
SLAC-TN-91-5
May 1991
(TN)

INTRODUCTION TO VECTORIZATION

USING THE

IBM3090 VFANDVSFORTRANRELEASE2*

BEBO WHITE

Stanford Linear Accelerator Center,

Stanford University, Stanford, CA 94309

and

CERN, CH-1211, Geneva 23, Switzerland

*Work supported by the Department of Ehergy, contract DE-AC03-76SF00515

‘1 1 ntroduction to Vectorization -z-

i

.I :: ‘: __
I

The IBM 3090-600 Pyocessor Un it Design

1

K
I \

Central
Storage I
128M-i3

Expanded

\

Storage
256MB

1

Channel
Subsystem

I
4

,-I ,
System
Control
Element

Central
Processor

Central
Processor

Central
Storage
128MB

\

Expanded
Storage
256MB

Central
Processor

E]

Central
Processor

Introduction to Vectorization

The IBM 3090 Central Processor

I-

High Speed Buffer/Buffer Control Element (64K) -
1t
1 i

Scalar
Execution
Element

Instruction
Element m

Scalar
Registers

Vector Vector
Registers Registers

Vector Facility

I mtroduction to Vectorization -4-

What is Vector Processing

“Vector processing ‘is a complication to computing,
invented to make number crunchers go faster.”

.:.. __: ‘. ,

Most o f the e lementary vector operations consist o f a
series of independent calculations for a ll e lements of the
operand vectors, and so may be performed in parallel.
Vector processing may thus be seen as one particular
form of parallel computing.

!
I introduction to Vectorization

The IBM 3090400E Vector Facility

0

0

0

0

fast scalar performance for compute intensive
applications

s ix processors, each with a vector facility and 64 KB
cache memory

256 megabytes of memory

1 g igabyte of expanded storage

115 g igabytes of d isk storage

each application may use up to 999 megabytes of
v irtua l memory

I..
.;1 _ ._

. -

introduction to Vectorization -b-

-,

The IBM 3090400E Vector Facility

0

0

l

0

0

the dynamic range is 10f7” to 1O-78

provides a decimal precision from 6 to 7 (short) digits
to 13 to 14 (long) decimal digits

cycle time of 17.2 nanoseconds

theoretical peak performance of 116 megaflops

likely ESSL peak performance of 75 megaflops

realistic vector program performance goal of 40 to 50
megaflops

,>“ . :

. . : : . .

L :

Introduction to V ectorization -7-

:. : :;
..z.
j..

The IBM 3090 Vector Facility

0

0

0

0

0

0

16 32-bit data vector registers or 8 64-bit registers (for
single or double precision data)

these 16 vector registers operate on up to 128 data
elements (the section size) of 4 bytes each

three other vector registers:
0 vector -mask register
0 vector activity count
0 vector status register

17 1 vector assembler instructions

FORTRAN code using REAL*8 data has access to
three compound vector instructions, which execute
two FLOPS per cycle (after pipeline startup):
0 multiply and add
0 multiply and subtract
0 multiply and accumulate

most other vector instructions execute one FLOP per
cycle (after pipeline startup)

introduction to Vectorization -15-

Vector Facility Registers

vector
mask
f egistef

VMR

w
:
: : * .

VR 0

w

16 multipurpose
registers

VR 1 VR 14

:
. :

: : .
: : .

l the vector mask register is 1 bit wide

0 the vector registers are 32 bits wide and
paired for a width of 64 bits

VR 15

w

may be

0 the section size 2 is 128 elements

x

Introduction to Vectorization -g-

,.

What is a Vector?

0

0

0

a VECTOR is a group of elements in an array

a vector is partitioned into a SECTION in order to
execute on the vector hardware. The section size on
the IBM 3090E is 128 elements.

the spacing between successive elements in a vector is
called STRIDE. For example, the vector A(l), A($
A(3)... has stride 1.

THE ARRAY A(lOO,ZOO) IS LAID OUT IN STORAGE AS:

A(l,l) A(2,l) <=== STRIDE 1

A(l,l) A(1,2) <=== STRIDE 100

l an INDUCTION VARIABLE is any INTEGER*4
variable that is incremented or decremented by a fixed
amount each time through a loop, such as with the
index of a DO loop. This is also referred to as an ’
INDUCTIVE SUBSCRIPT. I

/

I

.._-. ‘:
.,
5

introduction to Vectorization -lO -

THE SUBSCRIPT EXPRESSION I IS AN INDUCTION VARIABLE

HERE:

DO 10 I = 1,N

10 A(I) = SCAI-

THE SUBSCRIPT EXPRESSION I*1 IS A NON-INDUCTION

SUBSCRIPT HERE:

DO 10 I = 1,N

10 A(I*I) = SCAL
L

introduction to Vectorization -lb

What Does Vectorizable Mean?

0 only DO loops can be vectorized

0 the basic unit of vectorization is the statement -
there is no partial vectorization within a FORTRAN
statement

0 in a DO loop, the calculations in one iteration of the
loop must-not depend on a previous iteration.

For example, this loop vectorizes

DO 10 I = 1,90

cm = A(I) + C(I) * 3

10 CONTINUE

while this one does not

DO 20 I = 1190

C(I+l) = A(I) + C(I) * 3

20 CONTINUE

Introduction to Vectorization

Scalar Computation For a DO Loop

0 registers for scalar arithmetic hold only one element
at a time

0 to add two vectors A and B, each element in vector B
has to be added individually to the appropriate
element in the vector A, and then assigned to the
appropriate element in vector C.

For example,

DO 10 I = 1,N

C(I) = A(I) + B(I)

10 CONTINUE

the sequence of instructions for this DO loop,
executed in scalar mode would be:

1. LOAD ELEMENT COUNT(N)
2. LOAD a(i) INTO scalar register
3. ADD b(i) INTO scalar register
4. STORE c(i) FROM scalar register
5. DECREMENT COUNT BY 1

introduction to Vectorization -13-

Vector Computation for a DO Loop

a vector registers can hold up to 128 elements

a vectorizing a DO loop produces instructions that
operate on groups of data elements.

The sequence of instructions in vector mode is:

1. LOAD ELEMENT COUNT (N)
2. LOAD a(I) - a(128) INTO vector register
3. ADD b(1) - b(128) TO VECTOR register
4. STORE c(1) - ~(128) FROM vector register
5. DECREMENT COUNT by 128

introduction to Vectorization -14-

Vector Registers

Provide a FAST storage location for operands, available
to the pipeline on a one cycle per operand set basis.

VRl
I w

1

VR2

Bt 128)
l
l

B(7)
B(6)
B(5)

introduction to Vectorization -15-

Vector Sectioning - the Basic Action of Vectorization

DO 10 J = 1,N

10 A(J) = B(J)

becomes sectioned as:

DO 10 J = l,N,Z

DO xx JV = J.J+MIN(N-J,Z-1Ll '

x-x A(Jv) = B(Jv)

10 CONTINUE

0

a

0

0

the innermost (DO xx) loop is executed in the vector
registers in groups of 2 (128) elements at a time

the outer loop increment is Z instead of 1 so that the
vector instructions in the loop are executed
approximately N/Z times rather than the N times
required by the equivalent scalar loop.

the remaining iterations (i.e., when N is not an integer
multiple of Z) are also processed in the vector
registers

the MIN is the “sectioning overhead.”

. . . .

Introduction to Vectorization -16-

Tools for Vectorization

@ VS FORTRAN Version 2 Release 3 Compiler

l Interactive Debugger (IAD)

l Engineering and Scientific Subroutine Library (ESSL)

l Assembler Listing

introduction to V ectorization -I/ -

Vectorization Strategy

a time your program to find where it spends most of its
time (the hot spots)

0 compile
2, using

your program with VS FORTRAN Version
the vector option on all or just key routines

and then run it.

0 look at the vector report to see which loops were
vectorized

I. were key loops vectorized?

2. what prevented vectorization?

0 compare vector to scalar execution times

a assess performance expectations

0 if necessary and potentially fruitful, modify your
program to increase vectorization

_’
t,. m rroauctlon to V ectorization --La-

.,
:,):--‘I

_’

:
:i:. ‘.

Vector Content

the Vector Content of a program is that percentage of the
scalar code that vectorizes.

0 assume, for example, that 60% of your scalar code
vectorizes

0 assume further that this 60% has a vector to scalar
speedup of 4

scalar code vectorizable code

40 m inutes 60 m inutes scalar
optC3)

40 m inutes 15
m in

program speedup = scalar time 100 =-= 1.82
vector time 55

Introduction to Vectorization -lY-

/ :;
:

Vector Performance Formulas

scalar code vector&able code

x Y vtime(sca1)

t
x vtime(vect)

vvectime
L

Y = vtimefscal) - X
= vtimefscal) - (vtime(vect1 - vvectime 1
= vtime(sca1) - vtime(vect) + vvectime

X vectorizable = Y / vtime(sca1) l 100
good vector content = 75% +

vector speedup = Y 1 vvectime
good vector/scalar speedup = 3 to 5

program speedup = vtimefscal) 1 vtimefvect)
good program speedup = 1.5 to 3.0

I-. ::!

;

.1
:

^’

-: :__ __.

mcroauwon co v ectorlzation -21-

Vector Performance Considerations - AmdahPs Law

Program
Speedup

Design Point % Vecto riid

5

4

3

2

I

7 a 9

Vector/Scalar SPEEDUP

introduction to Vectorization -LL-

Level Of Effort

.:. __’ :
:z,.:.

Introduction to Vectorization -23-

. . .
,, -. . .

.:J
./I :.I

Quick Timing

l READY MESSAGE

when no errors occur, the CMS ready message is of
the form:

R; T=M,MM / N,NN HH:MM:SS

where m.mm is elapsed CPU in seconds and n.nn is
elapsed CPU plus overhead in seconds (since the last
CMS ready message).

l INDICATE USER

issue the command INDICATE USER before and
after running a program to determine approximate
overall time and vector time.

VTIME elapsed CPU since LOGON in mmm:ss
VVECTIME

elapsed vector CPU since LOGON in
mmm:ss (a subset of VTIME)

_’ ., ln t roauct lon to V ec tor iza tio n -24-

. .._ .._: ..::

.. _.

T h e F O R T R A N Vers ion 2 C o m p ile r

c a n a u to m a tica lly vec tor ize e lig ib le sta te m e n ts in D O
loops

0 o n ly sta te m e n ts in D O loops c a n b e vec to r ized

0 w ill se lec t th e s ing le D O l oop in a n e s t o f l oops
w h o s e vec tor iza tio n w ill l ead to th e fas tes t
execu tio n

w ill u s e vec to r vers ions o f m o s t intr insic m a th
fu n c tio n s

c a n u s e o p tim izatio n leve l 2 o r 3 w ith vec tor iza tio n ;
d e fa u lt is O P T(3)

g e n e r a tes a vec to r repo r t w h ich shows th e
vec tor iza tio n dec is ions m a d e by th e c o m p ile r

introductlon to V ectorization -25

Compiling with the Vector Options

NOVECTOR is the FORTVS2 default. The VECTOR
opticn and suboptions must be specified.

Syntax:

FORTVSZ PROGNAME (OPTW3)
- VECTOR (VECTOR SUBOPTIONS)

OTHER COMPILER OPTIONS,,,

Example:

FORTVSZ MULT (OPT(3) VECTOR (REPORT (XLIST))

Introduction to Vectorization -26-

Vector Suboptions

l REPort (TERM LIST XLIST SLIST STAT)

TERM

LIST

XLIST

SLIST

STAT

l IVA

Flags vectorized loops and shows how those
loops were restructured. Display is at the
terminal.

Same as TERM, but information is placed
in the LISTING file.

Produces detailed information about why
loops were not vectorized, put in the
LISTING file.

Shows vectorized loops and statements in
the format of the entire source program;
placed in the LISTING file.

A vector statistics table is placed in the
LISTING file.

Produces a Program Information File, which is
required by IAD to use Interactive Vectorization Aid

Introduction to Vectorization -27-

functions.

l SIZE (ANYILOCALln)

Specifies the section size to be used.

ANY uses the section size of the machine on
which the routine is running.

LOCAL -uses the section size of the machine that
compiled the program

n used to specify an explicit section size. Must
be the same as the machine’s actual section
size.

-. : . . : ._ ..:-.:. ,- ..- .:, . .

mwoauctlon to v ectormation -28-

Vector Suboptions Example

FORTVS2 TEST (OPT(3) VECTORtREPORTtTERM))

WOULD DISPLAY AT THE TERMINAL:

SCAL ----- DO 10 I = LN

I A(I+500) = A(I) + 110

FORTVSZ TEST (OPT(3) VEC(SIZE(LOCAL)REP(XLIST))

WOULD PLACE IN THE LISTING FILE:

VECT ----- DO 10 I = 1,N

.qr I A(I+500) = AU> + LO

I
.:c:- -./
..I:‘:.:::

.-. _.:I
..;

,

introduction to Vectorization -ZY-

Sample Timing Analysis

PROGRAM FTVECT

PARAMETER (N=ZOOOO, Ml=lZOC, M2=175, M3=425)

REAL*4 D(N), E(N), DOTPR, SUM

REAL*4 A(Ml,MZ), B(MZ,M3), C(Ml,M3)

DO 10 I=l,Ml

DO 10 J=l,MZ

-A(I,J) = NINT(FLOAT(I-J))

10 CONTINUE

DO 15 I=l,M2

DO 15 J=l,M3

B(I,J) = l,O /SQRT(FLOATW/FLOAT(J))

15 CONTINUE

DO 20 I=l,N

D(I) = SIN(FLOAT(I> / 280)
E(I) = COS(FLOAT(1) * 200)

20 CONTINUE

DOTPR = 080

SUM = 0,O

DO 30 1=1,5

introduction to Vectorization -YJ-

SUM = SUM + D(I) / E(I)

30 CONTINUE

DO 35 I=l,Ml

DO 35 J=l,M3

DO 35 K=l,MZ

C&J) = C(I,J) + A(I,K) * B(K,J)

35 CONTINUE

DO 40 I=l,N

DOTPR = DOTPR + (D(I) * E(I)>

40 CONTINUE

DO 50 1=1,1200

DO 50 J=1,200

C WRITE (10,51) C(I,J)

50 CONTINUE

51 FORMAT (F15,5)

DO 55 1=5000, N, 5000

WRITE (6,56> I, D(I), E(I)

55 CONTINUE

56 FORMATV I = ',15/ D(I) = '/F8,2,' E(I) =

',F8,2)

WRITE (6,") 'SUM: 'AUM

/

;...I !
.:.

introduction to Vectorization -5l-

WRITE (6,") 'DOT PRODUCT: ',DOTPR

WRITE (6,") 'MATRIX MULTIPLY: ',C(Ml,M3)

STOP

END

FORTVS2 FTVECT (OPT(3)

VS FORTRAN VERSION 2 ENTERED, 09:48:11
-

""FTVECT*" END OF COMPILATION 1 ******

VS FORTRAN VERSION 2 EXITED, 09:48:11

READY; T=0,12/0,15 09:48:11

LOAD FTVECT (CLEAR

READY; T=0,08/0,11 09:48:23

IND USER

USERID=BEBO MACH=370 STOR=0006M VIRT=V XSTORE=NONE

IPLSYS=CMSR5C DEVNUM=0015

PAGES: RES=000914 WS=OOO590 LOCK=000000 RESVD=OOOOOO

NPREF=000035 PREF=OOOOOO READS=000040 WRITES=000047

XSTORE=000048 READS=000436 WRITES=000630 MIGRATES=000047

CPU 00 : CTIME=00:47 VTIME=000:42 TTIME=000:44 IO=001721

RDR=OOOOOO PRT=000053 PCH=OOOOOO

VVECTIME=000:07 TVECTIME=000:07

introduction to Vectorization -5Z-

READY; T=O,Ol/O,Ol 09:48:28

START

DMSLI07401 EXECUTION BEGINS,,,

I = 5000 D(I) = -0865 E(I) = -0,95
I = 10000 D(I) = -on99 E(I) = 0,81

I = 15000 D(I) = -0185 E(I) = -0,60

I = 20000 D(I) = -0,31 E(I) = 0832

SUM: -8836326027

DOT PRODUCT: -08393103242

MATRIX MULTIPLY: 587375,500
READY; T=26,01/26,16 09:49:15

IND USER

USERID=BEBO MACH=370 STOR=0006M VIRT=V XSTORE=NONE

IPLSYS=CMSR5C DEVNUM=0015

PAGES: RES=000899 WS=OOO864 LOCK=000000 RESVD=OOOOOO

NPREF=000034 PREF=OOOOOO READS=000040 WRITES=000047

XSTORE=000048 READS=000436 WRITES=000630 MIGRATES=000047

CPU 00: CTIME=00:48 VTIME=001:08 TTIME=OOl:lO IO=001743

RDR=OOOOOO PRT=000073 PCH=OOOOOO

VVECTIME=000:07 TVECTIME=000:07

READY; T=O,Ol/O,Ol 09:49:25

FORTVS2 FTVECT (VECTOR (LEVEL(?) REPORTCTERM))

VS FORTRAN VERSION 2 ENTERED, 09:50:18

introduction to Vectorization -33-

(I> USE OF VECTOR REQUIRES OPT(2) OR OPT(3), OPTIMIZATION

LEVEL HAS BEEN

SET TO 3,

SCAL

SCAL

VECT

SCAL

VECT

SCAL

VECT

SCAL

SCAL

+ ------- DO 10 I=l,Ml
I+------ DO 10 J=l,M2

I I A(I,J) = NINT(FLOAT(I-J))

I

+-------- DO 15 I&M2

I+------ DO 15 J=l,M3

II B(I,J) = l,O/SQRT(FLOAT(I>/FLOAT(J))

+------- DO 20 I&N

I D(I) = SIN(FLOAT(1) / 280)

I E(I) = COS(FLOAT(1) * 210)

+------- ~0 30 I45

I SUM = SUM + D(I) / E(I)

+------- DO 35 I=l,Ml
I+------ DO 35 J=l,M3
1 I+----, DO 35 K=l,M2

III C(I,J) = C(I,J) + AU,K) * B(K,J)

II

,

mtroductlon to Vectorization -34-

VECT +------- DO 40 I=l,N

I DOTPR = DOTPR + (D(I) * E(I))

UNAN DO 55 1=5000, N, 5000

THE DO-LOOPS HAVE BEEN PROCESSED AS INDICATED,

FTVECT""' END OF COMPILATION 1 ****

VS FORTRAN VERSION 2 EXITED, 09:50:34

READY; T=OJ8/0,23 09:50:34

LOAD FTVECT (CLEAR

READY; T=OJO/OJ3 09:50:56

IND USER

USERID=BEBO MACH=370 STOR=0006M VIRT=V XSTORE=NONE

IPLSYS=CMSRSC DEVNUM=0015

PAGES: RES=000916 WS=OOO695 LOCK=000000 RESVD=OOOOOO

NPREF=000034 PREF=OOOOOO READS=000040 WRITES=000047

XSTORE=000047 READS=000489 WRITES=000712 MIGRATES=000047

CPU 00: CTIME=OO:49 VTIME=001:09 TTIME=OOl:ll IO=001858

RDR=OOOOOO PRT=000130 PCH=OOOOOO

VVECTIME=000:07 TVECTIME=000:07

READY; T=O1O1/O~O1 09:51:02

introduction to V ectorization -35-

!

. .
;: : i ,:-_ 1‘j

START

DMSLI07401 EXECUTION BEGINS,,,

I = 5000 D(I) = -0,65 E(I) = -0,95
I = 10000 D(I) = -0099 E(I) = 0181
I = 15000 D(I) = -0‘85 E(I) = -0e60
I = 20000 D(I) = -0131 E(I) = OS32
SUM: -8036326027
DOT PRODUCT: -08393156052

MATRIX MULTIPLY: 587375,500
READY; T=7;87/7,94 09:51:18

IND USER

USERID=BEBO MACH=370 STOR=0006M VIRT=V XSTORE=NONE

IPLSYS=CMSR5C DEVNUM=0015

PAGES: RES=000904 WS=OOO856 LOCK=000000 RESVD=OOOOOO

NPREF=000034 PREF=OOOOOO READS=000040 WRITES=000047

XSTORE=000044 READS=000492 WRITES=000712 MIGRATES=000047

CPU 00: CTIME=00:50 VTIME=001:17 TTIME=001:19 IO=001888

RDR=OOOOOO PRT=000150 PCH=OOOOOO

VVECTIME=000:14 TVECTIME=000:14

READY; T=O,Ol/O,Ol 09:51:24

mtroductron to V ectorization -36-

Sample Timing Analysis (cont.)

vtime (scalar 1 = 26.0 1
vtime (vector) = 7.87
vvectime = 7.0

vtime (scalar) 26.0 1
program speedup =

vtime (vector 1
= 7.87 = 3.3

Y = vtimefscalar)-(vtimehector I-vvectime)
= 26.0 l-7.87+7.0
= 25.14 -

9% vectorizable = Y * 100
vtimekcalar 1

25.14
= 26.01 * loo

= 96.6%

Y
vector speedup =

vvectime

25.14 =
7.0

= 3.59

Introduction to Vectorization . -37-

Sample Hot Spot Analysis

FORTVSZ FTVECT

VS FORTRAN VERSION 2 ENTERED, 17:12:25

""FTVECT"" END OF COMPILATION 1 ******

VS FORTRAN VERSION 2 EXITED, 17:12:25 L

READY; -

Q TXTLIB

TXTLIB = NPACKLIB VSF2FORT CMSLIB TSOLIB
READY;

LOAD FTVECT

READY;

START (DEBUG

DMSLI07401 EXECUTION BEGINS,,,

AFFOlOI

AFFOllI

AFF0131

AFF296E

AFF9951

AFFOOlA

VS FORTRAN VERSION 2 RELEASE 3 INTERACTIVE DEBUG

5668-806 (0 COPYRIGHT IBM CORPS 1985, 1988

LICENSED MATERIALS-PROPERTY OF IBM

THE AFFON FILE CANNOT BE READ; FILE IGNORED,

WHERE: FTVECT,5

FORTIAD

ENDDEBUG SAMPLE(Q)

I =._ 5000 D(I) = -0865

I = 10000 D(I) = -0899

E(I) = -0095

E(I) = 0881

Introduction to Vectorization -38-

1 = 15000 D(I) = -0,85 E(I) = -0160

I = 20000 D(I) = -0831 E(I) = Oh32

SUM: -8136326027

DOT PRODUCT: -0a393103242

MATRIX MULTIPLY: 587375,500

AFF3061 PROGRAM HAS TERMINATED; RC (0)

AFFOOlA FORTIAD

LISTSAMP *-a*

AFF5501 PROGRAM SAMPLING INTERVAL WAS 4 MS; TOTAL NUMBER

OF SAMPLES WAS 42627,

AFF5511 DIRECT SAMPLES:

AFF5551 STATEMENT SAMPLES XUNIT XTOTAL

AFF557I FTVECT,ENTRY/EXIT 0 0,oo 0,oo

AFF5571 FTVECTs5 0 0,oo 0,oo
AFF5571 FTVECTo6 3 0,Ol 0801

AFF5571 FTVECTv7 82 0,19 0,19

AFF5571 FTVECT,8/10 4 0801 0801
AFF5571 FTVECTo9 0 0,oo 0,oo

AFF5571 FTVECTJO 1 0,oo 0100
AFF5571 FTVECTJl 42 0810 0810

AFF5571 FTVECTJ2/15 5 0101 0801
AFF557I FTVECTJ3 0 0800 0800 -,
AFF5571 FTVECTJ4 4 OtOl 0801

AFF5571 FTVECTJ5 5 0101 OtOl
AFF5571 FTVECTJ6/20 1 0800 0,oo
AFF5571 FTVECTJ7 0 0,oo OS00

Introduction to Vectorization -5Y-

AFF5571 FTVECTB18

AFF5571 FTVECTv19

AFF5571 FTVECTs20

AFF5571 FTVECT,21/30

AFF5571 FTVECTn22

AFF5571 FTVECTa23

AFF5571 FTVECTn24

AFF5571 FTVECT,25
******Y****+++****

AFF5571 FT-VECT,26/35
**

AFF5571 FTVECTt27

AFF5571 FTVECTu28

AFF5571 FTVECT,29/40

AFF5571 FTVECTa30

AFF5571 FTVECTt31

AFF5571 FTVECT,32/50

AFF5571 FTVECTa34

AFF5571 FTVECTt35

AFF5571 FTVECT,36/55

AFF5571 FTVECTt38

AFF5571 FTVECTs39

AFF5571 FTVECTn40

AFF5571 FTVECTa41

AFF5571 FTVECTt42

AFFOOlA FORTIAD

4

1268

37729

3421 8103 8103

0

4

0

0

5

7

0

0

0

0

0

0

0

0

0,oo 0,oo

0,oo 0800

otoo 0,oo

0800 0,oo

0,oo 0,oo

0001 0101

2198 2897 *

88,60 88851

0,oo

0001

0800

0,oo

0101

0802

on00

0,oo

O&O0

0,oo

on00

0900

0,oo

0800

0800

on01

0,oo

0,oo

0801

0102

0800

0800

0800

0,oo

0 IO0

0100

0100

0800

/
! introduction to Vectorization -4u-

‘-.. I
_!

,
.T !

QUIT

READY;

.

Introduction to Vectorization -41-

‘.
; . : : . : :

-..

FTVECT LISTING

1LEVEL 2,300 (MAR 1988)

12, 1989 17:12:25

PAGE: 1

VS FORTRAN JUN

OOPTIONS IN EFFECT: NOLIST NOMAP NOXREF NOGOSTMT NODECK

SOURCE TERM OBJECT FIXED TRMFLG SRCFLG NOSYM NORENT

SDUMP(ISN) NOSXM NOVECTOR IL(DIM>

NOTEST NODC NOICA NODIRECTIVE NODBCS NOSAA
L

OPT(O) LANGLVL(77) NOFIPS

FLAG(I > AUTODBL(NONE) NAMECMAIN) LINECOUNT(56)

CHARLEN(500)

0 IF DO ISN
* * 1 2 3 4 5 6 ,,,I III IIIIll8,I ,,,,,l‘ll 1111‘1111 111111111 lllI1IIIt III

0 1 PROGRAM FTVECT

2 PARAMETER (N=20000, M1=1200,

M2=175, M3=425)

3 REAL"4 D(N), E(N), DOTPR, SUM

4 REAL*4 A(Ml,M2). B(M2.M3), C(Ml,M3)

5 DO 10 I=l,Ml

1 6 DO 10 J=l,M2

2 7 A(I,J) = NINTtFLOATU-J))

2 8 10 CONTINUE

9 DO 15 I=l,MZ

Introduction to Vectorization -42-

d

__._ i

,:i
._ ..I..:/

1
I

1 10 DO 15 J=l,M3

2 11 B(I,J) =

l,O/SQRT(FLOAT(I)/FLOAT(J))

2 12

13

1 14

1 15

1 16

17

18

19

1 20

1 21

22

1 23

2 24

3 25

B(K,J)

3 26

27

1 28

15 CONTINUE

DO 20 I=l,N

D(I) = SIN(FLOAT(1) / 2tO)

E(I) = COS(FLOAT(1) + 2nO)

20 CONTINUE

DOTPR = 000

SUM = 010

DO 30 1=1,5

SUM = SUM + D(I) / E(I)

30 CONTINUE

DO 35 I=l,Ml

DO 35 J=l,M3

DO 35 K=l,M2

C(I,J) = C(I,J) + A(I,K) *

35 CONTINUE

DO 40 I=l,N

DOTPR = DOTPR + (D(I) * E(I))

Introduction to Vectorization -43-

1 29 40 CONTINUE

1

2

30 DO 50 1=1,1200

31 DO 50 J=1,200

C WRITE (10,51> C(I,J)

32 50 CONTINUE

33 51 FORMAT (F15,5>

1

1

L

'rF8,2,'

34 DO 55 1=5000, N, 5000

35 WRITE (6,56) I, D(I), E(I)

36 55 CONTINUE

37 56 FORMAT(' I = 75,’ D(I) =

E(I) = ‘,F8,2)

1LEVEL 2,310 (MAR 1988) VS FORTRAN JUN

12, 1989 17:12:25 NAME:FTVECT

PAGE: 2

0 IF DO ISN

* 0 II,, III 1 III,,,,,, 2 3 ,11,,1,,# ,,1,11,,0 4 III,,,,,, 5 111111111 6 I,,,

0 38 WRITE (6,") 'SUM: ',SUM

39 WRITE (6,") 'DOT PRODUCT:

',DOTPR

40 WRITE (6,") 'MATRIX MULTIPLY:
',C(Ml,M3)

41 STOP

Introduction to Vectorization -44-

42 END

0"STATISTICS" SOURCE STATEMENTS = 42, PROGRAM SIZE =

3340064 BYTES, PROGRAM NAME = FTVECT PAGE: 1,
0”STATISTICS” NO DIAGNOSTICS GENERATED,

0""FTVECT"" END OF COMPILATION 1 +*****
TIME STAMP: 89,16317,12,25

Introduction to Vectorization -45- -.

The Stages of Vector Compilation

A DO loop must pass four stages of qualification before it
can be compiled into vector instructions:

1.

2.

3.

4.

ANALYSIS ELIGIBILITY STAGE ‘UNAN’

the compiler determines whether or not the DO
loop can be analyzed

*

RECURRENCE DETECTION STAGE ‘RECR’

loops are analyzed for data dependences that inhibit
vectorization

OPERATIONS SUPPORT STAGE ‘UNSP’

loops are checked for hardware and compiler
support of all operations

ECONOMIC ANALYSIS STAGE ‘ELIG’

the compiler makes decisions about which loops to
vectorize based upon whether scalar mode or vector ’
mode is faster

I
j Introduction to Vectorization -46-

.-,
--
.::..: .:
..~ ..:

-‘,
I

The Stages of Vector Compilation (Graphically)

0 s

0 S
.

0 S

0 S

I Introduction to Vectorization -47-

Terminology

Dependence
A dependence exists when the order in which
statements are executed is important to the
results of the program. Data dependencies are
caused by multiple references to the same
location in storage.

Indirect Addressing
The s ituation when the subscript of an array is
itself an array element.

Induction Variable
any integer variable that is incremented or
decremented by a fixed amount, such as the
index of a DO loop. Induction variables other
than the DO loop variables are called auxiliary
induction variables.

Loop Distribution
the process of rewriting a DO loop into two or
more smaller DO loops.

. .

-.. :!

Introduction to Vectorization -48- :

Recurrence
A data dependence that inhibits vectorization.

Scalar Expansion
a scalar variable that is replaced with a
temporary vector.

Section Size
the number of elements used by the vector
registers (128 on the 3090)

Statement Inhibitors
constructs for which no vector instructions exist
or for which the compiler does not have the
ability to generate the required instruction
sequence.

_-. . . .I\

I

Stride

Vector

the interval between the data elements as they
are fetched or stored by a program .

a group of elements obtained by subscripting
through an array.

Introduction to Vectorization -49-

Vector Inhibitors
constructs that restrict vectorization analysis
either for entire loops or for individual
statements.

Vector Length
1 / :._: I : _. :-: 1

the number of elements of an array that are
referenced by a vector instruction. It may also
be thought of as the number of iterations of ,a
loop that is being vectorized.

Introduction to Vectorization -5o-

: ..- __-_

Vector Report

UNAN - rejected for vectorization analysis

UNSP - unsupported for vectorization by the
compiler or hardware

RECR - ineligible for vectorization because of
recurrence

ELIG - eligible, but not chosen for vectorization

VECT - vectorized

” I Introduction to Vectorization -51-

The Analysis Eligibility Stage

0

0
..I

,

DO loops are checked for operations which inhibit
further analysis of the loop. Up to eight innermost
levels of a nest of loops are analyzed.

a loop will be flagged ‘UNAN’ if it contains any of
the loop inhibitors:

loops other than DO loops

branches out of a loop, around an inner loop, or
backwards within a loop

I/O statements

subroutine calls

external, non-intrinsic function references

ASSIGN, ENTRY, RETURN, PAUSE or STOP
statements

computed or assigned GOT0 statements

Introduction to Vectorization -52-

. .
. -../ .;

!

DO loop parameters which are not INTEGER*4

DO loop parameters which are in
EQUIVALENCE statements

character data

comparisons of COMPLEX data

loops with more than 8 nested levels

Introduction to Vectorization -53-

Loops Other Than DO Loops

l loops other than DO loops are not vectorized.

0 recognize constructs which can be stated as DO loops
and re-write them for vectorization.

l re-write this:

I=1

25 IF(I,GT,N) GOT0 26

B(I) = X(1> ** AU) * C

I = I+1

GOT0 25

26 CONTINUE

as a DO loop:

DO 25 I = LN

B(I) = X(I) *+ A(I) * C

25 CONTINUE

-i . .

Introduction to Vectorization -?I-

,
!

.:!
.C’

Branch Out of Loop (Pue-mature Exit)

0 try distributing/re-structuring the loop. Re-write this:

UNAN+------se. DO 40 J = 1,N

I X(J) = Y(J) - Z(J)

I IF (X(J)oLTnOd GOT0 50

I ROOT(J) = SQRT(X(J)) .
& + -----40 CONTINUE

50 JLAST = J - 1

as this (if it executes faster):

VECT+----- DO 41 J = 1,N

I
+---,- 41 TEMPX(J) = Y(J) - Z(J)

UNAN+m-..--- DO 42 J = 1,N

I
+---- 42 IF (TEMPXtJhLTnO) GOT0 51

51 JLAST = J - 1

IF (JLAST,EQtO) GOT0 52

/ Introduction to Vectorization -55

VECT+-------- DO 43 J = 1,JLAST

I I X(J) = TEMPXtJ)
-I.----- 43 ROOT(J) = SQRT(X(J>>

1
I IF (JLAST,EQoN > GOT0 53

I 52 X(JLAST + 1) = TEMPXCJLAST + 1)
I

53 CONTINUE -_
: -' :

I

:. -... -
:y

_:. I
I

Introduction to Vectorization -56-

1/0 Statements

l I/O statements are not analyzed by the compiler for
vectorization

0 move the I/O statement out of the loop

* Re-write this:

- UN/j\+-----m-m

I
I

I
+-----30

as this:

l/EC-l-+--------
l

I
+----- 30

UNAN+.m-~~.m.m-

I
+----- 31

DO 30 I = l,N

A(I) = C(I) ** 2

B(I) = C(I) ** On5

WRITE (61") AU LB(I)

CONTINUE

DO 30 I = 1,N

A(I) = C(I) *+ 2

B(I) = C(I) ** 0e5

CONTINUE

DO 31 I = 1,N

WRITE (6,“) A(I), B(I) -.

CONTINUE

Introduction to Vectorization -57-

Subroutine Calls

0 the compiler can’t analyze a loop with a subroutine
call, because vector inhibitors could be present in the
subroutine. If a DO loop containing a subroutine call
is a hotspot, try bringing the subroutine in line.

* Re-write this:

COMMON Y

UNAN+---me---- DO 40 J = 1,N

I X(J) = Y(J) - Z(J)

I CALL SUB(J, X(J), Z(J))

I I I t I I
+-----40 CONTINUE

SUBROUTINE SUB(IND, A, B)

COMMON Y

Y(IND> = A + B

as this:

Introduction to Vectorization -58-

:,
;..

,I

COMMON Y

VECT+-------- DO 40 J = LN

I X(J) = Y(J) - Z(J)

I Y(J) = X(J) + Z(J)

I I I I I I
+----- 40 CONTINUE

Introduction to Vectorization -59-

Recurrence Detection Stage

0 a data dependence occurs when two statements (or
iterations of the same statement) refer to the same
data location

some data dependences inhibit vectorization; they are
called recurrences.

a recurrence is flagged as ‘RECR’ on the XLIST-ing.

by changing your code, it may be possible to
eliminate a recurrence and vectorize the changed
code.

.
I.‘_

: ;

!

I

.- i

i _.
, . !

./-.,.

Introduction to Vectorization -6O- -

Forms of Recurrence

0 a reference in one iteration of a DO loop to an array
element whose value was changed in an earlier
iteration. For example,

DO 100 I = 1,lOOO

C(I+l) = C(I) * 3

- 100 CONTINUE

0 an induction variable that modifies inner DO loop
parameters. For example,

DO 500 J = 1,lOOO

DO 400 K = 1,J

I , I I I

0 any dependences that prevent interchanging the order
of nested DO loops.

Introduction to Vectorization -bl-

Opevations Support Stage

Loops are checked for hardware and compiler support of
all operations.

These operations PREVENT vectorization (loop
inhibitors) and the loops containing them will be flagged
as ‘UNSP’:

l data types-

REAL"16

COMPLEX*32 (EXCEPT COMPARES)

LOGICAL"1

l any intrinsic functions with REAL46 or
COMPLEX*32 arguments

l INTEGER*2 governed by an IF statement

l relational expressions that need to be stored. For
example,

L = A,GE,B

i ’ ?,.

Introduction to Vectorization -62-

I 0

0

I 0

0

intrinsic functions from the families: DIM, MOD,
SIGN, NINT, ANINT, MAX, MIN

non-inductive subscripts governed by an IF statement

non-inductive subscripts to an INTEGER*2 array

misaligned data

IF statements with redundant parentheses

any intrinsic function when the NONINTRINSIC
option is specified

: . .

(..I
._.I-_ .,

.::1
-_

Introduction to Vectorization -63-

These Use the Vector Hardware

l data types

I ._
.‘_ .:.,.’

REAL*4 REAL*8

COMPLEX*8 COMPLEX"16

SOME INTEGER*2

INTEGER*4 LOGICAL*4

/

I

.: _=

.I
:. .
.,T-,,-: :

,

0 mathemati’cal operations

REAL**REAL DOUBLE*"DOUBLE

0 intrinsic functions

SQRT

DABS

DREAL

CDABS

COMPLX

DSIN

INT

DMINl

DCOTAN

AIMAG

DEXP

IBSET

AMAXl

ATANZ

DCONJG

DTAN

ABS

REAL

CABS

DINT

SIN

IFIX

AMINl

IABS

NOT

EXP

IBCLR

DBLE

DLOGlO

CONJG

DCOS

ISHFT

DPROD

DATAN

AINT

DLOG

I EOR

MAX1

HFIX

DFLOAT

DSQRT ATAN

IAND DIMAG

SNGL ALOG

ALOGlO IDINT

DCOMPLX DMAXl

DATANZ COS

IOR FLOAT

MINl

Introduction to Vectorization -64-

These Do Not Use the Vector Hardware

l these operations and functions are evaluated using
scalar routines. Their use in vector mode could slow
down your program.

l mathematical operations

INTEGER ** INTEGER

INTEGER / INTEGER

REAL ** INTEGER

DOUBLE ** INTEGER

COMPLEX ** INTEGER

(DOUBLE COMPLEX) ** INTEGER

COMPLEX ** COMPLEX

(DOUBLE COMPLEX) ** (DOUBLE COMPLEX)

COMPLEX DIVIDE

DOUBLE COMPLEX DIVIDE

0 intrinsic functions

ACOS SINH DGAMMA CDCOS CSQRT DACOS DSINH

ALGAMMA CSIN CDSQRT ASIN ERF DLGAMA CDSIN

IBCLR DASIN DERF TANH CEXP IBSET COTAN

ERFC DTANH CDEXP ISHFT COSH DERFC TAN

CLOG DCOSH GAMMA CCOS CDLOG

Introduction to Vectorization -65-

Some Examples - Taking Advantage of the Vector
Hardware

a indirect addressing to handle non-constant stride or
randomly ordered elements. This is sometimes called
scatter/gather.

VEC-j-+--------
I
+----- 10

l/EC-+--------
l
+----- 15

a operations under mask.

VEC-+----m-m-
I
I
I
+----- 20

DO 10 J = 1,N

B(J) = A(J) + P * C(J*W

CONTINUE

DO 15 J = 1,N

Y(J) = Z(IND(J>)

CONTINUE

DO 20 J = 1,N

IF(B(J),GTrXOLD > THEN

B(J) = A(J) + P + C(J)

ENDIF

CONTINUE

introduction to Vectorization -66-

Non-Inductive Subscvipts Governed by IF

0 non-inductive subscripts governed by an IF prevent
vectorization

UNSp+----em--- DO 20 J = 1,N

I IF(B(J)uGTaXOLD > THEN

I B(J) = A(J) + P + C(J""2)
- I ENDIF

+----- 20 CONTINUE

UNSP THE ARRAY(S) "C" ARE USED IN

CONDITIONALLY EXECUTED

CODE AND HAVE NON-INDUCTIVE SUBSCRIPT EXPRESSIONS

0 recode with instructions which are supportable for
vectorization:

VEC-+-------- DO 20 J = 1,N

I CT = C(J*"2)

I IF(B(J),GT,XOLD > THEN

I B(J) = A(J) + P * CT

I ENDIF
+----- 20 CONTINUE

Introduction to Vectorization -67-

The Economic Analysis Stage

0

0

0

the Economic Analyzer is the name given to the code
in the VS FORTRAN Version 2 compiler that
estimates the number of cycles (cost) that will be
expended to execute given sections of code.

the choice of which regions to vectorize, if any, is
based upon the calculations of the cycles for all
possible combinations of nested loops (to a level of 8).

‘ELIG’ indicates that the loop was found eligible for
vectorization, but has been chosen to run in scalar
mode.

. ., :_ :.._
:.~:L
., .: -.

I

introduction to Vectorization -6%

Example of Economic Analysis

Consider the following program involving integer
divisions:

INTEGER*4 K(lOO), J(100)

REAL*4 X(100), Z(100)

DO 30 I = 1,100

J(I) = J(I)/K(I)

Z(I) = KCIVXU)

30 CONTINUE

STOP

END

the Economic Analyzer determines the following,

INTEGER"4 K(lOO), J(100)

REAL*4 X(100), ZUOO)

ELIG+-------- DO 30 I = 1,100 SCALAR FASTER
+--em---- JU > = J(I)/K(I) THAN VECTOR

Introduction to Vectorization -tiY-

;:
:..’ 1
:.I”

:-

. .‘/
:::.

. . . :

I

VE(--+-v-s----- DO 30 I = 1,100
+-ea.----- Z(I) = K(1)/X(1 >

STOP

END

ILX0148K 0004 ELIG CODE THAT WAS ELIGIBLE TO EXECUTE

IN VECTOR MODE

WAS DETERMINED TO EXECUTE MORE EFFICIENTLY IN SCALAR,

Introduction to V ectorization -/U-

Good Vector Programming Practices

a time your program so you know where to spend your
efforts.

0 check that your data and intrinsic functions can use
the vector hardware.

e use ESSL whenever possible.

0 try to eliminate vector inhibitors.

.-
: -’

_.
:L

Introduction to Vectorization -71-

Succeeding in the Recuvvence Detection Stage

l during the Recurrence Detection Stage the compiler
REJECTS any DO loop for vectorization and flags it
as ‘RECR’ if it contains:

0 an induction variable that modifies inner DO loop
parameters

l any dependencies that prevent loop interchange.

l unbreakable recurrences

0 the first two points have to do with the way outer
loop vectorization is executed. No matter which loop
is chosen as the vector loop, vectorization actually
occurs at th.e innermost loop level, in sections of 128
(or fewer) data elements.

. Introduction to Vectorization -72-

An Induction Variable that Modifies an Inner Loop
Parameter

If an induction variable in an outer loop modifies an
inner DO loop parameter, that outer loop cannot be
moved to the innermost loop level. Therefore,
vectorization cannot occur on that outer loop.

Consider, for example,
.

RECR +------- DO 10 J = 1,100
VE(-T I+------ DO 10 K = LJ

I I C(J,K) = A(J,K) * B(J,K)
+--- ---10 CONTINUE

.-.:5 -:
1: .:, _;

Introduction to Vectorization -73-

Loop Interchange - Preventing Dependencies

If program results would change by moving an outer loop
to the innermost level, vectorization is prohibited on the
outer loop. This is called a loop interchange preventing
dependence.

. 1

: i
. : : .

.i Consider the following two pieces of code, which differ
only in their DO loop order:

c

DO 15 I = 1,N DO 15 J = 1,M
I DO 15 J = 1,M DO 15 I = 1,N

15 AU-l,J+l) = AU,J> 15 AU-l,J+l) = AU,J)

their execution in scalar mode would be as follows:

/
1 A(0,2) = A(U) A(0,2) = A&l)
!
I A(0,3) = A&2) A(1,2) = A(2J)

AU,21 = A(2,l) A(0,3) = A(L2)

;...,.A 1 AU,31 = A(2,2) A(L3) = A(2,2) : ._ . . , ^!

Data element A(0,3) contains different values, depending
upon the order of the DO loops. The outer DO loop
cannot be moved to the innermost level, and therefore it
cannot be vectorized.

/ Introduction to Vectorization -74

What Exactly is a Recurrence?

l for example:

DO 99 J = 1,100

A(J+l) = A(J) + B(J)
99 CONTINUE

0 results:

SCALAR EXECUTION

FETCH A(1 >

COMPUTE A(1) + B(1)

STORE A(2)

FETCH A(2)

COMPUTE A(2) + B(2)

STORE A(3 >

ETC,

VECTOR EXECUTION

FETCH A(1 >

FETCH A(2 >

ETC 8

COMPUTE A(1) + B(l)

COMPUTE A(2) + B(2)

ETC,

STORE A(2 >

STORE A(3 >

ETC,

l note that in scalar execution, A(2) is stored before it
is fetched.

Introduction to Vectorization -75

0

0

0

in vector execution, A(2) would be fetched before it is
stored. The wrong value of A(2) would be used for
the computation!

vectorization is prohibited due to the recurrence on
A.

a recurrence is a data dependence which prevents
vectorization.

Introduction to Vectorization -76-

Data Dependencies

0

0

a

a DEPENDENCE exists when the order in which
statements are executed may change the results of the
program.

data dependences are caused by multiple references to
the same location in storage.

a dependence occurs by:
0 the execution of successive statements or

l the successive execution of a single statement
during different iterations of a DO loop.

Introduction to Vectorization -77-

.-

Data Dependences

i
l data dependences are caused by multiple references to

the same location in storage.

a this is a time-shot of one storage location:

-----I--------I-------l-------l-------l-------> _

I- I I I I

FETCH1 STORE1 STORE2 FETCH:! FETCH3 TIME

STORE FOLLOWED BY FETCH: TRUE DEPENDENCE

FETCH FOLLOWED BY STORE: ANTI-DEPENDENCE

STORE FOLLOWED BY STORE: OUTPUT DEPENDENCE

FETCH FOLLOWED BY FETCH: INPUT DEPENDENCE

0 the recurrence analysis stage examines storage
- reference patterns. The order in which stores and

fetches are done in scalar mode has to be maintained
in vector mode.

Introduction to Vectorization -78-

True Dependences

0

0

0

0

a true data dependence is a store to a memory
location followed by a fetch from that location.
Statement T depends upon statement S if S defines a
value and T references it:

s: x =
T: = x

S must execute before T, because S defines a value
used by T. The execution of T depends on the
execution of S being completed.

a single statement true dependence is of the form:

A(J+l) = , , ,A(J), t ,

a single statement true dependence is a recurrence. It
prevents vectorization.

Introduction to Vectorization -7Y-

I
._ .: I

-... !

‘--l

Anti-Dependencies

0

0

l

an anti-dependence is a fetch from a memory location
followed by a store to that location. Statement T
depends upon statement S if S references a value and
T defines it:

S: = x
T: X =

-

S must execute before T because S must reference X
before T redefines it.

a single statement anti-dependence is of the form:

A(J--1) = , , aA(a 0

” I Introduction to Vectorization -8O-

Anti-Dependencies (cont.)

l for example,

VECT+----s-m- DO 30 J = 1,N

I A(J-1) = A(J) + B(J)

+-------30 CONTINUE ., :. - /
: .

SCALAR EXECUTION

___-------------

FETCH A(1 >

COMPUTE AU> + B(1)

STORE A(0 >

FETCH AU >

COMPUTE A(2) + B(2)

STORE A(1 >

ETC,

VECTOR EXECUTION

____------------

FETCH A(1)

FETCH A(2)

ETC,

COMPUTE A(1) + B(l)

COMPUTE A(2) + B(2)

ETC,

STORE A(0 >

STORE A(1 >

ETC,

0 the order of fetches and stores is preserved in vector
execution. A single statement anti-dependence WILL
vectorize.

1 Introduction to Vectorization -81-

.:-

.- .,
‘“... .:

Single Statement Dependencies

a true dependence is a store to a memory location
followed by a fetch.

a s ingle statement true dependence is of the form:

-
RECR+-------- DO 10 J = 1,N

I A(J+l) = , , ‘A(J), ,

+-------lo CONTINUE

a s ingle statement true dependence WILL NOT
vectorize.

‘- I Introduction to Vectorization -82-

an anti-dependence is a fetch from a memory
location followed by a store.

a single statement anti-dependence is of the form:

VECT+--s-s--- DO 10 J = 1,N

I A(J-1) = 8 , aA(

+-------lo CONTINUE
”

- a single statement anti-dependence WILL vectorlze.

Introduction to Vectorization -83-

Multiple Statement Dependences

0 a dependence can occur by the execution of successive
statements.

I

‘I : -.._I /

l the compiler will consider all valid statement
re-orderings within a loop when it does the recurrence
analysis.

0 the compiler examines the order of fetches and stores
in a DO loop to determine whether it can safely
vectorize the loop.

Introduction to Vectorization -84-

Multiple Statement Dependences (cont.)

EXAMPLE 1: an anti-dependence on A

VECJ-+----e-m DO 30 J = 1,N

I A(J) = B(J) + C(J)

I E(J) = A(J+l)
+ -------30 CONTINUE

L

0 the compiler will reorder the two statements and
thereby preserve the order of fetches and stores on A!
The loop WILL vectorize.

EXAMPLE 2: a true dependence on A and an
anti-dependence on B

VECT+------- DO 30 J = 1,N

I A(J+l) = B(J) + C(J)

I B(J) = A(J)
+-------30 CONTINUE

a the compiler determines that the order of fetches and
stores is preserved with vector execution and WILL
vectorize the loop.

,I Introduction to Vectorization -85-

Multiple Statement Dependencies : Two Anti-Dependencies

0 example:

/

.
.: ..,

..:,
-:, .:..

I
- j

RECR+-------we DO 30 J = 1,N

I A(J) = B(J) + C(J)

I B(J) = A(J+l)

+-------30 CONTINUE

l scalar execution:

A(1) = B(1) + C(1) FETCH B(1) AND STORE Ml)

B(1) = A(2) FETCH A(2) AND STORE B(l)

A(2) = B(2) + C(2) FETCH B(2) AND STORE A(2)

B(2) = A(3) FETCH A(3) AND STORE B(2)

ETC,

0 vector execution (1st attempt):

A(1) = B(l) + C(l) FETCH B(1) AND STORE A(1)

A(2) = B(2) + C(2) FETCH B(2) AND STORE A(2)

ETC a

B(1) = A(2) FETCH A(2) AND STORE B(1)

B(2) = A(3) FETCH A(3) AND STORE B(2)

ETC,

Introduction to Vectorization -86-

0

0

0

the order of fetches and stores on A has changed!!

vector execution (2nd attempt - re-ordered DO
loop):

B(1) = A(2) FETCH A(2) AND STORE B(1)

B(2) = A(3) FETCH A(3) AND STORE B(2)

ETC,

A(1) = B(1) + C(1) FETCH B(1) AND STORE A(1)

A(2) =-B(2) + C(2) FETCH B(2) AND STORE A(2)

ETC,

the order of fetches and stores on B has changed!

a forward and a backward anti-dependence form a
cycle of dependences. This is a recurrence that
prevents vectorization.

however, a scalar temporary may be used to “break”
this type of recurrence. This technique is known as
node splitting.

Introduction to Vectorization -87-

Scalar Expansion

Scalar Expansion is the replacement of a scalar variable T
by a vector temporary whose elements are all equal to the
original scalar.

i’
Some Rules:
0 the scalar variable must be local to the loop in which

.

0

0

0

it is used
it cannot
reference
it cannot

use values defined before the loop. The first
to T must be a store (i.e., T = . ..).
be used after the loop. The first reference to

;-:- :’
. . ..T . . I.

. . . .

T after the loop, if any, must also be a store.
it cannot be in COMMON or EQUIVALENCEd.

The Model:

DO 30 J = 1,N

30 CONTINUE

Introduction to Vectorization -88-

Node Splitting

0 scalar temporaries can be used to break recurrences.
This technique is known as node splitting.

a the compiler expands the scalar temporaries into
vector temporaries.

RE-WRITE THIS: As THIS:

-------------- --------

RECR+-- DO 30 J = 1,N VECT+-- DO 30 J = 1,N

I A(J) = B(J)+C(J> I T = B(J>+C(J)

I B(J) = A(J+l)

+-30 CONTINUE

l scalar execution:

A(1) = B(l) + C(l)

B(1) = A(2)
A(2) = B(2) + C(2)

B(2) = A(3)

ETC 1

I B(J) = A(J+l)

I A(J) = T

+-30 CONTINUE

FETCH B(1) AND STORE A(1)

FETCH A(2) AND STORE B(l)

FETCH B(2) AND STORE A(2)

FETCH A(3) AND STORE B(2)

Introduction to Vectorization -89-

Node Splitting (cont.)

RE-WRITE THIS: As THIS:

-------------- --------

RECR+-- DO 30 J = 1,N VECT+-- DO 30 J = LN

I A(J) = B(J)+C(J> I T = B(J)?C(J)

I - B(J) = A(J+l) I B(J) = A(J+l)

+-30 CONTINUE I A(J) = T

+-30 CONTINUE

0 vector execution with node splitting:

T(1) = B(1) + C(1) FETCH B(1)

T(2) = B(2) + C(2) FETCH B(2)

ETC,

B(1) = A(2) FETCH A(2) AND STORE B(1)

B(2) = A(3) FETCH A(3) AND STORE B(2)

ETC,

A(1) = T(l) STORE A(1 >

A(2) = T(2) STORE A(2 >

l the order of fetches and stores has been preserved.

Introduction to Vectorization -9o-

Partial Sums

: . , : .- .-i
_I

-,. : ~

_,
. ..-.:.:J
_.,

I

GIVEN:

SUM = 0,O
VECT+-------- DO 30 J = 1,N

I SUM = SUM + A(J) + B(J)
+ -------30 CONTINUE

0 the accumulation on SUM is called a reduction
operation.

l SUM carries a recurrence: a single statement true
dependence.

a there is a hardware solution called partial sums which
works around this inherent recurrence.

0 integer partial sums are not vectorized because they
are faster in scalar. To allow the rest of a loop to
vectorize, change to REAL&

0 the order in which data elements are added using
partial sums is not the same as scalar addition. Since
floating point addition is not commutative, results are

Introduction to Vectorization -91-

slightly different in vector and scalar modes. To
prevent vectorization, use the compiler option
NOREDUCTION.

‘, : I

‘I

1

1

I

,. ;.:..
-_ ^ -. r-1 : ‘a

I

I

!

!

Introduction to Vectorization -92-

The Use of Scalar Temporaries

0 accumulators should be scalar temporaries rather than
array references since temporaries don’t have to be
stored.

l Re-write this:

VECT;----s--s

I

I

I

I
+-----15

as this:

VECT+---w---w

I

I

I

I

I 17

I

DO 15 I = 1,LEN

DO 15 J = 1,LEN

C&J) = 080

DO 15 K = 1,LEN

C(I,J) = C(I,J) + A(I,K) * B(K,J)

CONTINUE

DO 15 I = 1,LEN

DO 15 J = 1,LEN

TEMP = Or0

DO 17 K = 1,LEN

TEMP = TEMP + A&K) * B(K,J)

CONTINUE

C(I,J) = TEMP

Introduction to Vectorization
-YJ-

+----45 CONTINUE

0 or use this ESSL subroutine:

CALL DGEMUL(A,LEN,'N',B,LEN,'N',C,LEN,LEN,LEN,LEN)

mtroauctron to V ectorization -94-

Summary on Recurrence

l Accurate recurrence detection requires that the
compiler know as much as possible about the nature
of subscript calculations for the array variables used
within a loop. This requires information about:

0 the dimensionality of arrays

l the parameters of the DO loops

0 expressions used to calculate the subscripts of each
array reference

If information about these factors is not available to
the compiler, the optimum degree of vectorization
may not be achieved.

0 the compiler determines when it is safe to interchange
loops, when it is safe to distribute a loop into multiple
loops and when it is safe to reorder statements within
a loop.

0 if an outer loop cannot safely be moved to the
innermost loop level, vectorization cannot occur on
the outer loop.

Introduction to Vectorization -g5- --

.

. .
J

- : :_

a single statement true dependence of the type

A(J+l> = ,,,A(J),I,

is a recurrence that prevents vectorization.

a single statement anti-dependence of the type

A(J-1) = , ,,A(J), 8,

vectorizes.

if the compiler flags a loop with multiple statements
as a recurrence, you can try introducing temporaries
to break that recurrence.

the compiler often cannot analyze complicated array
subscripts, EQUIVALENCEd arrays, or arrays using
indirect addressing. In such instances, the compiler
may flag a loop as a recurrence, even though no
recurrence occurs. You can override these “fake”
recurrences with compiler directives, so long as you
are sure that no recurrences actually occur.

-_ ;

. ..-...:!

Introduction to Vectorization -96- -.

Vector Compiler Directives

0 compiler directives are used to override decisions
made by the compiler and to give additional
information to the compiler.

0 there are three compiler directives:

l ASSUME COUNT (n) : specifies a value that the
compil‘er can use as an estimate for the iteration
count of a loop

. PREFER

l VECTOR - specifies that a particular loop in
a nest will be the best choice for a vector loop
(if eligible)

l SCALAR - specifies that a particular loop
should not be chosen for vector execution

. IGNORE

. RECRDEPS - specifies that potential
recurrences can be ignored in determ ining

introduction to Vectorization -g7- -.

eligibility for vectorization

l EQUDEPS - specifies that the compiler
should assume that variables used in
EQUIVALENCE statements do not give rise
to recurrences

l ON and OFF keywords may be used with ASSUME
COUNT xnd PREFER. Otherwise, a directive applies
only to the DO loop immediately following it.

/

I

;.
I . _...

Introduction to Vectorization
-98- -.

How To Use Vector Directives

a a directive is used with a so-called trigger-string,
which is a character string defined by the user. Its
purpose is to allow the compiler to distinguish a
comment from a directive.

0 the syntax of a vector compiler directive is :

Ctrigger-string keyword additional-information

C indicates a comment line and is immediately
followed by the trigger-string. The keywords are
ASSUME COUNT, PREFER and IGNORE.

l a directive is activated by the @PROCESS
DIRECTIVE statement. The @PROCESS statement
is placed before the first statement of EACH program
unit (main program or subprogram) that uses a
directive. The @ must be in column one.

introduction to Vectorization -99- -

0 a directive can be treated as a comment by omitting
the @PROCESS DIRECTIVE statement or by
specifying @PROCESS NODIRECTIVE.

0 each type of directive pertains to just one stage:

DIRECTIVE STAGE
_---e---4 -----

ASSUME COUNT ECONOMIC ANALYSIS

PREFER ECONOMIC ANALYSIS

IGNORE RECURRENCE DETECTION

.- _j
I introduction to Vectorization -lUU-

/
.‘. .! . :;,

. . .
._ :

Directives : Where Added Information is Useful

use ASSUME COUNT for:
0 unknown trip count:

DO 20 J = M ,N,L <--- HOW MANY ITERATIONS?

use PREFER for:
0 overriding the compiler’s economic dec ision: by tim ing

your code,Ly~~ m ight determ ine that the compiler
made the wrong decision.

COMPLEX C,D
DO 20 K = 1,N
D(K) = C(K) / D(K)

< --- COMPLEX DIVISION

IS SLOW IN VECTOR MODE

use IGNORE RECRDEPS for:
0 unknown loop index upper bound : recurrence

conditions may depend on its va lue.

DO 10 J = 1,N <--- WHAT IS THE SIZE OF N?
A(J+50) = A(J) * B(J) <--- RECURRENCE IF N ’ 50

0 unknown DO increment : recurrences may depend on
the d irection of the increment.

Introduction to Vectorization -lUl-

DO 10 J = M,N,L

A(J-1) = A(J) + B(J)

<--- WHAT IS THE SIGN OF L?

<--- RECURRENCE IF L IS

NEGATIVE

::.,

introduction to Vectorization -102- -.

Directives : Where Added Information is Useful

a unknown auxiliary induction variable : recurrences
may depend on its value.

DO 10 J = 1,N
A(J) = A(K) * B(J) < --- RECURRENCE IF K < J
K=K+M < --- WHAT ARE K AND M?

0 unknown Subscript offset : recurrences may depend on
the value of the offset.

DO 10 J = 1,N
A(J+M) = A(J) < --- RECURRENCE IF 0 < M < N

0 when arrays are EQUIVALENCEd : the compiler
always assumes dependence among equivalenced
arrays.

EQUIVALENCE (A(50), B(1))
DO 10 J = 1,N <--- NO RECURRENCE, BUT THE

A(J) = B(J) COMPILER THINKS THERE

IS!

0 unknown indirect addressing subscripts :

Introduction to Vectorization -103- -

DO 10 J = 1,N

A(J) = A(K(J>) + B(J) <--- IS THERE A RECURRENCE?

A(K(J)) = A(K(J)> + B(J) <--- ARE THE A's

INDEPENDENT?

Introduction to Vectorization -IU4- :

Using Directives : Rules of Thumb

0

0

0

use them for hotspots. Don’t clutter your program
where they are not needed.

use ASSUME COUNT rather than PREFER where
appropriate.

double check to insure that IGNORE is used safe1.y.

Introduction to Vectorization -105- -.

Summary : When to Use Directives

0

0

0

the ASSUME COUNT and PREFER directives will
not affect program results. Use them for:
0 unknown trip counts
0 vector loop selection
l when the compiler makes the wrong economic

make sure- that you ARE outsmarting the compiler
before you use PREFER.

decision

program results could change if you use IGNORE
incorrectly. It can be used for:
0 unknown loop index upper bound
l unknown DO increment
l unknown DO auxiliary induction variable

increment
l unknown subscript offset
l unknown equivalence-induced dependencies
l unknown indirect-addressing dependencies

. . ’ Introduction to Vectorization -106- -.

Poor Vector Performance

If vectorization g ives poor performance gains, consider
the following:

1 .

:

2.

3.

4 .

the storage reference pattern is poor (stride
considerations)

the vector lengths are too short
b

there are too many IF statements

too many loop structures are inappropriate for
vectorization

inefficient handling of sparse arrays

i ‘_ !
.:: :,

:
-I

!

~. ,

.

Introduction to Vectorization -107- -

Stride Considerations

stride is a very important consideration for vector
performance since arrays with small strides can be moved
from virtual storage to vector registers and back much
more efficiently than arrays with large strides.

the stride can be positive, negative or zero. For positive
and negative strides, it is possible to specify vector
elements beyond the range of an array thereby leading to
unpredictable results and/or program errors.

Methods:

l data re-structuring - re-organize arrays to optimize
stride

l data re-structuring using temporaries

Introduction to Vectorization -108-

Data Re-Structuring to M inimize Stride

since FORTRAN multi-dimensional arrays are stored in
column-major form, the first subscript of an element
always varies most rapidly and the last subscript always
varies the least rapidly.

therefore, one way of m inimizing stride is to insure that
the dimension of an array that is the desired target for
vectorization is the left-most dimension.

Given:

PROGRAM STRIDE

REAL*4 A(5,10,1000), B(5,10,1000)

DO 10 K = 1,lOOO

DO 10 J = 1,lO

DO 10 I = 1,5

AU,J,K) = A(I,J,K) + B(I,J,K)

10 CONTINUE

re-write as:

PROGRAM STRIDE
REAL*4 A(1000,10,5), B(1000,10,5)

Introduction to Vectorization

DO 10 K = 1,lOOO

DO 10 J = 1,lO

DO 10 I = 1,5

A(K,J,I) = A(K,J,I) + B(K,J,I)

10 CONTINUE

;
,I

.. .__
,. :

. .

.

/
1 , : . . ,

..‘E’,
_ I I

;

.’
1 . .f.

.~ I
. L . - r’

._ ..

In tro d u c tio n to V e c tor iza tio n -llO -

V e c tor L e n g th Cons ide ra tions

vec tor iza tio n o f a l oop w ith a la rge vec tor l eng th has a
m u c h g rea ter p a y o ff th a n vec tor iza tio n o f a shor t l oop .

fo r very shor t l oops , vec tor iza tio n m a y resu l t in poo re r
pe r fo r m a n c e th a n sca lar

M e th o d s :

l

0

0

0

.

use th e A S S U M E C O U N T d irec tive

use d u a l p a th c o d e

c rea te l onger vec tors th r o u g h E Q U IV A L E N C E ,
copy ing into te m p o rary vec tors , e tc.

e lim ina te l oop unro l l ing

Introduction to Vectorization -111-

Dual Path Directives

if the loop count varies from small to large, depending
upon your initial data, you could code a dual path to
select scalar or vectorized loops.

for example:

@PROCESS DIRECTIVE ('*VDIR')

I I I I I

IF (N,LT,ZO) GOT0 30

C*VDIR ASSUME COUNT (100)

DO 10 K = 1,N

COMPUTATIONS

10 CONTINUE

GOT0 40

PVDIR ASSUME COUNT (5)

30 DO 11 K = 1,N

COMPUTATIONS

11 CONTINUE

40 CONTINUE

; .I Introduction to Vectorization -112- -.

/
-:. :. :,.

Using Equivalence to Combine Multiple Dimensions

re-write this:

DIMENSION A(10,8,9 >, B(10,8,9)

as this:

I I I I I

DO 99 I = 1,lO

DO 99 J = 1,8
b

DO 99 K = 1,9

99 A(I,J,K) = A(I,J,K) + B(I,J,K)

DIMENSION A(10,8,9)I B (10,8,9 >

DIMENSION AA(80,9), BB(80,9)

EQUIVALENCE (A(l,l,l), AA(l,l))

EQUIVALENCE (B(l,l,l), BB(l,l))

DO 99 IJ = 1,80

DO 99 K = 1,9

99 AA(IJ,K) = AA(IJ,K) + BB(IJ,K)

Introduction to Vectorization -ll5-

IF Statement Considerations

0

0

0

0

a vectorized IF uses the vector mask register.

all computations, for every iteration of the loop, are
performed for every IF, THEN and ELSE clause.

at the end of the loop, only the results corresponding
to the correct IF conditions are stored, using the
vector mask register.

vectorized IFS perform well when there is no ELSE
clause and the IF condition is usually true.

because all computations are performed, a vectorized
IF may result in divide-by-zero interrupts or
subscripts out of range.

Introduction to Vectorization -114-

Methods for Dealing with IFS

0

0

0

l

l

try eliminating the need for IFS.

try moving IFS outside the vector loop.

try using separate loops for each IF condition

try creating temporary vectors containing values
which satisfy the IF conditions. Do computations on
the temporary vectors, then copy the results back to
the original vectors.

you might have to use the PREFER SCALAR
directive if you determine that a loop containing IF
statements is faster in scalar mode.

Introduction to Vectorization -II!?

Eliminating IFS

This example shows how one might eliminate an IF
whose purpose is to test for some boundary condition.

re-write this:

Y: :. . ._../
,_. .:,

.1

DO 10 K = 1,N
-

1 8 I I I

DO 20 J = 1,M

I I I I I

IF ((J,EQ,l),OR,(J,EQ,M)) THEN

X(J,K) = 0,

ELSE

X(J,K) = A(J,K) * B(J,K)

ENDIF

I I I I I

20 CONTINUE

I I I s I

10 CONTINUE

as this:

DO 10 K = 1,N

‘, Introduction to Vectorization -Mb-

:_
‘. : ;

. :

I I , I t

X(l,K) = 0,
DO 20 J = 2,M -1

X(J,K> = A(J,K) * B (J,K)

I 1 I 1 I

20 CONTINUE
X(M,K) = 0,

1 1 I I I

10 CONTINUE

Introduction to Vectorization -II/- :

Separate Loops for IFS

Generating an identity matrix can be handled like this:

re-write this:

DO 10 I = 1,N

DO 10 J = 1,N

IF (I,EQ,J) THEN
L

X(I,J) = 1,

ELSE

X(I,J) = 01

ENDIF

10 CONTINUE

as this:

?
‘.

..’ :

:- .-
: . : . . ,

DO 10 I = 1,N

DO 10 J = 1,N

X(I,J) = 0,

10 CONTINUE

DO 20 I = 1,N

X(1,1) = 10

20 CONTINUE

Introduction to Vectorization -118-

Inner vs. Outer Loop Considerations

0 vectorizing a loop means that sectioning occurs on
(according to) that loop’s index.

0 conceptually, this may be viewed as creating another
loop at the innermost level.

l for example, this DO loop:
&

REAL*8 A(lOOO,lOO)
VE(-T+------em DO 15 I = 1,lOOO

I DO 15 J = 1,100

I A(IrJh a 8

+-------15 CONTINUE

is treated by the compiler as:

DO 15 I = 1,1000,128

DO 15 I = 1,100

I 1 ,A(I:128,J), 0 8

15 CONTINUE

. /

I

: .-..
_

Introduction to Vectorization -119-

Inner vs. Outer Loop Considerations (cont.)

a the left-most array’dimensions should have the largest
va lues.

0 with two-dimensional arrays, make the outer loop
correspond to the left-most array subscript.

l for example, re-write this:
.

REAL"8 A(lOOO,lOO),

B(lOOO,lOO)

REAL"8 X(1000)

DO 10 J = 1,100
VEC-+----s-s- DO 10 I = 1, lOOO

I A&J) = X(I) + B(I,J)
+ -------lo .CONTINUE

as this:

VEC-+----e--s DO 10 I = 1, lOOO

I DO 10 J = 1,100

I A&J) = X(I) + B(I,J)

+-- -----10 CONTINUE

Introduction to Vectorization -120- -.

l there is an advantage to OUTER loop vectorization if
it reduces the number of times the vector X has to be
loaded thereby optimizing vector register usage.

l the compiler will ordinarily vectorize on the left-most
dimension.

I I”. _‘,
:.

:‘I:,

.- !

.: :_.. ._
‘..

‘: : _~ ‘I

._. Introduction to Vectorization -121- -.

: -

.

. ._ : .

I

Sparse Array Considerations

programs that deal with sparsely stored data can
sometimes show a performance degradation when
vectorized depending upon the methods used to
manipulate the data.

Methods:

0 indirect addressing

a compress and expand

l inhibit vectorization

. : :

! ; _
:

Introduction to Vectorization -122- -

Indirect Addressing

Given:

SUBROUTINE SPARSE(MASK,A,B,C)

LOGICAL"4 MASK(1000)

REAL*4 A(lOOO), B(lOOO), C(1000) .: --,
._-. I I I I I

DO 10 I = 1,lOOO

iF (MASK(I)) THEN
1 A(I) = B(I) + C(I)

ENDIF

10 CONTINUE

Re-write as:

I SUBROUTINE SPARSE(MASK,A,B,C)

LOGICAL*4 MASK(1000)

REAL*4 A(lOOO), B(lOOO), C(lOOO)

INTEGER"4 TCOUNT, INDX(1000) : :-
I I I I 1

TCOUNT = 0

DO 9 I = 1,lOOO

IF (MASK(I)) THEN

TCOUNT = TCOUNT + 1

INDX(TCOUNT) = 1

Introduction to Vectorization -123- -.

ENDIF

9 CONTINUE

DO 10 I = 1,TCOUNT

A(INDX(I>) = B(INDX(I)) + C(INDX(I))

10 CONTINUE

:
.:- I

. . .
. ..:’

: 1

Introduction to Vectorization -124- -.

Interactive Vectorization Analysis (I VA)

Vector tuning can be assisted by gathering vector length
and stride information at run time using IAD.

Before IAD can gather vector tuning information, you
must create a Program Information File (PIF) by using
the IVA suboption.

FtlRTVS2 FILENAME (OPT(3> VECTORUVAH

To collect and view the vector length and stride
information, use the following IAD commands:

VECSTAT
activates recording of vector length and stride
for all loops (VECSTAT *.* ON)

LISTVEC
displays average length and stride for vectors
(actual vs. compiler estimates). (LISTVEC *.*)

Introduction to Vectorization -125- -
-

, Summary : Your Vector M igration Effort

0

0

0

time your program

local program modifications
l ESSL calls
0 workarounds for vector inhibitors
0 reorder DO loops
0 use temporaries
0 vector -directives

global program restructuring
0 re-think program organization
0 re-think data organization
0 algorithmic changes

. . : . - 1

. , . : :

:_

Introduction to Vectorization -126- -.

Set Expectations

l keep efforts focused on good payback potential: work
with hotspots

l be realistic: remember that good vector program
speed-ups are 1 S-3.

0 analyze program performance:
I

l prograin speed-up

l percent vectorized

l vector speed-up

l know when to quit!!

Introduction to Vectorization -127-

-:. -:

._:-.

.^

..-
‘.’ ..1

y-.1’

Test Case 1: Avoid Variable Offsets in Arrays

Given:

SUBROUTINE TEST(A,N,IBASEl,IBASE2)

REAL*4 A(1000)

INTEGER*4 N,IBASEl,IBASE2

I I , I I

DO 10 J = 1,N

AtI) = A(I+IBASEl) * A(I+IBASE2)

10 CONTINUE

Re-write:

SUBROUTINE TEST(AO,A1,A2,N,ISIZEO,ISIZE1,ISIZE2)

REAL"4 AO(ISIZEO), Al(ISIZEl), A2cISIZE2)

INTEGER*4 N,ISIZEO,ISIZE1,ISIZE2

I I I I I

DO 10 J = 1,N

AOW = Al(I) * A2(1)

10 CONTINUE

.

I
I

Introduction to Vectorization -128-

Test Case 2: Avoid Indirect Addressing

G iven:

DO 10 I = 1,N

10 A(INDXW) = AUNDX(I)> + t 8 8

Re-write:

DO 9- I = 1,N

9 TEMPACI > = AUNDXU 1)

DO 10 I = 1,N

10 TEMPAW = TEMPAU) + a , 1

DO 11 I = 1,N

11 AUNDXCI >> = TEMPACI >

_- ~:
. . ..- :

-‘.. . ..-.
;: : ._:

: : : . . :

; : : :- . ->
,‘

In tro d u c tio n to V e ctor iza tio n -129-

Tes t C a s e 3 : Us ing V a ria b le In c r e m e n ts

G iven:

IV A R = 1

D O 1 0 I = 1 ,N

A U V A R) = A (IV A R) + 8 a t

IV A R = IV A R + IS T E P

1 0 C O N T INUE
L

Re-wr i te :

@ P R O C E S S D IRECTIVE('DIR')

I 1 I 1 I

IV A R = 1

*DIR IG N O R E R E C R D E P S tA)

D O 1 0 I = 1 ,N

A tIV A R) = A (IV A R) + ,I a 1

IV A R = IV A R + IS T E P

1 0 C O N T INUE

i Introduction to Vectorization -130-

Test Case 4: Using Adjustably Dimensioned Arrays

Given:

SUBROUTINE TEST(A,N,M)

REAL*4 A(N,M)

DO 10 J = 1,M

DO 10 I = 1,N
A<I,J) = A&J) + 1 t 1

10 CONTINUE

Re-write:

@PROCESS DIRECTIVEYDIR >
SUBROUTINE TEST(A,N,M)

REAL*4 A(N,M)

*DIR IGNORE RECRDEPSCA)

DO 10 J = 1,M

DO 10 I = 1,N
A(I,J) = AU,J) + , e o

10 CONTINUE

Introduction to Vectorization -131- --

I.

.: :-

Test Case 5: Away EQUIVALENCE

Given:

SUBROUTINE TEST

REAL"4 AtlOO), B(1000)

EQUIVALENCE (AW.B(lOl))

I I I I I

DO 10 I = 1,100
A(I) = B(I) * 1010

10 CONTINUE

Re-write as:

SUBROUTINE TEST

REAL*4 AtlOO), B(1000)

EQUIVALENCE (A(l>,B(lOl))

DO 10 I = 1,100

B(I+lOO) = B(I) * 1010

10 CONTINUE

or:

@PROCESS DIRECTIVEt’DIR’)
SUBROUTINE TEST

Introduction to Vectorization -132- -.

REAL*4 A(lOO), B(1000)

EQUIVALENCE (A(l).B(lOl)>

*DIR IGNORE RECRDEPS

DO 10 I = 1,100

A(I) = B(I) * 1080

10 CONTINUE

(

:.:

i.:.::
.- : ;
.._. ;

Introduction to Vectorization -133- -.

Test Case 6: Scalar EQUIVALENCE

Given:

SUBROUTINE TEST

REAL*4 A(lOO),B(lOO)

INTEGER"4 PARAM,Pl,P2,, n 1

COMMON /PCOM/ PARAM

EQUIVALENCE (PARAM(l),Pl), (PARAM(2),P2),, , ,

I I I I 1

DO 10 I = 1,M

A(P1) = A(P1) + B(I)
10 CONTINUE

Re-write:

SUBROUTINE TEST

REAL*4 A(lOO).B(lOO)

INTEGER*4 PARAM,Pl,P2,, 8 t

COMMON /PCOM/ PARAM

Pl = PARAM

P2 = PARAM(2)

DO 10 I = 1,M

A(I+Pl) = A(I+Pl) + B(I)
10 CONTINUE

Introduction to Vectorization -134-

* I I 8 I

PARAM = Pl

PARAM(2) = P2

Introduction to Vectorization -135-

-..I
.,
:.

:

Test Case 7: Restrict Optimization to Improve Partial
Vectorization

Given:

SUBROUTINE TEST(A,B,X,Y)

REAL*4 A(100),B(O:100LX(10O)~Y(lOO)

DO 10 I = 1,100

A(I) = AU) + X(I) * Y(I)

B(I) = B(I-1) + X(I) * Y(I)

10 CONTINUE

Re-write:

SUBROUTINE TEST(A,B,X,Y)

REAL*4 A(100),B(O:100),X(100),Y(100)

I I t 8 I

DO 10 I = 1,100

1 A(I) = A(I) + X(I) + Y(I)

2 B(I) = B(I-1) + X(I) * Y(I)

10 CONTINUE

Introduction to Vectorization -136-

, .::. ..:-.

.:.;: .~’

Test Case 8: Scalar Expansion for Partially Vectorizable
Loops

Given:

SUBROUTINE TEST(A,B,X,Y)

REAL*4 A(100),B(O:100),X(10O)~Y(lOO)

t I I 1 1

DO 10 I = 1,100

T-z X(I) * Y(I)

A(I) = A(I) + T

B(I) = B(I-1) + T

10 CONTINUE

Re-write:

SUBROUTINE TEST(A,B,X,Y)

REAL*4 A(100>,B(O:100>,X(100LY(100)

REAL*4 TT(100)

e I I I 1

DO 10 I = 1,100

TT(I) = X(I) + Y(I)

A(I) = A(I) + TTW

B(I) = BU-1) + TTW
10 CONTINUE

T = TTCM)

._ Introduction to Vectorization -137-

.:
.:. :
.; .

:
‘3

:-

Test Case 9: Scalar Expansion for Non-Local Scalars

Given:

SUBROUTINE TEST(A,B >

REAL*4 A(lOO),B(lOl)

I I I I I

T = B(1)

DO 10 I = 1,100

AT I) = T

T = B(I+l)

10 CONTINUE

Re-write:

SUBROUTINE TEST(A,B)

REA,L"4 A(lOO),B(lOl)

REAL"4 TT(O:lOO>

I I 1 1 I

TT(O) = B(l)

DO 10 I = 1,100

A(I) = TT(I-1)

TTW = B(I+l>

10 CONTINUE

Introduction to Vectorization -138-

References

l VS FORTRAN Version 2 Programming Guide
(SC26-4222)

:_: : .._/ :

l VS FORTRAN Version 2 Language and Library
Reference (SC26-4221)

l Engineering and Scientific Subroutine Library Guide
and Refere‘nce (SC26-0 184)

l Designing and Writing FORTRAN Programs for
Vector and Parallel Processing (SC23-0337)

l Vectorization and Vector M igration Techniques
(SR20-4966)

. ;
.!

.r.:

‘.,

Introduction to Vectorization -139-

i I
j

: :-
:

. , :

Recommended Additional Reading

1.

2.

3.

4.

5.

6.

7.

Agarwal, R., et.al., New Scalar and vector elementary
ftcnctionsfov the UIM System/370, IBM Journal
Research Development, Vo1.30, No.2, March 1986

Clark, R.S., et.al., Vector system performance of the
TBM 3090, IBM Systems Journal, Vo1.25, No. 1,1986

Ellersick, R., Vector Coding Techniques for VS
FORTRAN Version 2, SHARE 68, March 1987

Ellersick, R., Vector Coding Techniques for VS
FORTRAN Version 2, SHARE 69, August 1987

Ellersick, R., Tuning Vector Programs with VS
FORTRAN, SEAS AM 88, September 1988

Lipps, H., Introduction to Vector Processing, CERN,
date unknown

Liu, B. and Strother N., Programming in VS Fortran
on the IBM 3090 for A4aximum Vector Perfokance,
IEEE Computer, June 1988

Introduction to Vectorization -140-

I.&, ..I
,. .: .j

/=,

8.

9.

10.

Metcalf, M., Vectovization of HEP Programs,
CERN-DD/88/21, November 1988

Padegs, A., et.al., The JBM System/370 Vector
Architecture: Design Considerations, IEEE
Transactions on Computers, Vo1.37, No.5, May 1988

Scarborough R., and Kolsky, H., A vectovizing
Fortran compiler, IBM Journal Research
Developtient, Vo1.30, No.2, March 1986

Introduction to Vectorization -141- -

Acknowledgements

Special acknowledgement must be given to the vector
training material from the following sources:

0 “Introduction To Vectorization,” Cornell National
Supercomputer Facility, Cornell University, Ithaca,
New York, September 1988; written and edited by
Helen Doerr and Francesca Verdier.

0 “CERN Vector Processing Workshop,” IBM
European Center for Scientific and Engineering
Computing, Via Giorgione 159, 00147 Rome, Italy,
October 1988; particularly the material developed and
written by Francesco Antonelli, Paolo Di Chio and
David Soll.

	slac-tn-91-005a.pdf
	slac-tn-91-005b.pdf
	slac-tn-91-005c.pdf

