiler know as much as possible about the nature 
of subscript calculations for the array variables used 
within a loop. This requires information about: 

0 the dimensionality of arrays 

l the parameters of the DO loops 

0 expressions used to calculate the subscripts of each 
array reference 

If information about these factors is not available to 
the compiler, the optimum degree of vectorization 
may not be achieved. 

0 the compiler determines when it is safe to interchange 
loops, when it is safe to distribute a loop into multiple 
loops and when it is safe to reorder statements within 
a loop. 

0 if an outer loop cannot safely be moved to the 
innermost loop level, vectorization cannot occur on 
the outer loop. 
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. 
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J 

- : :_ 

a single statement true dependence of the type 

A(J+l> = ,,,A(J),I, 

is a recurrence that prevents vectorization. 

a single statement anti-dependence of the type 

A(J-1) = , ,,A(J), 8, 

vectorizes. 

if the compiler flags a loop with multiple statements 
as a recurrence, you can try introducing temporaries 
to break that recurrence. 

the compiler often cannot analyze complicated array 
subscripts, EQUIVALENCEd arrays, or arrays using 
indirect addressing. In such instances, the compiler 
may flag a loop as a recurrence, even though no 
recurrence occurs. You can override these “fake” 
recurrences with compiler directives, so long as you 
are sure that no recurrences actually occur. 
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Vector Compiler Directives 

0 compiler directives are used to override decisions 
made by the compiler and to give additional 
information to the compiler. 

0 there are three compiler directives: 

l ASSUME COUNT (n) : specifies a value that the 
compil‘er can use as an estimate for the iteration 
count of a loop 

. PREFER 

l VECTOR - specifies that a particular loop in 
a nest will be the best choice for a vector loop 
(if eligible) 

l SCALAR - specifies that a particular loop 
should not be chosen for vector execution 

. IGNORE 

. RECRDEPS - specifies that potential 
recurrences can be ignored in determ ining 
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eligibility for vectorization 

l EQUDEPS - specifies that the compiler 
should assume that variables used in 
EQUIVALENCE statements do not give rise 
to recurrences 

l ON and OFF keywords may be used with ASSUME 
COUNT xnd PREFER. Otherwise, a directive applies 
only to the DO loop immediately following it. 



/ 

I 

;. 
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How To Use Vector Directives 

a a directive is used with a so-called trigger-string, 
which is a character string defined by the user. Its 
purpose is to allow the compiler to distinguish a 
comment from a directive. 

0 the syntax of a vector compiler directive is : 

Ctrigger-string keyword additional-information 

C indicates a comment line and is immediately 
followed by the trigger-string. The keywords are 
ASSUME COUNT, PREFER and IGNORE. 

l a directive is activated by the @PROCESS 
DIRECTIVE statement. The @PROCESS statement 
is placed before the first statement of EACH program 
unit (main program or subprogram) that uses a 
directive. The @ must be in column one. 
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0 a directive can be treated as a comment by omitting 
the @PROCESS DIRECTIVE statement or by 
specifying @PROCESS NODIRECTIVE. 

0 each type of directive pertains to just one stage: 

DIRECTIVE STAGE 
_---e---4 ----- 

ASSUME COUNT ECONOMIC ANALYSIS 

PREFER ECONOMIC ANALYSIS 

IGNORE RECURRENCE DETECTION 
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Directives : Where Added Information is Useful 

use ASSUME COUNT for: 
0  unknown trip  count: 

DO 20 J = M ,N,L <--- HOW MANY ITERATIONS? 

use PREFER for: 
0  overriding the compiler’s economic dec ision: by tim ing 

your code,Ly~~ m ight determ ine that the compiler 
made the wrong decision. 

COMPLEX C,D 
DO 20 K = 1,N 
D(K) = C(K) / D(K) 

< --- COMPLEX DIVISION 

IS SLOW IN VECTOR MODE 

use IGNORE RECRDEPS for: 
0  unknown loop index upper bound : recurrence 

conditions may depend on its  va lue. 

DO 10 J = 1,N <--- WHAT IS THE SIZE OF N? 
A(J+50) = A(J) * B(J) <--- RECURRENCE IF N ’ 50 

0 unknown DO increment : recurrences may depend on 
the d irection of the increment. 
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DO 10 J = M,N,L 

A(J-1) = A(J) + B(J) 

<--- WHAT IS THE SIGN OF L? 

<--- RECURRENCE IF L IS 

NEGATIVE 

::. . . . ., 
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Directives : Where Added Information is Useful 

a unknown auxiliary induction variable : recurrences 
may depend on its value. 

DO 10 J = 1,N 
A(J) = A(K) * B(J) < --- RECURRENCE IF K < J 
K=K+M < --- WHAT ARE K AND M? 

0 unknown Subscript offset : recurrences may depend on 
the value of the offset. 

DO 10 J = 1,N 
A(J+M) = A(J) < --- RECURRENCE IF 0 < M < N 

0 when arrays are EQUIVALENCEd : the compiler 
always assumes dependence among equivalenced 
arrays. 

EQUIVALENCE (A(50), B(1)) 
DO 10 J = 1,N <--- NO RECURRENCE, BUT THE 

A(J) = B(J) COMPILER THINKS THERE 

IS! 

0 unknown indirect addressing subscripts : 
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DO 10 J = 1,N 

A(J) = A(K(J>) + B(J) <--- IS THERE A RECURRENCE? 

A(K(J)) = A(K(J)> + B(J) <--- ARE THE A's 

INDEPENDENT? 
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Using Directives : Rules of Thumb 

0 

0 

0 

use them for hotspots. Don’t clutter your program 
where they are not needed. 

use ASSUME COUNT rather than PREFER where 
appropriate. 

double check to insure that IGNORE is used safe1.y. 
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Summary : When to Use Directives 

0 

0 

0 

the ASSUME COUNT and PREFER directives will 
not affect program results. Use them for: 
0 unknown trip counts 
0 vector loop selection 
l when the compiler makes the wrong economic 

make sure- that you ARE outsmarting the compiler 
before you use PREFER. 

decision 

program results could change if you use IGNORE 
incorrectly. It can be used for: 
0 unknown loop index upper bound 
l unknown DO increment 
l unknown DO auxiliary induction variable 

increment 
l unknown subscript offset 
l unknown equivalence-induced dependencies 
l unknown indirect-addressing dependencies 
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Poor Vector Performance 

If vectorization g ives poor performance gains, consider 
the following: 

1 . 

:  

2. 

3. 

4 . 

the storage reference pattern is poor (stride 
considerations) 

the vector lengths are too short 
b  

there are too many IF statements 

too many loop structures are inappropriate for 
vectorization 

inefficient handling of sparse arrays 

i ‘_ ! 
.:: :, 

: 
-I 

! 

~. , 

. 
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Stride Considerations 

stride is a very important consideration for vector 
performance since arrays with small strides can be moved 
from virtual storage to vector registers and back much 
more efficiently than arrays with large strides. 

the stride can be positive, negative or zero. For positive 
and negative strides, it is possible to specify vector 
elements beyond the range of an array thereby leading to 
unpredictable results and/or program errors. 

Methods: 

l data re-structuring - re-organize arrays to optimize 
stride 

l data re-structuring using temporaries 
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Data Re-Structuring to M inimize Stride 

since FORTRAN multi-dimensional arrays are stored in 
column-major form, the first subscript of an element 
always varies most rapidly and the last subscript always 
varies the least rapidly. 

therefore, one way of m inimizing stride is to insure that 
the dimension of an array that is the desired target for 
vectorization is the left-most dimension. 

Given: 

PROGRAM STRIDE 

REAL*4 A(5,10,1000), B(5,10,1000) 

DO 10 K = 1,lOOO 

DO 10 J = 1,lO 

DO 10 I = 1,5 

AU,J,K) = A(I,J,K) + B(I,J,K) 

10 CONTINUE 

re-write as: 

PROGRAM STRIDE 
REAL*4 A(1000,10,5), B(1000,10,5) 
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DO 10 K = 1,lOOO 

DO 10 J = 1,lO 

DO 10 I = 1,5 

A(K,J,I) = A(K,J,I) + B(K,J,I) 

10 CONTINUE 

; 
,I 

.. .__ 
,. : 

. . 

.  
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In tro d u c tio n  to  V e c tor iza tio n  -llO - 

V e c tor  L e n g th  Cons ide ra tions  

vec tor iza tio n  o f a  l oop  w ith  a  la rge  vec tor  l eng th  has  a  
m u c h  g rea ter  p a y o ff th a n  vec tor iza tio n  o f a  shor t l oop . 

fo r  very  shor t l oops , vec tor iza tio n  m a y  resu l t in  poo re r  
pe r fo r m a n c e  th a n  sca lar  

M e th o d s : 

l 

0  

0  

0  

. 

use  th e  A S S U M E  C O U N T  d irec tive  

use  d u a l p a th  c o d e  

c rea te  l onger  vec tors  th r o u g h  E Q U IV A L E N C E , 
copy ing  into te m p o rary vec tors , e tc. 

e lim ina te  l oop  unro l l ing  
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Dual Path Directives 

if the loop count varies from small to large, depending 
upon your initial data, you could code a dual path to 
select scalar or vectorized loops. 

for example: 

@PROCESS DIRECTIVE ('*VDIR') 

I I I I I 

IF (N,LT,ZO) GOT0 30 

C*VDIR ASSUME COUNT (100) 

DO 10 K = 1,N 

COMPUTATIONS 

10 CONTINUE 

GOT0 40 

PVDIR ASSUME COUNT (5) 

30 DO 11 K = 1,N 

COMPUTATIONS 

11 CONTINUE 

40 CONTINUE 
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Using Equivalence to Combine Multiple Dimensions 

re-write this: 

DIMENSION A(10,8,9 >, B(10,8,9) 

as this: 

I I I I I 

DO 99 I = 1,lO 

DO 99 J = 1,8 
b 

DO 99 K  = 1,9 

99 A(I,J,K) = A(I,J,K) + B(I,J,K) 

DIMENSION A(10,8,9 )I B (10,8,9 > 

DIMENSION AA(80,9), BB(80,9) 

EQUIVALENCE (A(l,l,l), AA(l,l)) 

EQUIVALENCE (B(l,l,l), BB(l,l)) 

DO 99 IJ = 1,80 

DO 99 K  = 1,9 

99 AA(IJ,K) = AA(IJ,K) + BB(IJ,K) 
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IF Statement Considerations 

0 

0 

0 

0 

a vectorized IF uses the vector mask register. 

all computations, for every iteration of the loop, are 
performed for every IF, THEN and ELSE clause. 

at the end of the loop, only the results corresponding 
to the correct IF conditions are stored, using the 
vector mask register. 

vectorized IFS perform well when there is no ELSE 
clause and the IF condition is usually true. 

because all computations are performed, a vectorized 
IF may result in divide-by-zero interrupts or 
subscripts out of range. 
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Methods for Dealing with IFS 

0 

0 

0 

l 

l 

try eliminating the need for IFS. 

try moving IFS outside the vector loop. 

try using separate loops for each IF condition 

try creating temporary vectors containing values 
which satisfy the IF conditions. Do computations on 
the temporary vectors, then copy the results back to 
the original vectors. 

you might have to use the PREFER SCALAR 
directive if you determine that a loop containing IF 
statements is faster in scalar mode. 
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Eliminating IFS 

This example shows how one might eliminate an IF 
whose purpose is to test for some boundary condition. 

re-write this: 

Y: :. . ._../ 
,_. .:, 

.1 

DO 10 K = 1,N 
- 

1 8 I I I 

DO 20 J = 1,M 

I I I I I 

IF ((J,EQ,l),OR,(J,EQ,M)) THEN 

X(J,K) = 0, 

ELSE 

X(J,K) = A(J,K) * B(J,K) 

ENDIF 

I I I I I 

20 CONTINUE 

I I I s I 

10 CONTINUE 

as this: 

DO 10 K = 1,N 
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I I , I t 

X(l,K) = 0, 
DO 20 J = 2,M -1 

X(J,K> = A(J,K) *  B (J,K) 

I 1 I 1 I 

20 CONTINUE 
X(M,K) = 0, 

1 1 I I I 

10 CONTINUE 
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Separate Loops for IFS 

Generating an identity matrix can be handled like this: 

re-write this: 

DO 10 I = 1,N 

DO 10 J = 1,N 

IF (I,EQ,J) THEN 
L 

X(I,J) = 1, 

ELSE 

X(I,J) = 01 

ENDIF 

10 CONTINUE 

as this: 

? 
‘. 

..’ :  

:- .- 
: . : .  . ,  

DO 10 I = 1,N 

DO 10 J = 1,N 

X(I,J) = 0, 

10 CONTINUE 

DO 20 I = 1,N 

X(1,1) = 10 

20 CONTINUE 
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Inner vs. Outer Loop Considerations 

0 vectorizing a loop means that sectioning occurs on 
(according to) that loop’s index. 

0 conceptually, this may be viewed as creating another 
loop at the innermost level. 

l for example, this DO loop: 
& 

REAL*8 A(lOOO,lOO) 
VE(-T+------em DO 15 I = 1,lOOO 

I DO 15 J = 1,100 

I A(IrJh a 8 

+-------15 CONTINUE 

is treated by the compiler as: 

DO 15 I = 1,1000,128 

DO 15 I = 1,100 

I 1 ,A(I:128,J), 0 8 

15 CONTINUE 
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Inner vs. Outer Loop Considerations (cont.) 

a the left-most array’dimensions should have the largest 
va lues. 

0 with two-dimensional arrays, make the outer loop 
correspond to the left-most array subscript. 

l for example, re-write this: 
. 

REAL"8 A(lOOO,lOO), 

B(lOOO,lOO) 

REAL"8 X(1000) 

DO 10 J = 1,100 
VEC-+----s-s- DO 10 I = 1, lOOO 

I A&J) = X(I) + B(I,J) 
+ -------lo .CONTINUE 

as this: 

VEC-+----e--s DO 10 I = 1, lOOO 

I DO 10 J = 1,100 

I A&J) = X(I) + B(I,J) 

+-- -----10 CONTINUE 
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l there is an advantage to OUTER loop vectorization if 
it reduces the number of times the vector X has to be 
loaded thereby optimizing vector register usage. 

l the compiler will ordinarily vectorize on the left-most 
dimension. 

I I”. _‘, 
:. 

:‘I:, 

.- ! 

.: :_.. ._ 
‘.. 

‘: : _~ ‘I 
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Sparse Array Considerations 

programs that deal with sparsely stored data can 
sometimes show a performance degradation when 
vectorized depending upon the methods used to 
manipulate the data. 

Methods: 

0 indirect addressing 

a compress and expand 

l inhibit vectorization 

. : : 

! ; _ 
: 
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Indirect Addressing 

Given: 

SUBROUTINE SPARSE(MASK,A,B,C) 

LOGICAL"4 MASK(1000) 

REAL*4 A(lOOO), B(lOOO), C(1000) .: --, 
._-. I I I I I 

DO 10 I = 1,lOOO 

iF (MASK(I)) THEN 
1 A(I) = B(I) + C(I) 

ENDIF 

10 CONTINUE 

Re-write as: 

I SUBROUTINE SPARSE(MASK,A,B,C) 

LOGICAL*4 MASK(1000) 

REAL*4 A(lOOO), B(lOOO), C(lOOO) 

INTEGER"4 TCOUNT, INDX(1000) : :- 
I I I I 1 

TCOUNT = 0 

DO 9 I = 1,lOOO 

IF (MASK(I)) THEN 

TCOUNT = TCOUNT + 1 

INDX(TCOUNT) = 1 
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ENDIF 

9 CONTINUE 

DO 10 I = 1,TCOUNT 

A(INDX(I>) = B(INDX(I)) + C(INDX(I)) 

10 CONTINUE 

:  
.:- I  

.  .  .  
.  ..:’ 

:  1 
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Interactive Vectorization Analysis (I VA) 

Vector tuning can be assisted by gathering vector length 
and stride information at run time using IAD. 

Before IAD can gather vector tuning information, you 
must create a Program Information File (PIF) by using 
the IVA suboption. 

FtlRTVS2 FILENAME (OPT(3> VECTORUVAH 

To collect and view the vector length and stride 
information, use the following IAD commands: 

VECSTAT 
activates recording of vector length and stride 
for all loops (VECSTAT *.* ON) 

LISTVEC 
displays average length and stride for vectors 
(actual vs. compiler estimates). (LISTVEC *.*) 
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, Summary : Your Vector M igration Effort 

0 

0 

0 

time your program 

local program modifications 
l ESSL calls 
0 workarounds for vector inhibitors 
0 reorder DO loops 
0 use temporaries 
0 vector -directives 

global program restructuring 
0 re-think program organization 
0 re-think data organization 
0 algorithmic changes 

. . : . -  1 

. ,  . : :  

:_ 
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Set Expectations 

l keep efforts focused on good payback potential: work 
with hotspots 

l be realistic: remember that good vector program 
speed-ups are 1 S-3. 

0 analyze program performance: 
I 

l prograin speed-up 

l percent vectorized 

l vector speed-up 

l know when to quit!! 
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Test Case 1: Avoid Variable Offsets in Arrays 

Given: 

SUBROUTINE TEST(A,N,IBASEl,IBASE2) 

REAL*4 A(1000) 

INTEGER*4 N,IBASEl,IBASE2 

I I , I I 

DO 10 J = 1,N 

AtI) = A(I+IBASEl) * A(I+IBASE2) 

10 CONTINUE 

Re-write: 

SUBROUTINE TEST(AO,A1,A2,N,ISIZEO,ISIZE1,ISIZE2) 

REAL"4 AO(ISIZEO), Al(ISIZEl), A2cISIZE2) 

INTEGER*4 N,ISIZEO,ISIZE1,ISIZE2 

I I I I I 

DO 10 J = 1,N 

AOW = Al(I) * A2(1) 

10 CONTINUE 



. 

I 
I 
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Test Case 2: Avoid Indirect Addressing 

G iven: 

DO 10 I = 1,N 

10 A(INDXW) = AUNDX(I)> + t 8 8 

Re-write: 

DO 9- I = 1,N 

9 TEMPACI > = AUNDXU 1) 

DO 10 I = 1,N 

10 TEMPAW = TEMPAU) + a , 1 

DO 11 I = 1,N 

11 AUNDXCI >> = TEMPACI > 

_- ~: 
. . ..- : 

-‘.. . ..-. 
;: : ._: 
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Tes t C a s e  3 : Us ing  V a ria b le  In c r e m e n ts 

G iven: 

IV A R  =  1  

D O  1 0  I =  1 ,N 

A U V A R )  =  A (IV A R )  +  8  a  t 

IV A R  =  IV A R  +  IS T E P  

1 0  C O N T INUE 
L  

Re-wr i te : 

@ P R O C E S S  D IRECTIVE( 'DIR')  

I 1  I 1  I 

IV A R  =  1  

*DIR IG N O R E  R E C R D E P S tA ) 

D O  1 0  I =  1 ,N 

A tIV A R )  =  A (IV A R )  +  ,I a  1  

IV A R  =  IV A R  +  IS T E P  

1 0  C O N T INUE 



i Introduction to Vectorization -130- 

Test Case 4: Using Adjustably Dimensioned Arrays 

Given: 

SUBROUTINE TEST(A,N,M) 

REAL*4 A(N,M) 

DO 10 J = 1,M 

DO 10 I = 1,N 
A<I,J) = A&J) + 1 t 1 

10 CONTINUE 

Re-write: 

@PROCESS DIRECTIVEYDIR > 
SUBROUTINE TEST(A,N,M) 

REAL*4 A(N,M) 

*DIR IGNORE RECRDEPSCA) 

DO 10 J = 1,M 

DO 10 I = 1,N 
A(I,J) = AU,J) + , e o 

10 CONTINUE 
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Test Case 5: Away EQUIVALENCE 

Given: 

SUBROUTINE TEST 

REAL"4 AtlOO), B(1000) 

EQUIVALENCE (AW.B(lOl)) 

I I I I I 

DO 10 I = 1,100 
A(I) = B(I) * 1010 

10 CONTINUE 

Re-write as: 

SUBROUTINE TEST 

REAL*4 AtlOO), B(1000) 

EQUIVALENCE (A(l>,B(lOl)) 

DO 10 I = 1,100 

B(I+lOO) = B(I) * 1010 

10 CONTINUE 

or: 

@PROCESS DIRECTIVEt’DIR’ ) 
SUBROUTINE TEST 
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REAL*4 A(lOO), B(1000) 

EQUIVALENCE (A(l).B(lOl)> 

*DIR IGNORE RECRDEPS 

DO 10 I = 1,100 

A(I) = B(I) * 1080 

10 CONTINUE 

( 

:.: 

i.:.:: 
.- : ; 
.._. ; 
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Test Case 6: Scalar EQUIVALENCE 

Given: 

SUBROUTINE TEST 

REAL*4 A(lOO),B(lOO) 

INTEGER"4 PARAM,Pl,P2,, n 1 

COMMON /PCOM/ PARAM 

EQUIVALENCE (PARAM(l),Pl), (PARAM(2),P2),, , , 

I I I I 1 

DO 10 I = 1,M 

A(P1) = A(P1) + B(I) 
10 CONTINUE 

Re-write: 

SUBROUTINE TEST 

REAL*4 A(lOO).B(lOO) 

INTEGER*4 PARAM,Pl,P2,, 8 t 

COMMON /PCOM/ PARAM 

Pl = PARAM 

P2 = PARAM(2) 

DO 10 I = 1,M 

A(I+Pl) = A(I+Pl) + B(I) 
10 CONTINUE 
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* I I 8 I 

PARAM = Pl 

PARAM(2) = P2 
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Test Case 7: Restrict Optimization to Improve Partial 
Vectorization 

Given: 

SUBROUTINE TEST(A,B,X,Y) 

REAL*4 A(100),B(O:100LX(10O)~Y(lOO) 

DO 10 I = 1,100 

A(I) = AU) + X(I) * Y(I) 

B(I) = B(I-1) + X(I) * Y(I) 

10 CONTINUE 

Re-write: 

SUBROUTINE TEST(A,B,X,Y) 

REAL*4 A(100),B(O:100),X(100),Y(100) 

I I t 8 I 

DO 10 I = 1,100 

1 A(I) = A(I) + X(I) + Y(I) 

2 B(I) = B(I-1) + X(I) * Y(I) 

10 CONTINUE 
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Test Case 8: Scalar Expansion for Partially Vectorizable 
Loops 

Given: 

SUBROUTINE TEST(A,B,X,Y) 

REAL*4 A(100),B(O:100),X(10O)~Y(lOO) 

t I I 1  1  

DO 10 I = 1,100 

T-z X(I) * Y(I) 

A(I) = A(I) + T 

B(I) = B(I-1) + T 

10 CONTINUE 

Re-write: 

SUBROUTINE TEST(A,B,X,Y) 

REAL*4 A(100>,B(O:100>,X(100LY(100) 

REAL*4 TT(100) 

e I I I 1 

DO 10 I = 1,100 

TT(I) = X(I) + Y(I) 

A(I) = A(I) + TTW 

B(I) = BU-1) + TTW 
10 CONTINUE 

T = TTCM) 
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Test Case 9: Scalar Expansion for Non-Local Scalars 

Given: 

SUBROUTINE TEST(A,B > 

REAL*4 A(lOO),B(lOl) 

I I I I I 

T = B(1) 

DO 10 I = 1,100 

AT I) = T  

T  = B(I+l) 

10 CONTINUE 

Re-write: 

SUBROUTINE TEST(A,B) 

REA,L"4 A(lOO),B(lOl) 

REAL"4 TT(O:lOO> 

I I 1 1 I 

TT(O) = B(l) 

DO 10 I = 1,100 

A(I) = TT(I-1) 

TTW = B(I+l> 

10 CONTINUE 
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