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Sandia Geochemistry FWP

Geochemistry of Interfaces: From Surfaces to Interlayers to Clusters

Molecular Simulation and Spectroscopy of Dynamical Processes at Mineral-Aqueous
Solution Interfaces. (Greathouse and Cygan)

Spectroscopic methods and molecular simulation to understand the structure and dynamics
of the mineral-aqueous solution interface. ClayFF force field for classical simulations
(LAMMPS code) of clays and hydrous phases.

Adsorption Equilibrium and Kinetics at Goethite-Water and Related Interfaces.
(Criscenti, Leung, Allen, Katz)

Spectroscopic and molecular simulation (quantum and classical) to understand fundamental
adsorption processes at the molecular level. Evaluation of surface complexation model
assumptions.

Reactivity: Molecular Clusters (Nyman) and Fe(ll)/Fe(lll) Redox Couple in Nontronite
Clay. (ligen)

Spectroscopic and aqueous chemical speciation methods to investigate the reactivity of the
clay structural Fe(ll)/Fe(lll) couple towards redox transformations of inorganic contaminants,
quantify the direction and kinetics of electron transfer, and develop a mechanistic model.
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Summary of Recent and Ongoing Projects

Force field development for clay edges
Todd Zeitler (Sandia)
Parameter fitting (GULP code): Julian Gale (Curtin)

Simulation and vibrational spectroscopy
of adsorbed organic molecules

Greathouse et al, J. Phys. Chem. C 2012

David Hart and Margaret Ochs (Sandia) /

Vibrational spectroscopy: Cliff Johnston (Purdue)
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Summary of Recent and Ongoing Projects
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Force Field Development for Clay Edges

Recent work demonstrates that ClayFF

can be modified for specific edge site

applications:

®* Nonbonded harmonic potential for Mg-
O-H and Al-O-H angle bend.

® Parameters optimized by comparing
surface vibrational modes with density
functional theory (DFT).

® Prevents unbound surface hydroxyls
from drifting into the aqueous region.

Our goal: add M-O-H angle bending

parameters to ClayFF in a transferrable

way:

* Preserve flexibility of ClayFF.

® No detrimental performance
compared to the original ClayFF.

® Validated with quantum calculations.

* Initial application to Mg-O-H (brucite).
Al-O-H and Si-O-H to follow.
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Organic molecule adsorbed on a hydrotalcite edge.
Yu and Schmidt, J. Phys. Chem. C 2011.

Brucite (110)

Eangle-bend = K(eijk - 90)2



Optimization of Mg-O-H Parameters

® Equilibrium angle parameter (6 = 120°) matches with DFT optimization for bulk brucite.
* Force constant (K) taken directly from Yu and Schmidt.

*® Validation: vibrational power spectra from MD simulation using ClayFF (vacuum interface)
compared with DFT normal modes.

* Good agreement between MD and DFT frequencies for Mg-O-H bend modes.
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Intensity (a.u.)
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Validation: Brucite Basal Surface
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Calculating Mechanical Properties Using Simulation
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lon Adsorption: Uranyl on Muscovite

* Examine partitioning of potassium and
uranyl ions at the muscovite-interface.

* Compare simulation results on interfacial
structure with second harmonic generation
experiments (Franz Geiger, Northwestern).

* Strong ion adsorption: final configuration
depends on initial placement of ions relative
to the surface.

* MD simulations of solution-muscovite
interface at different uranyl concentrations.

Mineral Fused-Silica Fused- Silica Mica
pH 7 4 6
AG.,, (kl/mol) 43 34 56
o, (C/m?) 0.013 -0.004 -0.020

Table 1: Comparison of uranyl adsorption free energies
and initial surface charge desnsities at the fused-silica and
mica surfaces.
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Uranyl Adsorption on Muscovite: Interfacial Structure

K-muscovite + 1.0 M UO,?*Cl,

%48 vacuum
gap

® Uranyl ions excluded from the surface due to strong
binding of potassium ions.

® Uranyl ions in solution can exist as neutral or anionic
species.
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Uranyl Adsorption on Muscovite: Surface Structure

K-muscovite + 1.0 M UO,2*Cl,
Two dimensional density profile (within 5 A of surface)
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tetrahedral Al3*.

No chloride ions at the surface.
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Tilted uranyl ions correspond to outer-
sphere surface complexes).
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Uranyl Adsorption on Muscovite: Electrolyte Effects

1 K* (32) — 0.326 ~0.020 -
2 K*(32) 45 NaCl (1M) 0.345 ~0.001 -
3 K*(32) 5 UO,Cl, (~ 0.1M) 0.325 -0.020 0.78
4 K*(32) 45 UO,Cl, (1M) 0.327 -0.185 2.40
5 U0, (16) - 0.334 ~0.012 15.26
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® Muscovite surface charge completely neutralized.

* Slight negative cumulative charge due to associated
chloride ions at the interface.

® Uranyl ions in solution can exist as neutral or anionic
species with very little adsorption.
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Organic Adsorption: Alcohols and Thiols on LDH Surfaces
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Unlike adsorbed water, vibrational modes of adsorbed organics
can be distinguished from surface modes.
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angles indicates two well-ordered ethanol layers on the surface.
Sung, Waychunas, and Shen, J. Phys. Chem. Lett. 2012. \
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AFM of ethanol on calcite
Calcite cleaved in ethanol results in

crystallization at edges and terraces.
Sand et al, Langmuir 2010.
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Organic Adsorption: Alcohols and Thiols on LDH Surfaces

Surfaces: Al(OH); (gibbsite), FeOOH (lepidocrocite),
C (graphite), 10-15 A thickness.

NVT simulations: ClayFF parameters for LDHs, OPLS
parameters for organics and graphite.

K 2 adsorption regimes:
o * Infinite dilution: adsorption enthalpy, surface

complex geometry.
* Liquid: Structure and surface density of —
monolayer.

Ethanol on gibbsite

Liquid methanethiol
on lepidocrocite

Greathouse, Hart, and Ochs
J. Phys. Chem. C 2012.
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2D Density Plots of Ethanol Adsorption
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* Surface adsorption sites maximize H-bonding between O(S)H groups
and surface hydroxyl groups.

* Trends in adsorption enthalpies in agreement with experimental values
for alumina and activated carbon.
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Adsqrbate Orientation on LDH Surfaces
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@ Sandia Bifurcated H-bonding with LDH surfaces.
National 17
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Organic Adsorption: Methylene Blue on Kaolinite

»

* Methylene blue is commonly used in surface area determinations.

* Compare simulated vibrational spectra of surface-adsorbed methylene blue with IR
spectroscopy (Cliff Johnston, Purdue).

* MD simulations of aqueous methylene blue cation at 1) infinite dilution and 2) high
concentration.

* Hydrophobic siloxane surface preferred, cation-cation interactions stronger than cation-
surface interactions.
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® Simulation of vibrational spectra in progress.
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