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ABSTRACT

The problem of performing transformations from geocentric to geodetic coordinates has
received an inordinate amount of attention in the literature. Numerous approximate methods
have been published. Almost none of the publications address the issue of efficiency and in
most cases there is a paucity of error analysis. Recently there has been a surge of interest in
this problem aimed at developing more efficient methods for real time applications such as
DIS. Iterative algorithms have been proposed that are not of optimal efficiency, address only
one error component and require a small but uncertain number of relatively expensive
iterations for convergence.

“In this paper a well known rapidly convergent iterative approach is modified to eliminate
intervening trigonometric function evaluations. A total error metric is defined that accounts
for both angular and altitude errors. The initial guess is optimized to minimize the error for
one iteration. The resulting algorithm yields transformations correct to one centimeter for
altitudes out to one million kilometers. Due to the rapid convergence only one iteration is
used and no stopping test is needed. This algorithm is discussed in the context of machines
that have FPUs and legacy machines that utilize mathematical subroutine packages.

tabulations, series expansions and iterative
approaches. A surprisingly large number of
authors believe that no closed form solution exists

INTRODUCTION

The problem of transforming from

geodetic coordinates to geocentric coordinates has
received an inordinate amount of attention for what
seems to be a relatively simple problem. The
author has encountered more than forty papers on
the problem in the literature and has included some
of the more significant ones in the references to this
paper1'7710'18’20‘26,29. Several different types
of approximate solutions are available. including

although it is easily derived2,3,10,11,25 Most
authors provide very little in the way of an error
analysis. In some cases only the altitude errors are
addressed6-12:29. For applications such as radio
astronomy the angular errors may dominate and
cannot be ignored. A notable exception to these

_observations is the paper by Borkowski published




in 1989 that compares the accuracy of several
procedures, including closed form solutions3.

Almost none of the papers address computational
efficiency. Borkowski reports run time
comparisons but makes no attempt t0 improve
efficiency because it was not an issue for his
application. The closed form solutions involve the
algebraic solution of a quartic equation by the
classical method due to Ferrari. For closed form
solutions some care must be taken to avoid
computationally costly complex arithmetic and the
inevitable ill conditioning that is associated with

" analytic solutions of this type. The ill conditioning
occurs because the direct Ferrari formulation leads
to the subtraction of numbers with large magnitude
that have opposite signs. This in turn requires the
use of multiple precision even on machines having
extended word length. Borkowski shows how to
formulate the quartic to avoid both the complex
arithmetic and the ill conditioning. However, this
reformulation introduces some relatively expensive
transcendental function evaluations. In addition,
the Ferrari method itself requires several relatively
time consuming square root and cube root
operations. As a result the closed form solutions
are not very efficient.

Recent developments in real time distributed
simulation, particularly the Distributed Interactive
Simulation (DIS) Program8:19, have led to a
renewed interest in the problem in an attempt to
attain more efficiency12»13*29. These papers
employ essentially the same procedure to reduce
the problem to a quartic equation in a single
variable. In each case the resulting quartic is
solved by an iterative procedure based on Newton’s
method. These formulations lead to algorithms that
are not of optimal efficiency for the accuracy
attained.’ In this paper one of the classic iterative
methods is modified to provide a very efficient and
accurate solution to the problem. A three
dimensional error metric is defined and the
resulting algorithm is tested for a relatively dense
sample for all latitudes, longitudes and altitudes
ranging from well under sea level out to ten million
kilometers. When using the WGS84 ellipsoidal
earth model 18 the maximal (total) error is-less than
one centimeter over the test region. This level of
accuracy may seem excessive given that geodetic
earth models represent best fits to the real earth
shape and induce far more than one centimeter
error. However, when performing simulations the
selected earth model is taken as exact. To verify
and validate simulations, particularly distributed
simulations, it is essential that the coordinate
conversions be accurate.

BACKGROUND

A number of reference geodes have been used in
astrogeodetic work18, These all have the form

0 K/a2+(Y /a2 HZ/c)2 =1.

In this paper the World Geodetic System 1984

(WGS84) is used for the purpose of exposition 18,
For WGS84 a=6,378,137.0 meters and

¢ = 6,356,752.3142 meters. Figure 1 below depicts
the geometry of the geocentric (Cartesian) system
and the geodetic system in three dimensions.

The geocentric coordinates of a point P are (X,Y,Z)
and the corresponding geodetic coordinates of P are
{®, A, h) where ¢ is latitude, A is longitude and h is
the height above the reference ellipsoid. The line
connecting the Z axis to P is orthogonal to the
tangent plane at the point Pe.

Figure 1

The transformation from geodetic to geocentric
coordinates is straight forward 18 andis given by:

[2) X = (RN+h) cos ¢ cos A

3) Y=RN+h)cosd sinA

@  Z=®Nc2/a2+h)sin ¢

where

)  RN=a/[l-I[sin2¢] @2 -c2)/a2]12.

The inverse transformation is not as easy and is the
subject of this paper. The longitude Ais given by




© A=tan-1(Y/X)
and -i2< A<m/2.

Reference (18) contains other conventions for
longitude.

Due to the symmetry of the problemin X and Y it
is sufficient to initially work with a meridional
section of the geode to determine ¢ and h. This
system is depicted in Figure 2.

The meridional ellipse is defined by

N W/a2+@2Z/c2=1

and

) W= (X2+Y 2)12,
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Figure 2

Some useful relations associated with this
coordinate system are given below.

The flattening ratio f and the eccentricity e are
constants for a particular geode and are defined by

© f=(@-<)/a
(10) €2 =(a2-<2)/a2

It is convenient to define an additional constant e”
by

an  e2=(a2<2)/c2

Once ¢ has been determined h can be computed
from

(12) h=(W/cosd)-RN

for ¢ in non-polar regions. In polar regions it is
preferable to use '
(13) h=Z/sindp+RN(E2-1),

where RN is the radius of curvature of the prime
vertical and is given by

(14 Rn=a2/(a2cos2 ¢ +c2sin2 ¢) 112
or equivalently

(15) RN=a/(l-&2sin2 $)12,

ERROR DEFINiTION

Suppose that (X,Y,Z) is the exact location of a
point P in the Geocentric Coordinate system. An
approximate transformation of the coordinates of P
results in another point P, having approximate

geodetic coordinates (da,A9)h3). Using the exact
relations (2,3,4) the approximate geodetic
coordinates can be transformed into corresponding
approximate geocentric coordinates (X3,Y a.Z9).
The error E induced by the approximation is
defined to be the Euclidean distance between P and
Pa. That iS,

(16) E=[(X-Xa)2 +(Y-Ya)2 +(Z-Za) 12,

E can be viewed as the radius of a ball (sphere)
centered at P in the geocentric system.

THE BOWRING ITERATIVE PROCEDURE

In 1976 Bowring4 developed a very rapidly
converging iterative procedure based on Newton’s
method for computing tan ¢. The Bowring method
is in fact the standard procedure used in the
military handbook MIL-HDBK-60000818 and in
Rapp23.24, Several of the references12.29 reject
the Bowring method for high speed computation on
the basis that the computation of tan ¢ requires
several relatively expensive trigonometric function
evaluations per step. A simple observation shows
in fact that no trigonometric calculations are
needed during the iteration. This observation
coupled with an improvement in the initial guess
yields a very efficient procedure that is so accurate
that only one iteration is required. This means that
no termination test is needed in most applications.




The Bowring procedure consists of introducing an
auxiliary variable 8 such that

an tan ¢j41 = Z +c¢ € 2sin3 Bj)/
(W -2a¢e2 cos3 8})

(18)  tanBjy1=(1-f) tan iy

with the initial value of 8 given by

19 tan B =aZ / cW.

The iteration is terminated when Itan ¢j41 - tan ¢l
is small enough and ¢ is then computed by using
the inverse tangent function. A cursory
examination of (17) and (18) indicates that the sin,
cos and inverse tangent must be evaluated for each
iteration. As noted in the introduction these
evaluations can be avoided and this is the subject of
the next section.

THE IMPROVED BOWRING METHOD
Observe that B does not explicitly appear in
equations (17), (18) or (19). Instead sin B, cos B
and tan B are required. These terms are readily
computed from basic principles. That is, in (17) let
(20)  Aj=Z+ce 2sin3Bj

and

(21)  Bj=W-aeZcos3 B

then

(22)  tan ¢i+1= A /Bi.

Then, by definition,

(23)  sin¢i+1=Aj/(Ai2+B;j2)12

24)  cos ¢i+1=Bj/(Aj2+ B2

The values of sin Bj+1 and cos Bj+]1 to be used in

the next iteration are obtained from equation (18).
The initial condition (19) becomes

@25)  sinBo=aZ/ [(aW)2+(cZ)2]12

(26)  cosBg=cW /[(@W)2+(cZ)2}1/2

By using (20) to (26) and equation (18) all
intervening trigonometric functions are eliminated
and replaced with two square roots.

The Bowring method can be further improved by a
very simple modification of the initial value of

tan B.  Experimentation with the Bowring
procedure has shown that the error in tan ¢ is one
signed in the first quadrant. Based on this a
multiplicative weighting factor is introduced in
equation. (19) to minimize the error E after one
iteration over all points in the first quadrant and for
a suitable interval of h values.

NUMERICAL ANALYSIS

Introducing the factor D into (19) yields

@7)  tanBg=aDZ/cW '

For a specific earth model the value of D can be
selected to minimize the error E on a set S that can
be determined without knowing ¢ and h. The set S
is defined as all points P in the first quadrant with

coordinates (W,Z) that lie in the region bounded by
the ellipses

(28)  [W/(a+hMin)]2+[Z/ (c+hMin )12 =1.
and

29  [W/@+hMaxl2+[Z/ (c+hMax )12 = 1.

The set S is depicted in Figure 3.

Geodetic
Earth Model

a F X W
a+h Min ath Max

Figure 3

A point (W,Z) is in S if both of the following
conditions hold

(30)  [W/@+hMin)2+ (Z/ (c+hMin )12 21

G [W/(@+hMax)2 + [Z/ (c+hMax )2 < 1.




For the WGS84 earth model a set of values of
hMin - hbMax - and D were selected so that the
error E is less than 0.01 meters for each region S
after one iteration of the improved Bowring
procedure. These results are of course dependent
on the particular machine environment used and
this will be discussed in a later section.

The resulting values of hMin, hvax and aD/c are
given in Table 1 below.

Region hMin  hMax aD/c

1 -1¥105 2+106  1.0026000

2 2+106  6*106  1.00092592

3 6+106  18*100 999250297

4 18*106 1*109 997523508
Table 1: Optimizing Factors

For efficiency the inequalities can be evaluated
sequentially in the order given in the table above.
In this case only the upper region boundary is
evaluated and the inequality can be written in the
equivalent form

(32) W12+ [Z (athMax) / (c+hMax )12 <
(a+ hMa_x)Z.

This saves a multiply operation. For applications
like DIS most of the points will be inside region 1
which extends to 2000 kilometers in altitude. For
most applications it is probably sufficient to ignore
the test in (32) and to just use the region 1 constant

-1.0026. Under this policy the maximum error is
less than 42 centimeters for altitudes less than ten
million kilometers.

For a given point P with coordinates X,Y,Z the
above equations can be assembled into a step by
step procedure for a single iteration. It is assumed
that fixed constants such as €, £2,f, and so on are
pre-computed.

step 1. Using (8) compute W= (X2+Y2)1/2,

step 2. Use equation (32) along with Table 1 to
determine which region P is in and thereby
determine aD / .

step 3. Compute Tg=2Z(@D/c).

step4. Compute S =[Z(aD/c)] 2+ W12,

step5. Compute sin By = TQ /SQ and
cos Bp =W /Sp.
step 6. Compute Ty =Z +ce 2 sin3 B,

step7. ComputeS]=
{[T1]2 +[W - a €2 cos3 B(]2} 12,

step 8. Use(23)and 24) to get sin ¢1=T1 /S1
and cos $1 =[W -a €2 cos3 Bg] /1.

step 9. Ready to get h. First from (5) get
RN=a/(1-e?sin 21112,

step 10. If Icos ¢1l=cos (167.5 degrees!) then
h=W/lcos ¢11-RN.

step 11. Elseh=Z/sin ¢1 + RN (e2-1)
step 12. Compute ¢ from tan- 1( sin d1/cos ¢ ).

step 13. Compute A from tan-1( Y/X).

Because only a single iteration is used equation
(18) is not needed. If a second iteration is desired
step 8 needs to be modified to account for (13).

This algorithm will fail if ¢ = /2 or -n/2 (or is very
close to one of these values). In this case X is zero
(or nearly zero) and both ¢ and h are known
immediately. In implementing the algorithm in
software it is important to include tests for these
cases and take the appropriate action. With such a
test in place the single-argument inverse tangent
routine can be used in step 12. In step 13. similar
tests must be implemented depending on the
convention for latitude.

Note that only the squares of X and Y are
involved in the procedure and W is positive. The
sign of Z then determines the sign of ¢, so that the
procedure yields the proper value of ¢ for all
quadrants. Note that the test on 67.5 degrees
latitude defines the region between the Arctic and
Antarctic circles.

All of the square root evaluations and the inverse
tangent evaluations can be eliminated from the
above procedure by using in-line code. Whether
this should be done or not depends on the particular
computer environment being used. Older (legacy)
environments usually have their mathematical
functions implemented in software. In such cases,
repeated subroutine calls can be relatively
expensive27 and there is a substantial payoff in
terms of reduced execution time when in-line
routines are implemented. It should be noted that




some legacy machines, such as the CRAY family,
have a hardware implementation of the inverse
square root that is used as a basis for very efficient
transcendental subroutines. For most current
workstations the mathematical routines are
embedded in a Floating Point Unit (FPU) to
provide efficient processing. Most square root
implementations on FPU equipped machines take
the equivalent of about five floating point

operations per call. However, there is a substantial

variation in the processing time for the
transcendental functions from one machine to
another. Generally, when using an FPU equipped
system, in-line code for the mathematical functions
is not competitive with the built in mathematical
routines. One exception to this is given below
where the square root in step 9. is evaluated using
an in-line procedure.

In-line square root evaluation involves the use of
Newton's method for finding square roots and has
been used to great advantage in embedded
systems28, The following sequence converges to
the square root of A given an accurate enough
initial value9

(3) . xj+1=.5(xi +AKX]).

The term (1 - £2 sin 2¢) 1/2 of step 9. can be
expanded in a rapidly convergent binomial series
because the term U = €2 sin 2¢ is very small. A
two term binomial series for the initial guess
coupled with one iteration of (33) along with some
simplification yields

(34)  V=05-025U
(35) (1-€2sin 2¢)1/2 ~V + (V- 0.25)/V.

“Use of equations (34) and (35) is at least as fast as
calling a square root routine even when an FPU is
being used and has no impact on the overall
accuracy of the basic algorithm.

For machines that do not have a fast square root
function the square root in step 7. can also be
eliminated. This involves the use of a sequential
square root method bLased on two iterations of
(33)28. The value of Sp computed in step 4. is
used as an initial guess for two iterations of (33).
This approach has no effect on the total error for

h less than a million kilometers.

ERROR EVALUATION
The number representation of the machine on

which the experimental calculations were
performed has a 23 bit mantissa. Single precision

on such a machine will lose about a meter of
accuracy in representing numbers like a and ¢. As
a consequence double precision was used for all
calculations. For machines with extended word
lengths double precision will not be an issue.

To assess the error in the algorithm a test program
was developed that defined very dense sets of exact
points (h,$,) on a rectangular grid. These points
were converted exactly by (2), (3) and (4) into a
corresponding set of geocentric points (X,Y,Z).
The thirteen step algorithm was applied to obtain a
set of approximate points and the error E was
determined. The maximum error over the entire
region was recorded. In no case did the error
exceed one centimeter on the region encompassing
all latitudes and longitudes for all h (in meters) in
[-105,1011). When step 13 was modified to use
(34) and (35) the error was still less than one
centimeter over the same region. When the square
root in (8) was replaced as suggested above the
error was less than one centimeter for h in

[-105,109).
TIMING ESTIMATES

The only way to really assess run time is to
implement the algorithm on a particular machine
and test it. However, some idea of the relative cost
of the algorithm can be obtained by using operation
counts. This permits comparisons between
algorithms that are less machine dependent.

The paper by Wise29 uses such an approach and
provides a convenient means of comparison. Wise
used the number of floating point operations, floats
for short, as a measure of computational cost. He
assumed that multiply, divide and add all take the
same computational time. This is a relatively good
assumption but is clearly machine dependent.
Based on some empirical evidence he concluded
that it took five floats for a square root and twelve
for the trigonometric functions. The algorithm
proposed by Wise was then estimated to take

56 + 44i floats where i is the number of iterations
used. He assumed that reasonable care was taken
in the programming process to eliminate redundant
calculations. In a later paperl2 Lin and Ng
proposed a similar procedure that had an estimated
computational cost that was 20 percent less than
the Wise algorithm. This would result in

0.8( 56 + 441). The error criterion used in both
papers was to achieve a 50 centimeter accuracy in h
and there was little or no discussion of the effect of
the angular errors. It should be noted that the error
criterion used in this paper guarantees that the error
in h is less than one centimeter.




The computational cost of the thirteen step
procedure of this paper was estimated using the
assumptions made by Wise. Logical tests were
ignored because there are very few of them and
because they are relatively fast compared to floats.
It is presumed that Wise made a similar
assumption. Because of the logical tests the run
time will depend on the location of P. To simplify
the analysis it is assumed that the altitude of P is
less than 2000 kilometers and that P lies between
the Arctic and Antarctic circles. The resulting total
number of floats is 78. Table 2 below shows the
comparison with the algorithms mentioned above.

i 56 +44i 0.8(56 +44i)
1 100 80
2 144 115
3 188 150

Table 2: Computational Cost Estimates

Wise presented examples for his procedure that
meet the 50 centimeter error (in h) requirement.
Between -15,000 and 17,000 meters one iteration
was sufficient. Between 17,000 meters and
350,000 meters two iterations were required and
commented that this operating range would suffice
for all aircraft and many ballistic missiles.
Between 350,000 and a million meters it took three
iterations and this suffices for medium altitude
orbits. He also noted that for some locations it took
an extra iteration. Similar behavior could be
expected for the approach of Lin and Ng.

CONCLUSIONS

The algorithm developed in this paper yields far
more accurate results than most of the published
algorithms for what is apparently less
computational cost. The algorithm is also robust,
and is for practical purposes, applicable for all
latitudes and altitudes. A significant attribute of
the procedure is that the processing time is nearly a
constant.

The computational cost of the algorithm probably
~ can be further reduced with a corresponding loss in

accuracy. For example, the binomial series can be
used in step 9. without the iterative correction.
Further efficiencies have not been pursued in this
paper because the permissible error depends on the
application.

It should be noted that other published iterative

procedures:‘"’26 that appear to involve
trigonometric functions could be treated as in this
paper. Some experiments were conducted using

other geodetic earth models without changing the
optimizing coefficients of Table 1. The errors that
resulted were also on the order of one centimeter.
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