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Abstract

With the growth of the wind energy industry, it has become apparent that gear boxes in wind turbines, which link
the blades to the generator, tend to wear down faster than anticipated. This phenomenon is not clearly
understood; one theory is that existing wind turbine modeling approaches used to design the turbines do not
properly account for nonlinearities caused by large amplitude blade deformations. To help understand the effects
of geometric nonlinearities, a finite element based code, NLBeam, has been developed to simulate structural
dynamic responses of wind turbine blades by employing the geometrically exact beam theory. This research
focuses on assessing the adequacy of NLBeam by comparing simulation to experimental results. Three
aluminum blade surrogates with different geometries were tested by applying large amplitude base excitations
while assuring the surrogates stayed within the elastic range. A variety of orientations were utilized changing the
dynamic characteristics of the surrogates and reflecting actual turbine blade behavior. The results are used to
guide future development of NLBeam which will be coupled with large scale simulations of wind plants in a
Computational Fluid Dynamics based program developed at Los Alamos National Laboratory called WindBlade.

1. Introduction

In a 2008 report published by the Department of Energy, the possibility of providing 20 percent of the United
States’ power supply through wind energy by 2030 was assessed [1]. To accomplish such a feat, it is projected
that wind energy production must increase beyond 300 gigawatts (GW) by 2030, an increase of 25 orders of
magnitude in 23 years. In order to meet this increase in energy demand, wind plants are expanding in size and
requiring the optimization of turbine placement to most efficiently produce power for a given wind input.
Concurrently, individual wind turbines are manufactured larger and with higher capacities. Turbine blade lengths
are continually increasing in order to more efficiently extract power from wind, however, a corresponding increase
in displacement and, even more importantly, large magnitudes of rotation associated with deformation also occur.
Such deformations, for example, blade torsion, influence angle-of-attack and ultimately affect wind flow at the
plant scale in a coupled manner. To model the wind and turbine-turbine interactions at a plant scale, Los Alamos
National Laboratory has developed a computational fluid dynamics (CFD)-based wind plant simulation code
called WindBlade [2].

To realize such production, it is imperative that wind power production not only increase in capacity, but also
become more economically viable. A clear area to reduce wind energy costs is to increase wind turbine reliability.
Wind turbines include multiple assemblages which interact and transfer loads to the foundation. Evidence has
been found indicating certain assemblies, such as the gearbox, are plagued by premature failures [3]. The cause
is not clearly understood; one theory is that existing wind turbine modeling approaches do not properly account
for nonlinearities caused by large amplitude blade deformations. Consequently, the actual loads transmitted
through the wind turbine blades are higher than anticipated.
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With the growing desire to harvest wind power at increased demand levels, the length of turbine blades and the
number of turbines erected in wind plants is ever increasing. Modeling these plants to determine the most efficient
layout is difficult due to the complex nature of aerodynamic loading on turbines, mainly due to variable inflow
conditions as shown by Robinson et al. [4]. The deeper the wind penetrates into the plant, the more turbines it
interacts with, creating noise effects on the wind flow. The noisy wind conditions imposed upon downwind
turbines complicate both the modeling of structural loading on the turbines and the modeling of their ability to
capture energy [5]. LANL’'s WindBlade aims to model the interactions of wind and turbines [2]; however, it
currently assumes rigid body dynamical motion of the turbine rotors. This simplification does not account for the
change in angle of attack with respect to the wind when blades deform and rotate. Furthermore, the actual loads
being transmitted throughout the wind turbine system are not computed, thus losing available insight on the
influence of the dynamic wind field on the structural loading. Essentially, key aspects of the aeroelastic
interaction between the wind and wind turbines are not captured. To improve this plant scale simulation capability,
a more complete representation of wind turbine structural dynamics must be implemented into WindBlade.

One such approach has been developed by the National Renewable Energy Laboratory (NREL) leading to the
implementation of a code coined FAST (Fatigue, Aerodynamics, Structures, and Turbulence) [6,7]. FAST utilizes
equations of motion for the modeling of complex dynamic systems derived from Kane’s method. This theory
differs from other methods for obtaining equations of motion such as Lagrange’s method, D'Alembert's method,
and Newton-Euler's method, in that Kane’s method parameterizes the motion of deformation into decoupled
orthogonal modes [8, 9]. In order to model flexible elements, FAST utilizes linear modal characterization
assuming small deformations [7]. This approach can be inauspicious in that (i) the small deformation assumption
is often not held; inducing geometric nonlinearities and (ii) the reliability of the model depends on the validity of
mode shapes over a range of operating conditions which are input into FAST from a separate code [6].

Another approach is to develop detailed, high fidelity three-dimensional finite element (FE) models to couple with
the fluid-structure interactions of wind turbine blades [10-12]. These high fidelity models are advantageous in
modeling both the spatial and temporal multi-scale physics to be accurately modeled throughout the entire system
over a given time period. However, the computational costs associated with running simulations of this level of
sophistication preclude application at the plant scale as accomplished by WindBlade.

An alternative approach, as employed in this paper, strikes a balance between accurately representing generally
nonlinear behavior with the computational costs when considered as an integral part of a plant-scale simulation
code. In particular, this research uses the geometrically exact beam theory such as developed by Reissner
[13,14], Simo [15], Simo and Vu-Quoc [16], Jelenic and Crisfield [17], for example. The use of this method is
advantageous in comparison to those modeling techniques of rigid body systems, linear modal representations, or
high fidelity modeling due to its ability to handle the nonlinear problem in a computationally efficient manner
[17,18]. In the context of this paper, it is important to note that geometrically exact implies the treatment of finite
rotation of each cross section as exact, obviating any small-angle approximations [19]. The geometrically exact
beam theory exploits the slenderness of beams, allowing for dimensionai reduction, i.e., the simplification of a
geometrically nonlinear 3D problem by decoupling the problem into a linear 2D cross-sectional analysis and a
nonlinear beam problem along a reference axis [19]. This approach preserves geometric nonlinearities in a
computationally tractable manner when representing beam deformations [17-19].

A finite element code, NLBeam, was developed to implement this theory for application to modeling coupled fluid-
structure dynamics within WindBlade. The research presented in this paper aims to initiate validation of that code
by (1) developing an experimental methodology to isolate geometric nonlinearity in structural dynamics of flexible
beams, and (2) assess the predictive modeling capabilities of NLBeam in capturing large amplitude blade
dynamics by comparing experimental results with NLBeam simulations for dynamically driven surrogate blades.
Moreover, a secondary objective aims to contribute to a body of evidence which can be used to aid in the future
development and validation of NLBeam.
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2. Geometrically Exact Beam Theory

NLBeam employs the geometrically exact beam theory to represent the geometric nonlinearity associated with
generally large rotations. Geometrically exact beam theory dates back to the pioneering work of Reissner and
Simo and Vu_Qouc and has been extensively developed over the last three decades [14-19] and applied, for
example, to helicopter rotor dynamics [18]. The theory is only briefly summarized here.

undeformed "reference" configuration

B, &
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Figure 1. Kinematics of geometrically exact beam theory.

The kinematic description underlying the geometrically exact beam theory is essentially that shown in Figure 1.
The green curve in this figure depicts a beam reference axis in its undeformed configuration whilst the blue curve
represents the same reference axis in a deformed configuration. Each point along the reference axis is located
within the fixed inertial frame, E;, by the vector, ry. Associated with each point along the reference axis is a cross
section whose orientation is defined by the orthogonal triad of unit vectors B;. Note that the orientation of B;
within the fixed inertial frame is defined by the initial sectional rotation tensor, Ay, i.e., BA= E - ,. At some later
time, ¢ > {y, the beam reference axis has deformed into a different configuration where each point previously
located at ry in the undeformed configuration is now located by the vector r in the inertial frame E;. In addition,
the cross section associated with a particular point along the reference axis has an orientation defined by the
orthonormal basis, b;, which differs from B; according to b;\:ﬁ - ,. Here, A, describes initial orientation, A is

the rotation of a cross-section due to deformation, and A is the total rotation aligning the fixed inertial basis, E;
with the deformed beam cross section axes b, i.e., bA=E - , where A = f\-Ao.

A key ingredient of the geometrically exact beam theory is that the position of any point in the three-dimensional
continuum body (beam in this case) can be expressed as

R ATE 4 (1)
or

R=p£€u+ -, (2)
in the undeformed and deformed configurations, respectively, where contributions due to cross-sectional warping
are omitted (Cf. Hodges, et al. [19] for a more general representation accounting for warping) and the vector, &y,

expresses the cross-sectional position {0, xx3} within the reference frame B;. This enables a continuum
displacement field, i.e., U=R-R, from which classical continuum strain measures can be computed. An

important point is that the continuum motion of every point in the three dimensional beam is tracked by a total of
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six kinematical parameters, namely, three vector components of the reference axis displacement, u, and three
rotation vector parameters, 6, comprising the sectional rotation, /~\(0).

In this paper, isotropic Hooke’s law describes the elastic constitutive response such that the continuum stresses,
o, are related to strains, €, by ¢ =ATr[e]1+2ue where u is the elastic shear modulus and A the Lamé constant

related to Young's modulus, E, and Poisson ratio, v, as indicated in equation (3), | is the second order identity
tensor, and Ti*] denotes the trace of *.

E vE
=—— and A=—«— —— 3
“ 2(1+v) (1+v)(1-2v) ©)
Note, however, that NLBeam employs a generally anisotropic Hooke’s law suitable for representation of
composite cross-sections. The stresses thus obtained allow the strong form of conservation of momentum within

the 3D continuum to be expressed as V-a+ pf, = pU where V is the divergence operator, p the material mass

density per unit volume, f, is a body force per unit mass, for example due to gravity, and U is the acceleration of
a given material point. The strong form of the conservation of momentum is integrated across the beam cross-
section to get a suitable weak form in terms of generalized sectional forces and strains. Likewise, the local strain
energy can be integrated across a cross-section yielding an expression for the strain energy, W, at each point
along the beam reference axis in terms of cross-sectional strains, y, and curvatures, x, i.e.,

;
1Y Y
W== C 4
e i @
where the sectional strains and curvatures are computed by

y=A'r'-b, and x=A"A’ (5)
and ’ denotes differentiation with respect to the coordinate along the undeformed beam reference axis, x;. The
components of the sectional strain vector comprise axial strain and transverse shear strains in two directions.
The curvature vector comprises the torsional rate of twist about the beam reference axis as well as bending
curvature about the other two axes. Differentiating the cross-sectional elastic strain energy of equation (4) with
respect to the sectional strains and curvatures yields the sectional forces and moments, respectively, i.e.,

F -7

N

and F,, W

ok
For the case of a homogeneous cross-section, as studied in this paper, the cross-sectional elastic matrix is
simply, [C] = Diag[£4, GA, GAs GJ, El, El;], where Diag indicates a diagonal matrix, 4 is the area of the cross
section, [, and /; are geometric moments of inertia about the corresponding section axes, J is the polar geometric
moment of inertia, and 4, and 4; are effective shear areas along the corresponding section axes. Accordingly the
sectional forces and moments are simply

(6)

Fy=EAdy,, Fy,=G4y,, Fu;, =04y,

h

Fu=GlKk, Fg,=ElLk, F,,=Elrk,

where Fy,, F,; are the axial and shear forces, respective, and F,;, Fyp are the axial torque and bending moments,
respective. Equation (7) reflects a linear force-to-strain relationship in the local section coordinate system along
the beam; however, the rotation used in transforming into fixed inertial frame is inherently nonlinear (as all
rotations are strictly speaking).

(7

The strong form of conservation of momentum is weakened and then implemented into a numerical form
(NLBeam) using a Petrov-Galerkin finite element discretization in space. The weak form of the equations of
motion are expressed as

R, =R'+R/ R/ =0 (8)
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where the total residual, R,, at node /, is expressed in terms of contributions from material stress, R", inertia, R}

, and external forces, R;, as computed by

NI 0 |[AF,
le:IL l { l\}dxl

"IN, N1 AR
. pAii

R =[N, () - d, 9)
’ wJ W+, A

RS = .[oL{NI[:)Afb} der 2N )Z{:;}

In equation (9), W and A are the angular velocity and acceleration, respectively, of a point on the beam reference
axis, J, is the cross-sectional inertia tensor (a cross-sectional property), and fand m are concentrated forces
and moments, respectively. Additionally, the elemental shape functions, N;, have been introduced and are
guadratic Lagrange interpolating polynomials in NLBeam, thus each element comprises three nodes. Integration
of these terms is carried out using (reduced) two point Gauss quadrature over the length of each element.
Equation 8 reflects a nonlinear system of equations whose independent variables are the incremental nodal
degrees of freedom, Au and A®, and is solved using a Newton-Raphson iterative scheme.

3. Experimental Approach

Toward the overarching research goal, experimental procedures were performed with the role of providing data
for comparison to numerical results from NLBeam simulations. It was intended that surrogate beams be driven
into large, i.e., nonlinear, deformation. The experimental effort consisted of imposing base excitations on three
blades of differing geometry in three different orientations under varying excitation amplitudes in order to create
and observe the desired nonlinearities.

To accomplish the experimental goal of driving and identifying geometrically nonlinear deformation, specific test
specimens were designed with differing geometries. Each geometry consists of a different tapered width profile
and a constant thickness of 0.32 cm selected for practical reasons during fabrication, as seen in Figure 2. These
width profiles were selected in order to evaluate NLBeam’s modeling capabilities for nonprismatic beams, a purely
geometric consideration. To minimize experimental variability and model uncertainty the specimens were
fabricated of Aluminum 6061. Although typical wind turbine blades are made of optimized fiber reinforced
composite lay-ups, aluminum was chosen due to its well-documented homogenous, isotropic material properties.

The physical experimental setup consists of a surrogate blade specimen fixed to a base, replicating a fixed-free
cantilever beam which is fairly representative of operating turbine-blade boundary conditions. The base is then
bolted to a VTS Model VG 100-6 shaker, suitable for driving the desired base excitations. Each specimen was
excited in the flap-wise bending direction in three different orientations, viz. horizontal-flat, horizontal-edge,
vertical, as seen in Figure 3, to explore geometric nonlinearities due to differing gravitational loads. This is a
relevant response condition because wind turbine blades experience changing stress fields which are attributed to
varying gravitational loading throughout their rotations. A small mass of approximately 50g was attached to the
end of each surrogate blade as seen in Figure 4. The mass served to exaggerate geometric nonlinearities
observed in the experimental procedures; however, the additional inertial forces induced rocking motion of the
base. This rocking complicated the boundary conditions input to the model.
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Figure 2. Geometry of the surrogate blade test specimen used in experiments; (a) non-tapered, (b) linear taper,
(c) radiused taper, (d) uniform thickness profile for all geometries.

{c)

Figure 3. Three blade orientations investigated; (a) horizontal flat (b) horizontal edge (c) vertical.
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Figure 4. Mass attached at tip to help drive geometrically nonlinear deformation.

Excitation signals used to dynamically drive the system originate from a Dactron data acquisition system which
sends the desired excitation voltage through a power amplifier and, uitimately, to the shaker which drives the
surrogate blade. Excitation signals used comprise of (i) random and (ii) sine dwell. Dactron configurations for
each excitation are shown below in Table 1. Random base excitations were used to generate a comprehensive
baseline frequency response function (FRF) to identify natural frequencies and screen for nonlinear responses.
Sine dwells were then utilized to focus on specific frequencies for generating data that could easily be compared
to simulation results. Sine dwell excitation was advantageous to this research in that the degree of nonlinearity of
response data can be easily measured using a harmonic distortion metric, represented in Equation (10), where a,,
represents the magnitude of the response at the n" harmonic. A large value for this metric implies a highly
nonlinear system.

1
H,=—[¥a (10)
| "

Because the Dactron system restricts the total number of data input channels to four, careful channel allocation
and sensor placement was important. To aid in this task, a solid/continuum finite element model of one blade
geometry was developed to estimate representative modal characteristics using the commercial finite element
software, Abaqus. The preliminary mode shapes were used to aid sensor placement on the test specimens and
also provide some frame of reference for specifying excitation signal parameters. Two accelerometers were
placed on the base fixture, one on the back end and one on the front end in order to capture any base rocking,
one accelerometer is placed approximately at the midspan of the beam, and one accelerometer is placed near the
beam’s tip, as seen in Figure 5. Early experiments collected base displacement data from a laser vibrometer (as
shown in Figure 5), but this approach was aborted because (i) it could not capture the rotation of the base and (ii)
the data contained prohibitive levels of noise for use as boundary conditions for input to a numerical model.

Table 1. Dactron settings for each excitation type

Cutoff Frequency Data Points Spectral Lines Other
Random 250 4096 1600 0.5 Vrms
On-Resonance Sine 500 4096 1600 57 Hz
Off-Resonance Sine 250 4096 1600 35 Hz
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VTS Shaker

Figure 5. Experimental setup.

4. Numerical Modeling

Toward the goal of establishing the predictive capability of NLBeam and highlighting nonlinear structural dynamic
response when present, two different FE modeling approaches were utilized to simulate the experiments. The
two modeling approaches used were (i) a geometrically nonlinear model using NLBeam and (ii) a linear modal
superposition model using the commercial FE modeling package Abaqus. The role of the nonlinear model is to
demonstrate acceptable agreement between NLBeam and experimental results, while the use of a linear model
aims to highlight geometric nonlinearities in observed response. In both cases, simulation output results are
directly compared with experimental data to substantiate quantitative and qualitative assessments.

To model surrogate blades, NLBeam uses quadratic beam elements based on the geometrically exact beam
theory as described above. Each node includes six degrees of freedom (DOF); three translations and three
rotations in (and about, respectively) the global x, y, and z directions. At each elemental integration point along
the length of the beam, two-dimensional cross-sectional properties, shown in Table 2, are defined via a sectional
properties pre-processor developed as part of this work.

The linear superposition model employs the Abaqus beam element, B32, which is a quadratic beam element in
space, also accounting for six degrees of freedom at each node. Rectangular beam cross-section properties are
calculated directly within Abaqus from sectional widths and thicknesses corresponding to the center node of each
element given as input. The response data from the modal superposition model reflects a superposition of the
first four modal responses accounting for each mode’s participation factor.

Boundary condition input data (displacement/acceleration time histories) for both models were generated from
base accelerometer data measured in experiments. NLBeam is limited to accept only displacement (rather than
acceleration) time histories as boundary conditions; therefore the measured experimental acceleration data was
converted into suitable displacement data. Rocking (rotation about global z-axis) of the base, attributed to the
addition of a tip mass, was observed in experimental data. This feature of the boundary conditions was significant
enough that it was necessarily accounted for in a manner ensuring both the translational and rotational base
accelerations were preserved.
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Table 2. Material and sectional property relations used in pre-processor.

Parameter Symbol Value
Young’s Modulus E 69 GPa
Shear Modulus G 26 GPa
Density 0 2.70 glcm®
Area A w*h
.1 w w?
Torsion Constant J hw (5 — 021 (1 - W)
. . wh?
Moments of Inertia (y-dir) ly =Ph
Moments of Inertia (z-dir) 1, %WTS

To achieve this, assumed rigid body translational and angular acceleration are computed from both
accelerometers on the base according to Equation (11), where a, is translational acceleration, a, is rotational
acceleration, and aj, a; are the measured accelerations from two sensors on the assumedly rigid base.

a +a a +ta
_“ 2 g =2 2

(11)

b h
2 ha
These rigid body accelerations were high-pass filtered, H;, and doubly integrated to obtain displacement and
rotation data, i.e.,
uy, :fth(ah)dt 0, :fth(ah)d’ (12)

Finally, pure translational displacements applicable to nodes on the base are calculated according to Equation
(13) and low pass filtered, H,, to reduce high frequency noise. The key reason for calculating displacement in this
manner is to preserve relative phase information between translational displacement and angular rotation that is
essential for parity of simulations and experiment.

u]:H,(ub+r‘72*o9bJuzzH,(ub—%*HbJ (13)

The result of this scheme is highlighted in Figure 6 where a representative measured experimental acceleration
time history is compared with the acceleration time history as computed by NLBeam given the displacement input
boundary conditions. It is clear from this figure that the angular and translational motion including the relative
phase is preserved.

The nominal NLBeam model consisted of 24 elements, of which, one element corresponded to the relatively rigid
base holding the surrogate blade. This element was effectively stiffened to reflect the rigid body motion of the
base fixture. The base displacement input time history computed according to Equation (13) was specified as
nodal boundary conditions for the first and last node of this “fixture-base-beam” element. A point mass was
included at the tip node corresponding to the experimental tip mass. Simulation results from the NLBeam model
used for comparison to experiment in this paper come from a node located 86 cm from the base of the blade
corresponding to the location of tip accelerometer. As suggested by Equation (9), NLBeam directly includes
contributions from gravitational forces as well as the nonlinear geometric stiffening due to stresses in the beam.
Accordingly, simulations were conducted using the NLBeam model for all three surrogate blade geometries
across all three orientations to compare to assess the influence of the orientation with respect to gravity.

Much consideration was given to ensuring that parameters and boundary conditions for the modal superposition
model, utilizing Abaqus, were as close to those employed in NLBeam as the software would allow, in order for
meaningful comparisons. Thus, the nominal modal superposition model consisted of 23 elements with one
element allocated to the base fixture of the experimental setup. Similar to the NLBeam case, this element was
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stiffened in order to ensure the assumed rigid body motion boundary condition; however, since acceleration time
histories can be specified directly as boundary conditions within this FE code, base accelerometer data measured
in experiments were used as excitation sources for te linear superposition model. Likewise, a point mass
corresponding to the mass used in experimentation was applied to the final node in the model. All data extracted
from the modal superposition model and presented herein are from a node located 86 cm from the base of the
blade which corresponds to the location of the tip accelerometer.  The surrogate’s response across all three
orientations was simulated using a gravitational preload in an effort to explore the effects of gravity on a linear
(perturbation) model.

T T I T T T T | 1
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Figure 6. Comparison of translational (top) and rotational (bottom) acceleration at the base between NLBeam
and experiment

5. Results and Discussion

Uitimately, it is desired to experimentally validate NLBeam over a range of response regimes including behavior
that exhibits varying levels of geometric nonlinearity. Achieving such conditions in this study proved to be difficult
with the available experimental hardware and code capabilities. Physical restraint of the shaker system was
difficult under cases of large deformations because of the large accelerations and resulting base moments
associated with such motion. The base moments also induced the aforementioned rotations (rocking) of the base
of the blade where it affixes to the shaker. Furthermore, the shaker itself has internal physical stops which limited
the amplitude of base displacement. In light of these experimental limitations, the most efficient manner to drive
large deformations was to operate the shaker near a resonant frequency of the beam. However, simulating this
behavior near resonance was complicated because the model did not directly include physical damping.
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Accordingly, this section compares simulation and experiment results for near resonance and off resonance
cases and, perhaps more importantly, discusses improvements in both experiment and model that can be used in
the future.

5.1. Fixture base rotation complexities

As was discussed previously, a mass of approximately 50g was added to the tip of the surrogate blades to
enhance any nonlinearity in the response of the test specimen. The addition of this mass increases the inertial
loading, in turn, causing the “rocking” motion of the base. This rocking is not driven by the shaker, per se, but is
permitted due to the compliance of that system. The kinematic motion of this rocking behavior is captured and
input as boundary conditions to the model as discussed in Sections 3 and 4. Figure 7 shows a representative
normalized power spectral density (PSD) of an experimental case prior to and following the addition of the 50g
mass. The tip acceleration of the surrogate blade with tip mass contains several harmonics of the fundamental
excitation frequency (57 Hz in this case), whereas the signal from the case without a tip mass does not.
Presumably this difference is a manifestation of nonlinearity in the system response which is enhanced by adding
the mass.

However, the source of nonlinearity in this experimental configuration cannot be isolated to the surrogate blade
response and it is believed to be attributable, as least in part, to a nonlinear interaction between the shaker and
the test specimen. This coupling cannot be directly accounted for in the simulations because they model the
surrogate blade only, i.e., there is not a direct model of the shaker system or its interface with the surrogate beam.
With the objective of model validation this is viewed as a limitation of the experiment (in permitting such induced
rotations) rather than the model, as there is no desire to develop a physical model of the shaker system.

It is interesting that the induced rocking behavior is characteristic of a bi-stable phase orientation between the
rigid base translation and base rotation. Figure 8 illustrates this behavior as follows. A representative
experimental case (non-tapered beam, horizontal-flat orientation, with a normalized input amplitude of 2.0 at 57
Hz), was repeated ten times. The acceleration time histories measured by two accelerometers located on the
shaker base fixture are plotted in Figure 8. The rear-most accelerometer data appears relatively repeatable and
is plotted in blue with sinusoidal amplitude of approximately 4 m/s°. Data from the forward-most accelerometer
separates into two distinct categories of response classified by their respective amplitudes, i.e., approximately 2
and 6 m/s®. This indicates a base rotation that falls into one of two bistable operational modes; one is in phase
with the base translation and contributes additively to the forward-most accelerometer and the other mode is 180
degrees out of phase with the base translation, thus contributing subtractively to the forward-most accelerometer.

As suggested in Section 3, one measure of system nonlinearity is the harmonic distortion of an output signal
observed when the system’s input is a pure sinusoid at a single frequency. The relevance of this metric is
revealed by considering that a nonlinear model, M, relating inputs, x, to outputs, y, can be expressed in a power
series. If x is a pure sinusoid then harmonics of the frequency of x appear in the output

Y=M(X):iM'"(X—C)" (14)

n=0

If, for the sake of discussion, X = asin(w?)+bcos(w?), then Equation (14) yields a Fourier series, i.e.,

Y:A0+iA"sin(nwl)+B"cos(nwl) (15)

n=0
where a, b, A;, B;, are constants pertaining to the model and input data, » is an integer specifying each harmonic

of the original signal input frequency, ®. Clearly, if the system is nonlinear, then the output will contain harmonics
of the original input frequency. Figure 9 presents the harmonic distortion computed from measured tip
acceleration collected from experiments conducted at each orientation for the prismatic beam versus a
normalized magnitude of the input excitation amplitude. The harmonic distortion increases with the input
amplitude up to a maximum value that is unique for each case. Further increases in input amplitude result in a
decrease in the observed nonlinearity. The source of this behavior is unclear, but we speculate that such
experimental nonlinearity is caused by the mechanical connection between the surrogate blade and the shaker
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fixture. This type of behavior is consistent with a stick-slip transition in this mechanical connection where
nonlinearity is most profound near the incipient transition from stick to slip response. At low amplitudes the
connection behaves essentially linearly, at increasing amplitudes up to some point the connection spends more
time near the stick-slip transition. However, as amplitudes continue to increase the response is dominated by the
slip condition manifest as frictional dissipation (itself a nonlinearity, though perhaps not as profound as the
transition.) The experiments generating this data were conducted in turn at each orientation in the order: (1) flat-
horizontal, (2) edge-horizontal, (3) vertical. Immediately after completing the experiment in the vertical
orientation, the experiment was repeated under the flat-horizontal orientation. Results from this final case are
plotted in green in Figure 9 and clearly differ from the original experiment conducted in this orientation (shown in
blue). The lack of agreement between this data and that from the initial flat-horizontal case indicates a change in
the system throughout the progression of these experiments. This change is consistent with the theory of the
stick-slip transition nonlinearity. Such behavior would probably be influenced by the specific details of the
interface between the surrogate blade and base fixture. The apparatus was disassembled and reassembled
between each experimental case, accordingly, such connection details, for example bolt preload, are most likely
different between each case. No attempt was made to characterize or control these connection details.
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Figure 7. PSD of tip acceleration without mass (red) and with mass (blue).
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Figure 8. Representative measured acceleration time histories from multiple experimental repeats. Data from
accelerometer on rear of fixture is plotted in blue. Data from accelerometer near the front of base fixture
separates into two distinct phases of base rotation: additive (plotted in red) and subtractive (plotted in black).
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Figure 9. Harmonic distortion of measured tip acceleration response versus input amplitude (normalized) for
various orientations of surrogate blade.
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5.2. On-Resonance Results

Predicting response under sine-dwell excitation at a frequency near resonance is complicated because of the
base rocking complexities previously discussed as well as the lack of physical damping in NLBeam. The first
issue is addressed to a limited extent by specifying a rotational motion of the base in the finite element models
that coincides with the observed rocking accelerations. The latter issue is handled to some extent by numerical
damping associated with the Newmark time integration scheme employed by NLBeam. Physical damping
mechanisms in this system comprise friction at the fixture base and material damping in the beam. NLBeam was
developed to represent the structural dynamic response within an aeroelastically coupled wind turbine modeling
code. In this context the actual damping mechanisms are expected to be dominated by interaction of relative
velocity and aerodynamic drag. Accordingly, little attention thus far has been devoted to modeling material or
frictional damping within NLBeam. One consequence is poor agreement (over predicting amplitudes) in
predicting structural response near resonance where the numerical model is unstable for truly zero damping.

Aside from damping, another issue is the complexity associated with the shaker-fixture-beam interface, which is
not being modeled. It is unclear precisely the influence of this coupling, but it is possible that represent the
nonlinearly coupled behavior by simply specifying base rotations, while conceptually sounds, overly constrains the
response of the model. Also, it is important to note that the tip accelerometer is essentially near a node of the
operational deflected shape point, thus the acceleration reported at this point is presumably sensitive to details
such as the precise location of the sensor/FE-node. Attributing the discrepancy between model and experiment to
these issues is somewhat speculative; however, it is recommended that the experimental program be adjusted to
eliminate these uncertainties.

Figure 10 presents a representative comparison between experimentally observed and NLBeam prediction of tip
acceleration for surrogate blade without taper in the horizontal-flat orientation. The general response is captured
by NLBeam, albeit with a significantly subdued amplitude for this particular period of the total time history. Other
orientations and surrogate geometries are not discussed here because of the issues described previously.

4 T T T T T T T T
—— Experiment
NLBeam 4

Acceleration (m/sz)

 I— S—

1.04 1.05 1.06 1.07 1.08 1.09 11 1.1 1.12
Time (sec)

Figure 10. Comparison of tip acceleration time history for horizontal-flat orientation excited with sine dwell near
resonance (57Hz).
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5.3. Off-Resonance Results

In order to eliminate many of the issues discussed in the previous sections, an off-resonance low-amplitude set of
experiments was also conducted. Results from these tests enable a more meaningful (and consequently, better
quantitative) comparison between experiment and models. On the other hand, the very nature of these
experiments restricts comparisons to a fundamentally linear regime of response. For example, consider Table 3,
which reports the harmonic distortion of the experimentally measured tip acceleration for the surrogate blade with
no taper in a horizontal fiat orientation for near- (57Hz) and off- (35Hz) resonance cases. Clearly, there is no
significant nonlinearity present in the response for this case.

Table 3. Experimental harmonic distortion for tip acceleration response for no taper, horizontal fiat orientation.

Orientation Sine at 35 Hz | Sine at 57 Hz (third mode)
Horizontal Flat 1.00 26.48
Horizontal Edge 1.00 8.42
Vertical 1.00 6.72

In order to make some comparison, a frequency domain correlation metric is defined as

_Ale) 4 (0)
C @l e (el

where 4, (a)) is the acceleration response in the frequency domain for the /* signal and the inner product is taken

over the frequency domain. This particular correlation metric is used because it measures how well the shape of
the two signals match in the frequency domain, although it does not strongly penalize discrepancy in the
magnitudes of those signals. Computed values of this correlation metric between experimental data and each of
the two modeling approaches are shown in Table 4. Generally, both modeling approaches do well, although they
tend to perform better predicting response in a horizontal—edge orientation. As expected, the modal superposition
and geometrically nonlinear model are highly correlated in the frequency domain. Thus, the geometrically
nonlinear approach offers negligible advantage for modeling dynamic response dominated by linear behavior.
Comparisons of acceleration time histories shown in Figure 11 Figure 13 affirm this conclusion; although, in some
cases NLBeam compares more favorably than the model superposition results. Such “eyeball” comparisons can
be misleading and development of a quantitative metric for comparing nuances of time history data is
recommended for future work. Note in particular, acceleration time histories for both models compare reasonably
with experiment for the non-tapered beam (Cf. Figure 11-Figure 13). On the other hand, neither model does well
matching experimental response for the linear tapered beam as shown in Figure 14. A possible source of error is
that the relatively coarse mesh cannot adequately capture the varying geometry. While a thorough grid
convergence study has not been performed to assess the accuracy of the results for the linear taper case, it is
expected that is not the sole source of discrepancy between the experiment and model and more work needs to
be done to rectify this case. Finally, results for the radiused taper case are presented in Figure 15. In this case,
NLBeam appears to capture the experimental response with better agreement than modal superposition.

(16)

Table 4. Computed frequency domain response correlation metric values.

NO TAPER LINEAR TAPER RADIUSED TAPER
Flat Edge Vert Flat Edge Vert Flat Edge Vert
Exp.- NLB 0.985 0.985 0.977 | 0.977 0981 0.952 | 0.979 0.982 0.975
Exp.- ABQ 0.984 0982 0.974 | 0.978 0.982 0.956 | 0.982 0.984 0.976
ABQ-NLB |0.995 0.992° 0996 | 0.998 0.998 0.993 | 0.995 0.994 0.992
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Figure 11. Comparison of tip acceleration response for no taper and horizontal-flat orientation
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Figure 12. Comparison of tip acceleration response for no taper and horizontal-edge orientation.
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Figure 13. Comparison of tip acceleration response for no taper and vertical orientation.
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Figure 14. Comparison of tip acceleration response for linear taper and horizontal-flat orientation.
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6. Conclusions

This paper presents work conducted within the scope of the 2011 Los Alamos Dynamics Summer School. The
intention was to develop an experimental program supporting validation of a geometrically nonlinear structural
dynamics code under development as part of Los Alamos National Laboratory’s effort to expand modeling
capabilities for wind turbines amenable to simulation of entire operating plants. The experimental technique and
modeling presented in this paper are directly capable of assessing the influence of orientation of laboratory-size
surrogate blades under small base excitation. Experimental validation of simulation capabilities under conditions
of truly large deformation response remains elusive, but will benefit from the findings reported in this paper. For
conditions of small deformation and varying orientations with respect to gravity, simulation results from the code
NLBeam compare favorably with experimental results in most cases. Future capability enhancements to this
code consist of the addition of physical damping mechanisms to enable simulation of response near resonance,
allowing specification of rotation time histories as nodal boundary conditions, and providing for the input of
accelerations rather than displacement or rotation for boundary conditions. Future improvements to the
experimental program that would enable validation over a broader range of nonlinear deformation response
include the addition of sensors to measure the resultant base forces and moments, an actuation system that
eliminates inadvertent base rotations and that permits large displacement and acceleration amplitudes.
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