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1 EXECUTIVE SUMMARY 

The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, 

Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work 

conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven 

stage product development process. The project effort includes Full Concept Design & Prototype Assembly 

Testing building on our existing PowerBuoy® technology to deliver a device with much increased power 

delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy 

design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing 

(DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and 

Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to 

the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX 

costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change 

from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power 

Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the 

wave energy industry if proven feasible. 

 

2 PROJECT  OBJECTIVES 

The objective of this project was to exploit all the experiences and intellectual property, which Ocean Power 

Technologies (OPT) has acquired over the last two decades about wave energy devices into a focused effort to 

explore additional ways to achieve the ultimate aim of the company and industry, namely, attainment of a full‐

scale, utility size wave power generating device capable of mass deployment in wide areas of the world. 

 

The Project seeks to accomplish four key goals: 

1. Investigate scale‐up the PowerBuoy wave energy production from 150kW capability per installed unit to 

500kW or higher. 

2. Explore methods to Increase the power extraction efficiency to installed capital cost. 

3. Seek to optimize the PowerBuoy design to increase robustness and reliability. 

4. Investigate means to reduce the complexity of installation and maintenance techniques to reduce life 

cycle cost. 

 

OPT will leverage its extensive experience in the development, deployment and testing of its PowerBuoy 

technology and associated lessons learned to investigate and implement additional design and performance 

improvements and optimization.  

 

3 TASKS  PERFORMED:    OPT  STAGE‐GATE   I I I‐PB500  HYDRODYNAMIC  ANALYSIS  OF  STRCTURAL  CONCEPTS  

3.1 Summary 

This section of the report summarizes results from a set of tank tests. The primary goal of these tests was to 

reduce the risks, as far as possible, associated with choosing the overall design optimization leverage points for 
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a wave energy point absorber system. The primary driver is summarized by the desire to minimize the Cost of 

power and Energy of installed power generation capacity.  The cost of energy in either of these measures 

correlates directly with structural, mooring, Power Take‐Off (PTO) loads and rated PTO power. This project is 

based on the PowerBuoy point absorber technology. Therefore, the power capacity for a given sea state is 

largely a function of the geometry of the float, its force and stroke limits, and the mooring mechanism for the 

spar component of the system. The tank test was therefore planned to evaluate candidate mooring systems and 

floats for these metrics.  

 

Initial evaluations of different topologies of the system lead to three distinct mooring systems and three distinct 

floats (see Figure 1).  A test plan was thus devised to evaluate the nine possible topologies for mooring and 

energy conversion performance. A key challenge for this test was the large difference between operational sea 

states and survival sea states required to fully evaluate the systems. 

Float 

  Symmetric 
Cylinder 
w/Plate  Rhombus 

M
o
o
ri
n
g 

Monopile  The broad test goals were to evaluate the 
coupled performance metrics of 3 floats 
and 3 mooring configurations. 
 
* Float power performance 
* Float load/power shedding vs. draft 
* Mooring and float loads 
* Mooring power performance 

Gimbal 

TLP 

 
Figure 1:  PB500 SG III PowerBuoy Configurations 

 

The survival model was developed at a scale of 35:1. And the operational scale model was developed at 26:1.  

 

A summary of power performance is presented in Figure 2. This figure shows estimates for power using OPT in 

house proprietary and site specific predictions for wave climate analysis tool. Test results provided the ability to 

measure the power into the PTO as well as the power delivered to the float by the wave environment.  

 

Float 

Symmetric
Cylinder 
w/Plate  Rhombus 

M
o
o
ri
n
g 

Monopile 

EMEC  40‐90  90‐140  110‐160 

Reedsport  70‐120  90‐140  130‐180 

Portland  90‐140  120‐190  180‐250 
 

Figure 2:  Estimates of Annual Average Power in Kilowatts (kW) Extrapolated from Operational Test Results (assuming 100% PTO Efficiency) 
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The following summarize results and observations made from these tests: 

 

 Further study is required in order to define the behavior and limits of potential efficiency gains in the 

case of the gimbal mooring system over the design space. 

 The monopile mooring provided a consistent power capture. 

 The monopile mooring experienced larger forces and moments. 

 The monopile mooring experienced larger float to spar loads. 

 Float 2 experienced large operational surge loads and large forces and moments due to slam. 

 The disturbance waves caused by the presence and motion of all configurations appeared to decay 

quickly. It was nearly indistinguishable by the time it radiated out to the location of the wave probes.  

Test results are presented in two main sections:  Power and Loads. All power values given in this report 

correspond to mechanical input power.  

 

A study was also performed to determine the applicability of the three mooring options at various sites around 

the globe based upon available wave resource power and local bathymetry. This analysis is included as a section 

within this report. 

 

3.2 Test  Configurations  and  Float  Geometries  

The test plan evaluated 3 mooring configurations and 3 float geometries.  

 

3.3 Instrumentation  and  Calibrations 

As noted earlier, these tests were divided into two regimes; operational and survival. Consistency in 

instrumentation of the test was maintained where possible, but certain aspects of either test required unique 

accommodations. Following is a summary list of the instrumentation: 

 

 Capacitive wave probes for sea surface elevation.  

 Force dynamometer to measure mooring loads  

 Force dynamometer to measure float to spar loads.  

 Pressure sensors  

 Qualisys IR motion tracking system.  

 PTO Force and velocity.  

 

3.4 Model Testing  PTO 

The PTO was calibrated at OPT by OPT personnel. The drive parameters were adjusted so that the motor thrust 

was achieved based on manufacturer specification.  A review of the maximum operational condition results 

showed that PTO stroke limit did not conflict with the modeling in a statistically significant frequency.  
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Figure 7:  Orcaflex Power Predictions (kW) 

 

3.10 Loads  from  Operational  Orcaflex  Model 

The operational loads from the operational Orcaflex model were compared to values from the tests. Figure 8 

shows a summary of the loads from the operational Orcaflex models and compares these values to test results. 

The results show that Orcaflex does generally predicts within 10% of the 3 hour return period for these key 

loads. 

 
  Figure 8:  For Hs=5.5m, comparison of operational OrcaFlex Mooring loads to test results 

 

3.11 Orcaflex  Grounding  Summary  

 Survival loads are well modeled. Slam requires careful treatment.  

 Power was modeled well for the three floats.  

 Operational models appear to give reasonable results for use in estimating fatigue loads.  

 

3.12 Site  Analysis  

3.12.1 OBJECTIVE 

The suitability of regions such as US East Coast, US West Coast, Alaska, Hawaii, United Kingdom, Spain, Portugal, 

for a conceptual PB500 deployment was considered based on (1) mooring requirements and (2) incident wave 

power. Population centers are indicated on the regional maps, to help identify sites near high power demand. 
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3.13 Conclusion/Recommendation  

A summary of the pros and cons of the various float/mooring options is shown in Table 1. Considering the 

power results summarized in Figure 2, the two highest power options at Reedsport are the float 3/monopile 

(approximately 150 kW) and float 3/TLP (approximately 120 kW) configurations.  

 
Table 1:  Summary of Pros and Cons of each combination of tested geometry 

 

Rhombus 

  Monopile  Pro 
Highest power configuration of all cases studied; 600‐610 kW mechanical power 
Best agreement between predicted and measured 
 
Con 
Large float size 
Estimated base moments (‐5.5m survival) 
550‐750 MN.m @ 40m depth 
750‐1000 MN.m @ 50m depth 
Float moment: 40‐100 MN.m 

  TLP  Pro 
Second highest power studied 
Avoid base moment load 
 
Con 
Large float size 
High tether loads (15‐60 MN) @ maximum operating sea state 

 

Given float 3 at the best float condition, the choice then becomes the mooring system: monopile vs. TLP. 

Although a direct comparison of the mooring loads is not possible between the two systems, the evidence 

suggests that the peak TLP loads are relatively easier to handle in comparison with the survival moments 

associated with the monopile. Thus, we are left to choose between the reduced loadings of the TLP against the 

increased power output of the monopile. 

It is recommended that a few alternative geometries (perhaps three or four options) based upon float 3 be 

tested so as to minimize the survival loads.  

 

3.14 Future  Testing 

The following are some of the lessons learned in this set of wave tank tests. 

 

 Involve as many people representing various engineering disciplines and operations as possible from 

the outset. Valuable advice helps avoid a number of mistakes in this kind of test. 
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 Video. Time must be allotted to carefully plan the location of the camera and the quality of the pictures, 

as well as the synchronizing of the camera with the test events.  Camera angle picture quality is 

extremely critical. 

 File naming conventions during the testing program must be specified carefully. A fixed set of rules 

helps immensely as data is reviewed and post‐processing routines are written. 

 Some system dynamics modeling must be performed ahead of time.  

 The external losses such as mechanical interface motion friction and their relationship with system 

efficiency and float geometry should be characterized and included in this type of modeling if possible.  

4 TASKS  PERFORMED:    OPT  STAGE GATE  III‐PB500  POWER  TAKE‐OFF  SYSTEM 

This section details the initial conceptual design of the PB500 project Power Take‐Off (PTO) system including the 

component testing and final recommendations. 

 

4.1 Loading  Requirements 

PTO design loading requirements were developed through computer simulation, performed by OPT’s systems 

engineering group utilizing OPT proprietary engineering tools.  Such requirements as PTO force and PTO 

operational duty cycle, were then used to carry out a trade study involving a variety of linear to rotary 

mechanical systems. Careful considerations were given to low percentage occurrence Peak operating conditions 

versus more frequent and lower severity operating conditions.  

 

4.2 Rack  and  Pinion  based  l inear  to  rotary  conversion  system 

A rack and pinion PTO concept was investigated. For this concept, several key technologies are required for its 

implementation; thus, some initial design, analysis, and testing was necessary to fully vet each component of 

the buoy. These technologies include: 

 

 Rack and pinion 

 Input rod 

 Input rod cabling 

 Speed increaser 

 Brake 

 Linear seal 

 Flexible cable 

 

The details for the design, analysis, and testing are described below. 
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Table 2:  Speed Increaser Economic Comparison 

 
 

4.2.3.5 RECOMMENDATIONS 

It is clear from the preceding analysis that the gearbox speed increaser is the best value approach 

balancing complexity and cost.  

 

4.2.4 FLOAT  BRAKE  

The mechanical float brake is classified as the device which allows transition from one functional state to 

another such as from Normal Operation to Survival Mode when exceedingly destructive sea states are present 

(severe storms), or from Normal Operation to Maintenance Mode, etc.  

 

The mechanical requirements for the mechanical float brake are: 

 

 The Mechanical Locking System shall be designed to handle the operational loads and wear in Sea State 

6. 

 The wear components of the Mechanical Locking System shall be designed to be easily replaceable at 

sea within the normal maintenance requirements. 

 The Mechanical Locking System shall be designed to activate with full force within less than 2 seconds. 

 

4.2.4.1 FLOAT BRAKE CONFIGURATIONS 

 

Four float brake configurations were considered early on in the design process each of which could be 

employed in the various conceptual systems, they are as follows. 

 External Brake (exposed to sea) 

o Linear: Float to Spar 

o Rotary: Spar to Sheave 

 Internal Brake (enclosed in float) 

o Linear: Float to Rack 

o Float to Pinion 

 

4.2.4.2 CALIPER BRAKES 

The following caliper brake models were recommended by various suppliers to meet the braking force 

requirements. 
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4.2.6 LINEAR BEARINGS 

Linear bearings are required for the rack and pinion PTO option as a guide for the rack within the float. 

Therefore, initial life calculations were performed to size a bearing and mitigate any future design risk.  

Using the criteria provided by the manufacturer, the estimated life is ~7 years using the specific supplier bearing 

product. However, adding an additional bearing block to the linear bearing results in a life increase to ~18 years. 

Also, two linear bearing rails may be used in parallel to further increase the bearing life to 25 years. Therefore, 

the risk is relatively low at this point. 

 

4.2.7 ROTARY  BEARINGS 

Rotary bearings are required for the rack and pinion option as a support for the pinion within the float. 

Therefore, initial life calculations were performed to size a bearing and mitigate any future design risk. The 

assumptions for these calculations were: 

 

 1 pinion per PTO 

 2 bearings per pinion 

 

Therefore, using the standard rotary bearing life equation: 
















velP

C
Life

166673

10

 
 

Where P is the equivalent load, C is the dynamic load rating of the bearing, v is the velocity in rpm and the life is 

calculated in hours. 

 

Using the criteria provided by the manufacturer, the estimated life is ~30 years using a specific supplier pillow 

block bearing product. Therefore, the risk to the project from a rotary bearing standpoint is relatively low at this 

point. Additionally, standard off‐the‐shelf roller bearing could also be used with similar and higher load ratings. 

 

4.2.8 LINEAR SEAL  

A linear seal is required in the rack and pinion PTO design in order for the input rod to penetrate the float as the 

input rod penetrates the spar. However, as the input rod passes through the top and bottom of the float, the 

linear seal will be subjected to a constantly submerged condition at pressures of 2.5 bar to 10 bar during a 

survivability state. Therefore, an investigation into different linear seals was conducted. 

 

A specification for the linear seal was developed and presented to 3 seal manufacturers some of the key 

specifications were: 

 Target life: 5 years or more is desired 

 2 million to 5 million cycles per year 
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o Size: (L x W x H) 

o 737 mm x 333 mm x 333 mm 

 

4.2.11 LOCKING  MECHANISM 

A locking mechanism for the float is required during maintenance and survivability states where the float is 

raised on the spar or lowered underwater. Therefore, the float can be locked to the spar without PTO 

assistance. Two possible configurations were investigated: 

 Shear Pin Mechanism 

 Latch Mechanism 

An initial design and analysis were completed for each below. 

 

4.2.11.1 SHEAR PIN MECHANISM 

The shear pin mechanism is intended to lock the float to the spar using an electrically or hydraulically 

actuated pin, the two mechanism types are detailed below. 

(A) ELECTRICALLY ACTUATED 

The shear pin mechanism design used the following assumptions: 

 4 Shear pins per float 

 Float weight = 300 to 600 tons 

Using these assumptions, a shear pin mechanism was designed as shown in Figure 25. The design consists of: 

 

 6” diameter shear pin 

o 17‐4 PH stainless steel material 

o Tapered pin 

 Linear actuator – 2 options 

o up to 15,000 lbf capability  

o Hydraulic piston (alternative) 

Each shear pin mechanism mounts to the top of the float at equally spaced positions with a matching receiver 

on the spar. The locking/unlocking process would proceed as follow: 

 

 The float would use the internal or external method if necessary to adjust to locking position 

 A feature (i.e., guide pin or equivalent) would align the shear pin mechanism on the float with the 

receiver. 

 Once the float achieved the locking position, the shear pin mechanism will activate and the shear pins 

will engage the receiver. 

 The positioning device, would disengage; thus, leaving the shear pins to constrain the float 
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Each latch mechanism mounts to the top of the float at equally spaced positions with a matching receiver 

on the spar, similarly to the shear pin mechanism concept. The locking/unlocking process would proceed 

as follows: 

 

 The float would use internal or external method if necessary to adjust to locking position 

 Once the float achieved the locking position, the latch mechanism will activate, rotate, and 

engage the receiver. 

 The positioning device, would disengage; thus, leaving the latch to constrain the float 

 

 
Figure 30:  Latch mechanism design 

 

During the preliminary design, an initial FEA on the latch mechanism was conducted to evaluate the design 

feasibility similarly to the shear pin concept. A model of the latch mechanism engagement with the receiver was 

developed as shown in Figure 31. The results showed stresses in the receiver of ~318 MPa (see Figure 32). 

However, this is a conservative analysis with a simplified model; therefore, a further refined design and FEA 

model would likely reduce the maximum stress. Next, the latch (8” diameter rod weldment) showed a 

maximum stress of 255 MPa Therefore, the overall technical risk to the latch mechanism concept is low and can 

be mitigated through an improved design similar to the shear pin concept. 
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A fixed input rod PTO system previously discussed employs an input rod passing through the float and 

attaching to the spar at both ends. The rack assembly is connected to the input rod via rod locks 

mounted to the rack assembly and clamping against the input rod. The generator and pinion are 

stationed inside the float, the pinion engages the rack. Waves drive the relative linear motion between 

the spar and the float, and thus the relative linear motion created between the rack and the pinion will 

convert the linear wave motion to rotational motion driving a generator. As the tide raises and lowers 

so does the mean position of the float; it is therefore necessary to adjust the mean position of the rack 

to maximize the stroke. The internal sliding rack tidal adjustment devices adjust the rack position to 

maximize the stroke. 

 

System Pros – 

 Entire adjustment system internal 

 High load capacity 

 Shorter section of rack required 

 Capable of automatic adjustment 

System Cons – 

 Flexible hydraulic hoses required 

 2 Piece input rod required 

 

4.2.13.2 WIRE ROPE INPUT SYSTEM 

The basic components employed in a sheave and wire rope system. 

 

A sheave and wire rope input system employs a wire rope wrapped around a drum or sheave which 

fixes the position of the wire rope with respect to the buoy spar. The wire rope is connected to a rack 

inside the float through two input rods. The generator and pinion are stationed inside the float, the 

pinion engages the rack. Waves drive the relative linear motion between the spar and the float, and 

thus the relative linear motion created between the rack and the pinion will convert the linear wave 

motion to rotational motion driving a generator. As the tide raises and lowers so does the mean 

position of the float; it is therefore necessary to adjust the mean position of the rack to maximize the 

stroke. The sheave tidal adjustment devices enable the sheave to adjust the mean position of the rack. 

 

The decision to adjust the rack position with respect to the spar to compensate for changing tides is 

made by the control algorithm. The position of the rack with respect to the spar is measured by a 

position sensor. The position of the float with respect to the rack is measured by another position 

sensor. As the tide changes, the mean position of the float with respect to the rack is recorded. Tidal 

compensation is required when the mean position of the float with respect to the rack moves above or 

below a set limit. The set limit is defined by the control algorithm. 
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4.2.14 FLOAT  SURVIVABILITY 

Float survivability position will be implemented to avoid overstressing the buoy during storm conditions. The 

following actions will be taken to move the float to a survival position. 

 

 Buoy control system enters locked state 

o Brakes engage 

 Float ballasting must be started 

 Tidal compensation would be engaged 

o Configuration #1 – Adjustable rod lock system 

 Internal sliding rack 

o Configuration #2 – Wire rope adjustment system 

 Caliper brake sheave lock 

 Hydraulic sheave lock 

 Float would gradually sink to desired position 

 Locking mechanism would secure float at survivability position 

 Reverse procedure to return float to the operational locked state 

 

4.2.15 FLOAT  MAINTENANCE 

Maintenance to components of the buoy will be performed when the float is at the top of the spar and locked in 

place. Moving the float to the maintenance position must be possible without assistance.  Four of the following 

motor driven chain fall winches mounted to the lifting shackles on the spar could perform this lift. 

 

 For a winch system, the motor/gearbox must provide 300 t0 800kN*m of torque 

o Off the shelf solution: Gearbox = 475 kN*m rating 

 Dimensions are 1.2m diameter x 2.2m long 

 Feasible but very large 

 Chain fall hoist option (Liftchain) 

o Hydraulic hoist 

o 100 ton option 

o Requires additional structure to mount 

 Design issue 

o Compact footprint 

 

4.3 Belt  Drive  PTO  Technology 

The Belt Drive System PTO technology consists of using a double‐sided belt on the float to engage a rack that is 

fixed relative to the spar. This technology allows the PTO to be internal or external to the system as described in 

the Rack & Pinion PTO System Configurations section.  This belt drive also provides many advantages, such as: 

 

 Eliminates the need for an input rod and linear seals (as part of the external configuration) 
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o Allows for different rack options 

 Full length rack along the spar 

 Operational range rack with tapered ends  

 Alignment of PTO (float to spar) 

o Lower tolerances required 

 No lubrication required 

o Belt and rack can run dry 

 Compact PTO design 

 

For this concept, several key technologies are required for its implementation. These technologies include: 

 

 Belt drive 

 Rack (options) 

 Rotary bearings 

 Gimbal system 

 

The details for the design, analysis, and testing are described below. Since some of the technology from the rack 

and pinion system is also used on the belt drive, the following section will discuss only those components not 

described above in the Rack & Pinion PTO Technology section.  

 

4.3.1 COMPONENT  CONFIGURATION 

The following sections detail the research performed on components necessary for the various configurations of 

the Belt Drive PTO system. 

 

4.3.1.1 BELT DRIVE SYSTEM 

The primary component in this concept is the belt drive technology and whether this design can meet our 

system requirements. Several belt manufacturers were engaged to determine initial feasibility of this 

concept. Only 1 manufacturer responded positively to OPT’s request. Therefore, collaboration with the 

manufacturer was started with the concept selection process. Several belt configurations, rack 

configurations, and drive configurations were reviewed: 

 

 Belt configuration 

o 14mm pitch, single‐sided toothed belt 

o 14mm pitch, twin power (double‐sided) toothed belt 

o 19mm pitch, single‐sided toothed belt 

o 19mm pitch, twin power (double‐sided) toothed belt 

 Rack configuration 

o Urethane rack 

o Spliced‐belt rack 

 Drive configuration 
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4.3.1.3 STAINLESS STEEL‐FULL LENGTH 

The first option for the rack in our belt drive system is to use stainless steel fixed to the bearing rails of the spar 

with a length of approximately 20 t0 40m. The stainless steel is required for corrosion resistance in the salt 

water environment. The length is required for belt drive during typical operation (stroke + tidal adjustment), 

maintenance and survivability as required in the functional specification. In addition to the technical aspect of 

the concept development, OPT also included the corresponding cost information. The final full length rack 

design was found to be cost prohibitive.  

 

4.3.1.4 URETHANE RACK 

The final option for the PTO rack is a urethane rack. As described previously, the urethane rack 

development is extensive in time and cost. Therefore, further design and development must be 

considered if this option is selected. As for the design, the urethane rack would require either a full length 

(20 to 40m) rack or a shortened rack (5m to 15m) with transition mechanism for the PowerBuoy. The 

transition mechanism would be required to “clock” the belt drive during re‐engagement with the rack 

when recovering from a survivability condition. The transition mechanism would consist of a short section 

of stainless steel rack in parallel with the urethane rack with a matching stainless steel pinion connected 

to the belt drive. The operation of this mechanism is as follows:  As the float is raised from a survivability 

(submerged) position, the transition rack and pinion (stainless steel) would engage and absorb any impact 

effects. The pinion would then “clock” the belt drive with the rack and cause the belt to engage the 

urethane rack without any impact. Thus, the transition mechanism would prevent any severe impacts or 

mis‐alignment of the urethane belt and rack which may have otherwise caused damage or failure of the 

PTO system. 

 
Figure 37:  Urethane rack transition mechanism 

 

4.3.2 ROTARY  BEARINGS 

Rotary bearings are required for the belt drive PTO option as a support for the sprockets in the drive. Therefore, 

initial life calculations were performed to size a bearing and mitigate any future design risk. The assumption for 

these calculations was: 

 

 2 bearings per sprocket 
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the float engaging the rack. Waves drive the relative linear motion between the spar and the float, and 

thus the relative linear motion created between the rack and the belt drive will convert the linear wave 

motion to rotational motion driving the generator. 

(A) INFINITE RACK INPUT SYSTEM 

The basic component configuration employed in the infinite rack input system are as follows: 

 

Infinite Rack Input System 

 24 PTO’s per buoy 

o Belt drive, gearbox, and generator 

 Racks/6 PTO’s each 

o Racks are mounted “back‐to‐back” 

o Racks are ~20 to 40 meters long 

(B) BELT DRIVE PTO CONFIGURATION 

 

 PTO systems are completely internal to the float 

o Belt drive fully immersed in sea water 

o Sealed rotary shaft into dry compartment 

 Input into parallel gearbox (and generator) 
   

4.3.4.2 BELT DRIVE PTO SYSTEM CONFIGURATION #2 

Belt Drive PTO Configuration #2, employs a wire rope input and adjustable sheave input system and a belt 

drive PTO mounted inside the float acting against a rack mounted inside the float. The wire rope is 

connected to a rack inside the float through two input rods. The belt drives are stationed inside the float 

engaging the rack. Waves drive the relative linear motion between the spar and the float, and thus the 

relative linear motion created between the rack and the belt drive will convert the linear wave motion to 

rotational motion driving the generator. 

 

The basic component configuration employed in the belt drive PTO system are as follows: 

 

 Allows for internal configuration of belt drive 

o Wire rope adjustment system 

o Adjustable rod lock system 

 Trade rotary sealing requirements for linear sealing requirement 

 Eliminates fouling/corrosion issues 

 Reduces rack requirements  

 Issues 

o Belt engagement length requires a longer rack due to overhead of PTO drives 

 Float height ~10m to 20m 

 Risk of significantly higher float weight 
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During normal operation the rack is locked to the brake rail / rack guide through the caliper brake. The shock 

absorbers are mounted to the rack assembly and hydraulically connected to a pressure accumulator. The 

pressure accumulators are connected to the release port on the caliper brakes. 

 

During an over travel condition a rogue wave forces the float beyond the normal operational travel limits. When 

the float travels beyond the normal operational travel limits the shock absorbers mounted on the rack impact 

the float hard stops and compress. The hydraulic fluid forced out of the shock absorbers pressurizes the 

accumulator. If the shock absorbers fully compress the caliper brakes are released. When the shock absorber 

pistons extend, the pressure in the accumulators is relieved and the caliper brakes re‐engage locking the rack in 

position to the spar. 

 

4.3.6 FLOAT  SURVIVABILITY 

Float survivability position will be implemented to avoid overstressing the buoy during storm conditions. The 

following actions will be taken to move the float to a survival position. 

 

 Buoy control system enters locked state 

o velocity limiting brakes engage 

 Float ballasting to achieve negative buoyancy must be started 

 Tidal compensation would be engaged 

o Configuration #1 – Adjustable rod lock system 

 Internal sliding rack 

o Configuration #2 – Wire rope adjustment system 

 Caliper brake sheave lock 

 Hydraulic sheave lock 

 Float would gradually sink to desired position 

 Locking mechanism would secure float at survivability position 

 Reverse procedure to return float to the operational locked state 

 

4.3.7 FLOAT  MAINTENANCE 

Float maintenance would be similar to that for the Rack and Pinion PTO. 

 

4.3.8 BELT  DRIVE SYSTEM  CONCLUSIONS 

The following table summarizes the conclusions drawn from work on the Belt Drive System. Final system 

configuration recommendations are made at the end of this report. 
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Table 5:  Rack & Pinion PTO System Conclusions 

Component or System  Conclusions

Belt Drive  Drive design currently sized for1 MN to 4MN peak force for 24 PTO arrangement 

Concern from manufacturer regarding 

alternating direction of belt drive 

Recommend a clutch system for single 

direction drive 

Require system testing to validate calculations

Rack  multiple options that can be integrated into buoy

Belt  Salt water has no significant effects on the Polychain belt

single direction operation has shown no issues

Reciprocating operation of the belt is implicitly included in the belt drive calculations but no 

supporting data is available 

Wear of belt/rack shows typical wear characteristics (qualitative) for short term testing

Tidal Adjustment  Multiple concepts available 

Survivability   Multiple concepts available

Maintenance  Multiple concepts available

Gimbal  System using COTS wire rope isolators is feasible

Risk  Some risk remains on the belt drive design that would require system level testing to evaluate

 

4.4 PTO  Technology  Configurations  

For the four PTO configurations studied as described in the previous sections, an evaluation and a rating are 

given to each one of them, and final recommendations are made. 

 

4.5 Comparison Matrix  Summary  

Table 6 lists the components investigated vs. each PTO system.  A component receives a check mark if it is 

compatible with the PTO system in the column and an x if it is not compatible. 
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Table 6:  Component Comparison Matrix (see Comparison Matrix Spreadsheet) 

 
 

 

4.6 Recommended  PTO  Component Options  

Based on the above trade studies, design assessments, concept development and analyses, our 

recommendation for a power take off configuration would be based on configuration 2. 

 
 


