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Introduction / Outline

e History

e Domain Decomposition

 Solution Methods

e Element Types

o Structural Acoustics Formulation
e Quadratic Eigenvalue Problem

e Structural Acoustic Tying/Mortars
* Infinite Elements

 Inverse Methods
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i History and Intent

* Sierra/SD was created in 1990’ s as part of the
Accelerated Strategic Computing Initiative (ASCI) of
the US Dept. of Energy

 Intended for extremely complex finite element analysis
— Models with 10s or 100s of millions of DOF

o Scalability

— Ability to solve n-times larger problem using n-times more
compute processors in nearly constant CPU time

e Code portability
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An llustration of Intent

 Ultrasonic wave propagation in
elastic plate
— 4x10x1 in. Aluminum
— 1 MHz FRF shown

« Examine hole size/shape effects
on scattering

— Visualize diffuse field development in
elastic solids

e For results shown:
— 32 elements/A
— 57,255,317 nodes
— 343,531,902 degrees of freedom
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An lllustration of Intent: 1us Pulse
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' i To Meet ASCI Requirements

 Employ Domain Decomposition Methods
— First performed by Schwarz in the 1870s

* Massively Parallel

— Distribution of processors (nodes), each with own memory, linked
together by a specialized network communication system

e Began First Using FETI-DP solver

— “Finite Element Tearing and Interconnecting” (C. Farhat, et al., 2000)
— Versatile iterative solver

e Current Solvers:

— FETI-DP and FETI-DPH
— GDSW (C. Dohrmann, et al., 2007)

— Others @ Sandia
National
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Domain Decomposition

SR e Decompose model into
smaller subdomains
Schwarz Methods —  Fa0h subdomain is often

EHe . (Overlapping) .

assigned to one processor

e » Two-level methods have

IIIIIII “local” subdomain solves
- and “global” coarse solve
 schur Complement  ® SOIVe using preconditioned

- = Methods conjugate gradients or

(Iterative
Substructuring) GMRES
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Domain Decomposition Example

Single Mesh Decomposed Into 20 Meshed Subdomains

Sandia
National _
Laboratories



.2
urrent State of High Performance Computing

o 1.37 petaFLOPS capability system, built by Cray, Inc
e Installed 2010-2011 at Los Alamos National Laboratory

e Compute nodes: 8,944

— Each compute node: 2 AMD G34 Opteron Magny-Cours 2.4 GHz 8
core processors for a total of 143,104 cores @ Nt

Laboratories



Eigenvalue Scaling Studies

Scaling studies were performed to characterize solver performance
to 1 billion equations, well beyond previous work
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Sierra/SD Solution Methods
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i Large Element Library

e Solid Elements
— Hexahedral, Tetrahedral, Wedge

e Shell Elements
— Triangle, Quadrilateral, HexShell (hybrid)

 Bar/Beam Elements
— Beam, Truss, Spring, Dashpot

e Point Elements
— Conmass (concentrated mass)

e Specialty Elements
— lwan, Hys, Shys, Joint2G, Gap
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' i Structural Acoustics

 Formulations for Structural Acoustics:

Scalar |
Based

\Vector

Based *

e All fully-coupled formulations (monolithic) @ S
ationa

(

\

— Velocity potential formulation (Everstine, 1981, 1997)

— Mixed pressure-potential symmetric formulation (Felippa & Ohayon,
1990; Pinsky, 1991; Ohayon 1996)

— Displacement-based formulation (Hamdi & Ousset 1978; Belytschko,
1980; Wilson, 1983; Chen 1990; Bermudez 1994)

— Space-time formulation (Harari et al., 1996; Thompson and Pinsky,
1996)

— Others ...
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i Structural Acoustics Formulation

* Applied two-field formulation of Everstinell]
— Structural displacement
— Fluid velocity potential

 Exterior problems straightforward
— Compared to other formulations

e Symmetric, indefinite matrices
— Best suited for domain decomposition-based solvers

 Results in 2" order equations
— Compatible with Newmark beta and alpha time integration

* Added by Tim Walsh beginning in 2003

Sandia
[1] G. C. Everstine, “Finite Element Formulations For Structural Acoustics Problems,” @ 'L“aagjjﬂrg?;ﬂes
Computers & Structures 65: 307-321, (1997).



Structural Acoustics Formulation

Structure: pzz_”—ﬁ r=f(%1) Q. x[0,7]
r
/ W
Fluid: v 0 1 T _g Q, x[0,T]
Q. a 2ot
S N 6(0
T-n=——"1
Q Fluid-Structure B.C.’s: ot
—.h=-Vo-n
Py Py Q

* Resulting time domain finite element form:
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Coupling occurs
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' i Structural Acoustics Solvers/Capabilities

 Full massively parallel functionality

* Hex, wedge, and tetra acoustic elements

 Acoustic coupling with both 3D and shell (2D) structural
elements

» Allows for mismatched acoustic/solid meshes
— Inconsistent Tying
— Standard Mortars

e Solvers: FETI-DP, GDSW

e Solution Procedures:
— Frequency Response (frequency-domain)
— Transient (time-domain)
— Eigenvalue Analysis (real and quadratic)

Sandia
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Scattering From Air-Filled Cylinder in Elastic

e Dimensions:
- L,=51.87m., L,=42.32 m., L,=60 m.
— Tunnel radius = 2.1373 m.
— Tunnel length =20 m.
4,882,400 Hexahedral 8-node elements
— Elements 0.3 x 0.3 x 0.3 meters

» Material properties:
— Homogenous, isotropic elastic solid
— Metamorphic rock
* p = 2500 kg/m?* c,= 4000 m/s, c;= 2400 m/s
— Fluid in tunnel:
* p,ir = 1.2 kg/m3 ¢ =343 m/s
 Resolution:

— Solid up to ~ 800 Hz. @ ﬁg?igﬁal_
— Fluid up to ~ 114 Hz. Laboratories




P Wave Excitation

e Scatter From Air-Filled Tunnel:
Time = 0.000100 sec.

_ScatDispVEC MagAcousPressure
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SH Wave Excitation

e Scatter From Air-Filled Tunnel:

Time = 0.000100 sec.

~ ScatDispVEC
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P 1.342¢-03
8.950¢-04
4.475¢-04

0.000e+00

MagAcousPressure
2.700e+03
2.025e+03
1.350e+03
6.750e+02
0.000e+00

Sandia
National
Laboratories



'

' ' Quadratic Eigenvalue Problem

 Eigenanalysis formu
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— Coupling within damping matrix brings about complex eigenvalues
for structural acoustics (non-diagonalizable)

 Solve by converting to state-space form:
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* Depending on BC’s, must solve both right and left

eigenvalue problem
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Complex Eigenvalue Modal Analysis

Piston

=

roblem
= ... Acomparison of structural displacement
" from directFRF vs CmodalFRF
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e DirectFRF:

Structural Displacement at interface

—o’ [M]+io[C]+[K] ' —

e ComplexModalFRF: o | ““

— Use complex modes from Fesuney (40
quadratic eigenvalue solution [!E
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Mismatched Acoustic/Solid Meshes

Acoustic Subdomain Solid Subdomain

- P
-
Constraint Equations Join

Acoustic Degrees of Freedom
on Both Sides of Wet Interface

@ 1 degree of freedom per node
@ 4 degrees of freedom per node

. 3 degrees of freedom per node

e Mesh density requirement inconsistency
— Acoustic phase speed < structural (typically)

e Solution: tying/mortars

— Use ghost acoustic d.o.f. on solid nodes at interface, conforming
coupling to solid

- - - Sandia
— Couple the acoustic d.o.f. now on both sides of wet interface @ National
using constraint equations



’ i Infinite Elements Capability

N

Microphone

Layer of Infinite
Elements

* Provides an asymptotically exact boundary condition for
exterior problems

 Allows for computing response at far-field points outside
of acoustic mesh

* Currently implementing time-domain, conjugated
version of “mapped wave envelope™ elements of Astley

et al ' Sandia
National
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i Nonlinear Acoustics

* Linear (first-order) acoustic wave eguation:

* Nonlinear (second-order) wave equationl?!:

189 _, 10 ) B/A[ago]z bh_,
————Veo=—— (Vo) + +—V
¢’ or’ ¢’ 61‘{( ?) 2¢° \ ot P, Y

where b= K{I—IJ+:7}+C:

¢, ¢,

* Not yet implemented for structural acoustics

Sandia
National

[2] V. P. Kuznetsov, “Equations of Nonlinear Acoustics,”Sov. Phys. Acoust. 16; 467-470, (197@ Laboratories
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L_inear vs Nonlinear Acoustics
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Transient Excitation of Reverb Chamber

e 16,000 ft3 reverb chamber
— Wall BCs consistent with real chamber

e Meshed 10 ele / A at 1 kHz
— ~11.33 million nodes

 Excited with 1 kHz sine
— 1000 time steps at dt = 0.0001 s

» Used 800 processors
— Took 15 minutes to complete
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i i Transient Excitation of Reverb Chamber

Decomposition
domains are visible

__Apressure
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Transient Excitation of Reverb Chamber

Apressure
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' i Inverse Capabilities

« Joint work with Wilkins Aquino, Duke University

* Emerging capabilities aimed at providing force, shape and
material inversion capabilities
— All capabilities are parallelized

e Current capabilities:
— Shape inversion using topological derivatives
— Material inversion for elastics in frequency domain
— Fource/source inversion for acoustics

Sandia
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Acoustic Source Inversion Test

* Model of acoustic reverb chamber Microphone locations (green)
- All boundaries rigid :
18 unknown speaker inputs X

29 internal microphones

* Microphone data generated by
running forward problem

- Randomly chosen amplitudes
* Forward simulation: FRF at 4 Hz

Unknown speaker inputs
(square patches on boundary)

Sandia
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Acoustic Source Inversion Test

Inverse solution results:

Speaker 1 10.002 g
Speaker 2 10 10.001 0 e .f
Speaker 3 10 10.01 0 wﬁ
Speaker 4 10 9.998 0 ‘

Speaker 5 10 10.01 0 ® .
Speaker 6 10 10.00 0 °
Speaker 7 10 10.02 0 °

Speaker 8 20 19.99 0

Speaker 9 1 1.002 0

Speaker 10 1 1.03 0

Speaker 11 1 1.00 0

Speaker 12 1 0.836 0

Speaker 13 1 1.585 0 v L

Speaker 14 1 1.269 0

Speaker 15 1 0.942 0 " ‘/K

Speaker 16 1 1.484 0 '

Speaker 17 1 0.966 0

Speaker 18 1 0.890 0

29 Measured microphone data (green spheres)

---- 18 Unknown speaker inputs (square patches)

m
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Acoustic Source Inversion Test

Observations: ~ Objective Function

e Convergence not sensitive
to initial guess, as
expected. The inverse
problem is quadratic.

tive Function

in Objec

Error

e Lower amplitude inputs
converge more slowly
(lower sensitivity), as

expected.

i)
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' ' Future Capabilities

* Develop parallel solver for structural acoustic Helmholtz
equation

e Extend Inverse methods to structural acoustics for both
time and frequency domain

* Explore special elements for high frequency acoustics

e« GDSW three-level parallel solver for problems requiring
over 100,000 processors (available now)
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' i Conclusions

« Massively Parallel FEM

* Fully Coupled Structural Acoustics
» Quadratic Eigenvalue Solver

o Structural Acoustic Tying/Mortars
* Infinite Elements

 Inverse Methods

e Salinas Is an export controlled code. Shared with other
US Government Labs for use.

e For Inquiries:
Joe Jung, PhD. (jjung@sandia.gov)

Manager, Computational Solid Mechanics and Structural
Dynamics Department

Sandia National Laboratories @
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505.844.7436
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