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Abstract

This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been de-
signed as a SPICE-compatible, high-performance analog circuit simulator, and has been written
to support the simulation needs of the Sandia National Laboratories electrical designers. This
development has focused on improving capability over the current state-of-the-art in the following
areas:

� Capability to solve extremely large circuit problems by supporting large-scale parallel com-
puting platforms (up to thousands of processors). This includes support for most popular
parallel and serial computers.

� A differential-algebraic-equation (DAE) formulation, which better isolates the device model
package from solver algorithms. This allows one to develop new types of analysis without
requiring the implementation of analysis-specific device models.

� Device models that are specifically tailored to meet Sandia’s needs, including some radiation-
aware devices (for Sandia users only).

� Object-oriented code design and implementation using modern coding practices.

Xyce is a parallel code in the most general sense of the phrase — a message passing parallel
implementation — which allows it to run efficiently a wide range of computing platforms. These
include serial, shared-memory and distributed-memory parallel platforms. Attention has been
paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency
is achieved as the number of processors grows.
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1. Introduction

Welcome to Xyce
The Xyce Parallel Electronic Simulator is a SPICE-compatible [1] [2] circuit simulator that has
been written to support the unique simulation needs of electrical designers at Sandia National
Laboratories. It is specifically targeted to run on large-scale parallel computing platforms, but is
also available on a variety of architectures including single processor workstations. It aims to
support a variety of devices and models specific to Sandia needs, as well as standard capabilities
available from current commercial simulators.
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1.1 Xyce Overview
The Xyce Parallel Electronic Simulator project was started in 1999 to support the simulation needs
of electrical designers at Sandia National Laboratories and has evolved into a mature platform for
large-scale circuit simulation.

Xyce includes several unique features. An important driver has been the need to simulate very
large-scale circuits (100,000 devices or more) on the transistor level. To this end, scalable al-
gorithms for simulating large circuits in parallel have been developed. In addition Xyce includes
novel approaches to numerical kernels including model-order reduction, continuation algorithms,
time-integration, nonlinear and linear solvers. Also, unlike most SPICE-based codes, Xyce uses a
differential-algebraic-equation (DAE) formulation, which better isolates the device model package
from solver algorithms.

1.2 Xyce Capabilities

1.2.1 Support for Large-Scale Parallel Computing

Xyce is a truly parallel simulation code, designed and written from the ground up to support large-
scale parallel computing architectures with up to thousands of processors. This provides Xyce the
capability to solve large circuit problems with quick enough runtimes to make these simulations
practical. Xyce uses a message passing parallel implementation, allowing it to run efficiently on
a variety of parallel computing platforms. These include serial, shared-memory and distributed-
memory parallel. Careful attention has been paid to the specific nature of circuit-simulation prob-
lems to ensure optimal parallel efficiency, even as the number of processors increases.

1.2.2 Differential-Algebraic Equation (DAE) formulation

Xyce has been designed to use a DAE formulation. Among other advantages, this has the benefit
of allowing the device models to be nearly independent of the type analysis to be performed, and
allows a lot of encapsulation between the models and the solver layers of the source code. In a
SPICE-based code, new device functions are created for each type of analysis, such as transient
and AC analysis. With Xyce’s DAE implementation, this is not necessary. The same device load
functions can be used for all analysis types, resulting in faster development time for new types of
analysis.

1.2.3 Device Model Support

The Xyce development team continually adds new device models to Xyce to meet the needs of
Sandia users. This includes the full set of models that can be found in most SPICE-based codes.
For current device availability, consult The Xyce Reference Guide [3].
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1.3 Reference Guide
The Xyce User’s Guide companion document, the Xyce Reference Guide [3], contains detailed
information including a netlist reference for Xyce-supported input-file commands and elements;
a command line reference, which describes the available command line arguments; and quick-
references for users of other circuit codes, such as Orcad’s PSpice [4].

1.4 How to Use this Guide
This guide is designed to enable one to quickly find the information needed to use Xyce. It as-
sumes familiarity with basic Unix-type commands, and how Unix manages applications and files
to perform routine tasks (e.g., starting applications, opening files, and saving work).

Typographical conventions

Table 1.1 defines the typographical conventions used in this guide.

Table 1.1. Xyce typographical conventions.

Notation Example Description

Typewriter text xmpirun -np 4

Commands entered from the
keyboard on the command
line or text entered in a
netlist.

Bold Roman Font
Set nominal temperature
using the TNOM option.

SPICE-type parameters used
in models, etc.

Gray Shaded Text DEBUGLEVEL
Feature that is designed
primarily for use by Xyce
developers.

[text in brackets] Xyce [options] <netlist> Optional parameters.

<text in angle brackets> Xyce [options] <netlist>
Parameters to be inserted by
the user.

<object with asterisk>* K1 <ind. 1> [<ind. n>*]
Parameter that may be
multiply specified.

<TEXT1|TEXT2>
.PRINT TRAN

+ DELIMITER=<TAB|COMMA>

Parameters that may only
take specified values.
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1.5 Third Party License Information
A portion of the DAE time integrator code is derived from Lawrence Livermore National Laborato-
ries’ IDA code, which has the following license.

Copyright (c) 2002, The Regents of the University of California.

Produced at the Lawrence Livermore National Laboratory.

Written by Alan Hindmarsh, Allan Taylor, Radu Serban.

UCRL-CODE-2002-59

All rights reserved.

This file is part of IDA.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the disclaimer below.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the disclaimer (as noted below)

in the documentation and/or other materials provided with the

distribution.

3. Neither the name of the UC/LLNL nor the names of its contributors

may be used to endorse or promote products derived from this software

without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE U.S. DEPARTMENT OF ENERGY

OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Additional BSD Notice

---------------------

1. This notice is required to be provided under our contract with
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the U.S. Department of Energy (DOE). This work was produced at the

University of California, Lawrence Livermore National Laboratory

under Contract No. W-7405-ENG-48 with the DOE.

2. Neither the United States Government nor the University of

California nor any of their employees, makes any warranty, express

or implied, or assumes any liability or responsibility for the

accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not

infringe privately-owned rights.

3. Also, reference herein to any specific commercial products,

process, or services by trade name, trademark, manufacturer or

otherwise does not necessarily constitute or imply its endorsement,

recommendation, or favoring by the United States Government or the

University of California. The views and opinions of authors expressed

herein do not necessarily state or reflect those of the United States

Government or the University of California, and shall not be used for

advertising or product endorsement purposes.
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2. Installing and Running
Xyce

Chapter Overview
This chapter describes the basic mechanics of installing and running Xyce. It includes the follow-
ing sections:

� Section 2.1, Xyce Installation

� Section 2.2, Running Xyce
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2.1 Xyce Installation
Xyce is distributed in two ways: source code and binary installers. At this time, binary installers
are available only to Sandia users.

Installation from binary installers is described in the Xyce Installation Guide, which should have
been provided to you along with the installer.

Installation from source code is described in the Xyce Building Guide, and is available on the Xyce
web site along with the source code.

2.2 Running Xyce
While it is possible to connect Xyce to graphical interfaces, such as gEDA [5], Xyce is not provided
with any graphical user interface. It is primarily used as a command-line-only program across
all supported platforms, including traditionally “GUI-centered” platforms such as Mac OS X and
Microsoft Windows.

This section describes how Xyce is run from the command line, for serial and MPI parallel simula-
tions.

2.2.1 Command Line Simulation

Running Xyce from the command line is straightforward. The scripts xmpirun and runxyce set up
the runtime environment and execute Xyce. Depending on whether one uses a version compiled
with MPI support or a serial version, there are two ways to begin running Xyce:

� Running serial Xyce:

> runxyce [options] <netlist filename>

� Running Xyce in parallel:

> xmpirun -np <# procs> [options] <netlist filename>

where [options] are the command line arguments for Xyce. For example, to log output to a file
named sample.log type:

> runxyce -l sample.log <netlist filename>

The next example runs parallel Xyce on four processors and places the results into a comma
separated value file named results.csv:

> xmpirun -np 4 -delim COMMA -o results.csv <netlist filename>
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While Xyce is running, simulation progress is output to the command line window.

The above examples assume that <netlist filename> is either in the current working directory,
or includes the path (full or relative) to the netlist file. Enclose the filename in quotation marks (")
if the path contains spaces. Help is accessible with the -h option.

For MPI runs, [options] may also include command line arguments to mpirun. Consult the docu-
mentation installed with MPI on the user’s platform for more details concerning MPI options. The
-np <# procs> denotes the number of processors to use for the simulation. NOTE: It is critical that
the number of processors used must be smaller than the number of devices and voltage nodes in
the netlist.

Table 2.1 lists appropriate scripts used to run Xyce for each supported platform.

Table 2.1. Platform scripts for running Xyce.

Architecture OS Serial Executable MPI Executable

x86-64 OSX
runxyce xmpirunx86 and x86-64 Linux

x86
Microsoft
Windows

runxyce.bat not available

Sandia HPC platform (TLCC, Glory, Red Sky) users must set several environment variables to run
Xyce. A system module is available to handle this. To load the xyce module, use the command:

module load xyce

Consult the system documentation for help with submitting jobs on these platforms

https://computing.sandia.gov

Guidance for Running Xyce in Parallel

The basic mechanics of running Xyce in parallel has been discussed above. For general guid-
ance regarding solver options, partitioning options, and other parallel issues, refer to chapter 10.
Distributed memory circuit simulation still contains a number of research issues, so obtaining an
optimal simulation in parallel is a bit of an art.

2.2.2 Command Line Options

Xyce supports a handful of command line options that must be given before the netlist filename.
Table 2.2 lists Xyce core options.
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Table 2.2: List of Xyce command line arguments.

Argument Description Usage Default

-h Help option. Prints usage and

exits.
-h -

-v Prints the version banner and

exits.
-v -

-delim Set the output file field delimiter. -delim

<TAB|COMMA|string>
-

-o Place the results into specified

file.
-o <file> -

-l Place the log output into

specified file.
-l <file> -

-r Output a binary rawfile. -r <file> -

-a Use with -r to output a readable

(ascii) rawfile.
-r <file> -a -

-nox Use the NOX nonlinear solver. -nox <ON|OFF> on

-info Output information on

parameters.

-info

[device prefix]

[level] [ON|OFF]

-

-linsolv Set the linear solver. -linsolv <KLU|

SUPERLU|AZTECOO>

klu(serial) and

aztecoo(parallel)

-param
Print a terse summary of model

parameters, device parameters
and default values.

-param -

-syntax Check netlist syntax and exit. -syntax -

-norun Netlist syntax and topology and

exit.
-norun -

-maxord Maximum time integration order. -maxord <1..5> -

-gui GUI file output. -gui -

-jacobian test Jacobian matrix diagnostic. -jacobian_test -

While these options are intended for general use, others may exist for new features that are dis-
abled by default, and older, deprecated features. The Xyce Reference Guide provides a compre-
hensive list, including trial and deprecated options.
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3. Simulation Examples
with Xyce

Chapter Overview
This chapter provides several simple examples of Xyce usage. An example circuit is provided for
each available analysis type.

� Section 3.1, Example Circuit Construction

� Section 3.2, DC Sweep Analysis

� Section 3.3, Transient Analysis
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3.1 Example Circuit Construction

This section describes how to use Xyce to create the simple diode clipper circuit shown in fig-
ure 3.2.

Xyce only supports circuit creation via netlist editing. Xyce supports most of the standard netlist
entries common to Berkeley SPICE 3F5 and Orcad PSpice. For users familiar with PSpice netlists,
the Xyce Reference Guide [3] lists the differences between PSpice and Xyce netlists.

Example: diode clipper circuit

Using a plain text editor (e.g., VI, Emacs, Notepad) but not a word processor (e.g., OpenOffice
or Microsoft Word), create a file containing the netlist of figure 3.1. For this example, the file is
named clipper.cir

The netlist in figure 3.1 illustrates some of the syntax of a netlist input file. Netlists always begin
with a title line (e.g. “Diode Clipper Circuit”), and may contain comments (lines beginning
with the “*” character), devices, and model definitions. Netlists must always end with the “.END”
statement.

The diode clipper circuit contains two-terminal devices (diodes, resistors, and capacitors), each of
which specifies two connecting nodes and either a model (for the diode) or a value (resistance or
capacitance). The netlist of figure 3.1 describes the circuit in the schematic of figure 3.2

This netlist file is not yet complete and will not run properly using Xyce (see section 2.2 for instruc-
tions on running Xyce) as it lacks an analysis statement. This chapter later decribes how to add
the appropriate analysis statement and run the clipper circuit.
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Diode Clipper Circuit

*

* Voltage Sources

VCC 1 0 5V

VIN 3 0 0V

* Diodes

D1 2 1 D1N3940

D2 0 2 D1N3940

* Resistors

R1 2 3 1K

R2 1 2 3.3K

R3 2 0 3.3K

R4 4 0 5.6K

* Capacitor

C1 2 4 0.47u

*

* GENERIC FUNCTIONAL EQUIVALENT = 1N3940

* TYPE: DIODE

* SUBTYPE: RECTIFIER

.MODEL D1N3940 D(

+ IS = 4E-10

+ RS = .105

+ N = 1.48

+ TT = 8E-7

+ CJO = 1.95E-11

+ VJ = .4

+ M = .38

+ EG = 1.36

+ XTI = -8

+ KF = 0

+ AF = 1

+ FC = .9

+ BV = 600

+ IBV = 1E-4)

*

.END

Figure 3.1. Diode clipper circuit netlist
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Figure 3.2. Schematic of diode clipper circuit with DC and tran-
sient voltage sources.

3.2 DC Sweep Analysis
This section includes an example of DC sweep analysis using Xyce. The DC response of the
clipper circuit is obtained by sweeping the DC voltage source (Vin) from -10 to 15 volts in one-
volt steps. Chapter 7.2 provides more details about DC analysis, as does the Xyce Reference
Guide [3].

Example: DC sweep analysis

To set up and run a DC sweep analysis using the diode clipper circuit:

1. Open the diode clipper circuit netlist file (clipper.cir) using a standard text editor (e.g. VI,
Emacs, Notepad, etc.).

2. Enter the analysis control statement in the netlist:

.DC VIN -10 15 1

3. Enter the output control statement:

.PRINT DC V(3) V(2) V(4)
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4. Save the netlist file and run Xyce on the circuit. For example, to run serial Xyce:

> runxyce clipper.cir

5. Open the results file (clipper.cir.prn) and examine (or plot) the output voltages that were
calculated for nodes 3 (Vin), 2 and 4 (Out). Figure 3.4 shows the output plotted as a function
of the swept variable Vin.

Figure 3.4. DC sweep voltages at Vin, node 2, and Vout

3.3 Transient Analysis
This section contains an example of transient analysis in Xyce. In this example the DC clipper
circuit of the previous section has been modified so the input voltage source (Vin) is a time-
dependent sinusoidal input source. The frequency of Vin is 1 kHz, and has an amplitude of 10
volts. For more details about transient analysis see chapter 7.3, or the Xyce reference guide [3].

Example: transient analysis

To set up and run a transient analysis using the diode clipper circuit:

1. Open the diode clipper circuit netlist file file (clipper.cir) using a standard text editor (e.g.
VI, Emacs, Notepad, etc.).

2. Remove DC analysis and output statements if added in the previous example (figure 3.4).

3. Enter the analysis control in the netlist:

.TRAN 2ns 2ms
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Diode Clipper Circuit with DC sweep analysis statement

*

* Voltage Sources

VCC 1 0 5V

VIN 3 0 0V

* Analysis Command

.DC VIN -10 15 1

* Output

.PRINT DC V(3) V(2) V(4)

* Diodes

D1 2 1 D1N3940

D2 0 2 D1N3940

* Resistors

R1 2 3 1K

R2 1 2 3.3K

R3 2 0 3.3K

R4 4 0 5.6K

* Capacitor

C1 2 4 0.47u

*

* GENERIC FUNCTIONAL EQUIVALENT = 1N3940

* TYPE: DIODE

* SUBTYPE: RECTIFIER

.MODEL D1N3940 D(

+ IS = 4E-10

+ RS = .105

+ N = 1.48

+ TT = 8E-7

+ CJO = 1.95E-11

+ VJ = .4

+ M = .38

+ EG = 1.36

+ XTI = -8

+ KF = 0

+ AF = 1

+ FC = .9

+ BV = 600

+ IBV = 1E-4)

*

.END

Figure 3.3. Diode clipper circuit netlist for DC sweep analysis
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4. Enter the output control statement:

.PRINT TRAN V(3) V(2) V(4)

5. Modify the input voltage source (Vin) to generate the sinusoidal input signal:

VIN 3 0 SIN(0V 10V 1kHz)

6. At this point, the netlist should look similar to the netlist in figure 3.5. Save the netlist file and
run Xyce on the circuit. For example, to run serial Xyce:

> runxyce clipper.cir

7. Open the results file and examine (or plot) the output voltages for nodes 3 (Vin), 2, and 4
(Out). The plot in figure 3.6 shows the output plotted as a function of time.

Figure 3.5 shows the modified netlist and figure 3.6 shows the corresponding results.

Figure 3.6. Sinusoidal input signal and clipped outputs
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Diode clipper circuit with transient analysis statement

*

* Voltage Sources

VCC 1 0 5V

VIN 3 0 SIN(0V 10V 1kHz)

* Analysis Command

.TRAN 2ns 2ms

* Output

.PRINT TRAN V(3) V(2) V(4)

* Diodes

D1 2 1 D1N3940

D2 0 2 D1N3940

* Resistors

R1 2 3 1K

R2 1 2 3.3K

R3 2 0 3.3K

R4 4 0 5.6K

* Capacitor

C1 2 4 0.47u

*

* GENERIC FUNCTIONAL EQUIVALENT = 1N3940

* TYPE: DIODE

* SUBTYPE: RECTIFIER

.MODEL D1N3940 D(

+ IS = 4E-10

+ RS = .105

+ N = 1.48

+ TT = 8E-7

+ CJO = 1.95E-11

+ VJ = .4

+ M = .38

+ EG = 1.36

+ XTI = -8

+ KF = 0

+ AF = 1

+ FC = .9

+ BV = 600

+ IBV = 1E-4)

*

.END

Figure 3.5. Diode clipper circuit netlist for transient analysis
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4. Netlist Basics

Chapter Overview
This chapter contains introductory material on netlist syntax and usage. Sections include:

� Section 4.1 General Overview

� Section 4.2 Devices Available for Simulation

� Section 4.3 Parameters and Expressions
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4.1 General Overview

4.1.1 Introduction

Using a netlist to describe a circuit for Xyce is the primary method for running a circuit simulation.
Netlist support within Xyce largely conforms to that used by Berkeley SPICE 3F5 with several new
options for controlling functionality unique to Xyce.

In a netlist, the circuit is described by a set of element lines defining circuit elements and their
associated parameters, the circuit topology (i.e., the connection of the circuit elements), and a
variety of control options for the simulation. The first line in the netlist file must be a title and the
last line must be “.END”. Between these two constraints, the order of the statements is irrelevant.

4.1.2 Nodes

Nodes and elements form the foundation for the circuit topology. Each node represents a point
in the circuit that is connected to the leads of multiple elements (devices). Each lead of every
element is connected to a node, and each node is connected to multiple element leads.

A node is simply a named point in the circuit. The naming of normal nodes is only known within
the level of circuit hierarchy where they appear; normal nodes defined in the main circuit are not
visible to subcircuits, nor are nodes defined in a subcircuit visible to the top-level circuit. Nodes
can be passed into subcircuits through an argument list, and in this case subcircuits are given
limited access to nodes from the upper-level circuit.

Global Nodes

For cases where a particular node is used widely throughout various subcircuits it can be more
convenient to use a global node, which is referenced by the same name throughout the circuit.
This is often the case for power rails such as VDD or VSS.

Global nodes start with the prefix $G. Examples of global node names would be: $G VDD or
$G1. Nodes or global nodes require no declaration, as they are declared implicitly by appearing in
element lines.

4.1.3 Elements

An element line defines each circuit element instance. While each element type determines the
specific format, the general format is given by:

<type><name> <node information> <element information...>

The <type> must be a letter (A through Z) with the <name> immediately following. For example,
RARESISTOR specifies a device of type “R” (for “Resistor”) with a name ARESISTOR. Nodes are
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separated by spaces, and additional element information required by the device is given after the
node list as described in the Netlist Reference section of the Xyce Reference Guide [3]. Xyce
ignores character case when reading a netlist such that RARESISTOR is equivalent to raresistor.
The only exception to this case insensitivity occurs when including external files in a netlist where
the filename specified in the netlist must have the same case as the actual filename.

A number field may be an integer or a floating-point value. Either one may be followed by one of
the following scaling factors:

Symbol Equivalent Value

T 1012

G 109

Meg 106

K 103

mil 25.4−6

m 10−3

u (µ) 10−6

n 10−9

p 10−12

f 10−15

Node information is given in terms of node names, which are arbitrary character strings. The only
requirement is that the ground node is named ‘0’. There is one restriction on the circuit topology:
there can be no loop of voltage sources and/or inductors. In addition to this requirement, the
following additional topology constraints are highly recommended:

� Every node has a DC path to ground.

� Every node has at least two connections (with the exception of unterminated transmission
lines and MOSFET substrate nodes).

While Xyce can theoretically handle netlists that violate the above two constraints, such topologies
are typically the result of human error in creating a netlist file, and will often lead to convergence
failures. Chapter 14 provides more information on this topic.

The following line provides an example of an element line that defines a resistor between nodes 1

and 3 with a resistance value of 10kΩ.

Example: RARESISTOR 1 3 10K
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Title, Comments and End

The first line of the netlist is the title line of the netlist. This line is treated as a comment even if it
does not begin with an asterisk. It is a common mistake to forget the meaning of this first line and
begin the circuit elements on the first line; doing so will probably result in a parsing error.

Example: Test RLC Circuit

The “.END” line must be the last line in the netlist.

Example: .END

Comments are supported in netlists and are indicated by placing an asterisk at the beginning of
the comment line. They may occur anywhere in the netlist but they must be at the beginning of
a line. Xyce also supports in-line comments. An in-line comment is designated by a semicolon
and may occur on any line. Xyce ignores everything after a semicolon. Xyce also considers lines
beginning with a leading white space as comments.

Example: * This is a netlist comment.

Example: WRONG:.DC .... * This type of in-line comment is not supported.

Example: .DC .... ; This type of in-line comment is supported.

Continuation Lines

Continuation lines begin with a + symbol, and their contents are appended to those of the previous
line. If the previous line or lines were comments, the continuation line is appended to the first
noncomment line preceding it.

Netlist Commands

Command elements are used to describe the analysis being defined by the netlist. Examples
include analysis types, initial conditions, device models, and output control. The Xyce Reference
Guide [3] contains a reference for these commands.

Example: .PRINT TRAN V(Vout)

Analog Devices

Xyce-supported analog devices include most of the standard circuit components normally found
in circuit simulators, such as SPICE 3F5, PSpice, etc., plus several Sandia-specific devices.
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Example: D CR303 N 0065 0 D159700

The Xyce Reference Guide [3] provides more information concerning analog devices.

4.2 Devices Available for Simulation
This section describes the different types of Xyce-supported analog devices, such as standard
analog devices, sources (dependent and independent), and subcircuits. Each device description
contains the following information:

� A description and an example of the netlist syntax.

� Corresponding model types and descriptions, where applicable

� Corresponding lists of model parameters and descriptions, where applicable

� Associated schematic symbol and model equations, as necessary.

These analog devices include all of the standard circuit components needed for most analog
circuits. User-defined models may also be implemented using the .MODEL (model definition)
statement and macromodels as subcircuits using the .SUBCKT (subcircuit) statement.

4.2.1 Analog Devices

Xyce supports many analog devices, including sources, subcircuits, and behavioral models. The
devices are classified into device types, each of which can have one or more model types. For
example, the BJT device type has two model types: NPN and PNP.

The device element statements in the netlist always start with the name of the individual device
instance. The first letter of the name determines the device type. The format of the subsequent
information depends on the device type and its parameters. Table 4.1 provides a quick reference
to the analog devices and the form of their netlist formats supported by Xyce. Except where noted,
the devices are based upon those found in [6]. The Xyce Reference Guide [3] provides a more
complete description of the syntax for supported devices.

Table 4.1: Analog Device Quick Reference.

Device Type Designator

Letter
Typical Netlist Format

Nonlinear Dependent

Source (B Source)
B B<name> <+ node> <- node> + <I or V>={<expression>}

Capacitor C
C<name> <+ node> <- node> [model name] <value>

+ [IC=<initial value>]

Diode D
D<name> <anode node> <cathode node>

+ <model name> [area value]
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Table 4.1: Analog Device Quick Reference.

Device Type Designator

Letter
Typical Netlist Format

Voltage Controlled

Voltage Source
E

E<name> <+ node> <- node> <+ controlling node>

+ <- controlling node> <gain>

Current Controlled

Current Source
F

F<name> <+ node> <- node>

+ <controlling V device name> <gain>

Voltage Controlled

Current Source
G

G<name> <+ node> <- node> <+ controlling node>

+ <- controlling node> <transconductance>

Current Controlled

Voltage Source
H

H<name> <+ node> <- node>

+ <controlling V device name> <gain>

Independent Current

Source
I

I<name> <+ node> <- node> [[DC] <value>]

+ [AC [magnitude value [phase value] ] ]

+ [transient specification]

Mutual Inductor K
K<name> <inductor 1> [<ind. n>*]

+ <linear coupling or model>

Inductor L
L<name> <+ node> <- node> [model name] <value>

+ [IC=<initial value>]

JFET J
J<name> <drain node> <gate node> <source node>

+ <model name> [area value]

MOSFET M

M<name> <drain node> <gate node> <source node>

+ <bulk/substrate node> [SOI node(s)]

+ <model name> [common model parameter]*

Lossy Transmission Line

(LTRA)
O

O<name> <A port (+) node> <A port (-) node>

+ <B port (+) node> <B port (-) node>

+ <model name>

Bipolar Junction

Transistor (BJT)
Q

Q<name> <collector node> <base node>

+ <emitter node> [substrate node]

+ <model name> [area value]

Resistor R
R<name> <+ node> <- node> [model name] <value>

+ [L=<length>] [W=<width>]

Voltage Controlled

Switch
S

S<name> <+ switch node> <- switch node>

+ <+ controlling node> <- controlling node>

+ <model name>

Transmission Line T

T<name> <A port + node> <A port - node>

+ <B port + node> <B port - node>

+ <ideal specification>

Independent Voltage

Source
V

V<name> <+ node> <- node> [[DC] <value>]

+ [AC [magnitude value [phase value] ] ]

+ [transient specification]

Subcircuit X
X<name> [node]* <subcircuit name>

+ [PARAMS:[<name>=<value>]*]

Current Controlled

Switch
W

W<name> <+ switch node> <- switch node>

+ <controlling V device name> <model name>
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Table 4.1: Analog Device Quick Reference.

Device Type Designator

Letter
Typical Netlist Format

Digital Devices Y<name> Y<name> [node]* <model name>

PDE Devices YPDE YPDE <name> [node]* <model name>

ROM Devices YROM YROM <name> <+ node> <- node>

+ BASE_FILENAME=<filename>

+ [MASK_VARS=<true/false>]

+ [USE_PORT_DESCRIPTION=<0/1>]

Accelerated masses YACC YACC <name> <acceleration> <velocity> <position>

+[x0=<initial position>] [v0=<initial velocity>]

MESFET Z
Z<name> <drain node> <gate node> <source node>

+ <model name> [area value]

4.3 Parameters and Expressions
In addition to explicit values, the user may use parameters and expressions to symbolize numeric
values in the circuit design.

4.3.1 Parameters

A parameter is a symbolic name representing a numeric value. Parameters must start with a letter
or underscore. The characters after the first can be letter, underscore, or digits. Once a parameter
is defined (by having its name declared and having a value assigned to it) at a particular level in the
circuit hierarchy, it can be used to represent circuit values at that level or any level directly beneath
it in the circuit hierarchy. One way to use parameters is to apply the same value to multiple part
instances.

4.3.2 How to Declare and Use Parameters

For using a parameter in a circuit, one must:

� Define the parameter using a .PARAM statement within a netlist

� Replace an explicit value with the parameter in the circuit

Xyce reserves the following keywords that may not be used as parameter names:

� Time
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� Vt

� Temp

� GMIN.

Though Vt and GMIN are reserved and may not be used as parameter names, neither is actually
defined and usable in Xyce at this time. Both Time and TEMP are defined and may be used in time-
or temperature-dependent expressions, where such expressions are permitted.

Example: Declaring a parameter

1. Locate the level in the circuit hierarchy at which the .PARAM statement declaring a parameter
will be placed. To declare a parameter capable of being used anywhere in the netlist, place
the .PARAM statement at the top-most level of the circuit.

2. Name the parameter and give it a value. The value can be numeric or given by an expression:

.SUBCKT subckt1 n1 n2 n3

.PARAM res = 100

*

* other netlist statements here

*

.ENDS

3. NOTE: The parameter res can be used anywhere within the subcircuit subckt1, including
subcircuits defined within it, but cannot be used outside of subckt1.

Example: Using a parameter in the circuit

1. Locate the numeric value (a device instance parameter value, model parameter value, etc.)
that is to be replaced by a parameter.

2. Replace the numeric value with the parameter name contained within braces ({}) as in:

R1 1 2 {res}

NOTE: Ensure the value being replaced remains accessible within the current hierarchy level.

Limitations on parameter definitions

As chapter 6 describes, there is considerable flexibility in the use of parameters. They can be set to
expressions containing other parameters, and can be passed down the heirarchy into subcircuits.
Fundamentally, however, parameters are constants evaluated at the beginning of a run; therefore,
all terms in the expression defining the parameter must be constants known at the beginning of
the run. It is not legal to use time-dependent expressions in parameter declarations (either by
including voltage nodes or currents, or by including reference to the variable TIME).

47



Parameters defined within a given scope can be used in any expression within that scope. The
only limitation on ordering is for the use of a parameter in an expression that defines the value of
another parameter. In that case, all parameters used in the expression must be defined before
being used to define another parameter. So, in the following example:

R1 1 0 {B+C} ; OK because the expression is not used to define a param

.PARAM A=3

.PARAM B={A+1} ; OK because A is defined above

.PARAM D={C+2} ; Illegal because C is not yet known

.PARAM C=2

4.3.3 Global Parameters

A normal parameter defined at the main circuit level will have global scope. Such parameters suffer
from limitations, such as: (1) they are constant during the simulation, and (2) the parameter may
redefined within a subcircuit, which would change the value in the subcircuit and below. Global
parameters address these limitations.

A global parameter differs from a normal parameter in that it can only be defined at the main circuit
level, and it is allowed to change during a simulation. Global parameters act as variables rather
than constants during the simulation. Examples of some global parameter usages are:

.param dTdt=100

.global_param T={27+dTdt*time}
R1 1 2 RMOD TEMP={T}

or

.global_param T=27

R1 1 2 RMOD TEMP={T}
C1 1 2 CMOD TEMP={T}
.step T 20 50 10

In these examples, T is used to represent an environmental variable that changes.

NOTE: Normal parameters may be used in expressions defining global parameters, but the oppo-
site is not allowed.

4.3.4 Expressions

In Xyce, an expression is a mathematical relationship that may be used any place one would use
a number (numeric or boolean). Except in the case of expressions used in analog behavioral
modeling sources (see chapter 6) Xyce evaluates the expression to a value when it reads in the
circuit netlist, not each time its value is needed. Therefore, all terms in an expression must be
known at the beginning of a run.
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To use an expression in a circuit netlist:

1. Locate the value to be replaced (component, model parameter, etc.).

2. Substitute the value with an expression using the {} syntax:

{expression}

where expression can contain any of the following:

� Available operators (table 4.2)

� Included functions (tables 4.3, 4.5, and 4.6)

� User-defined functions

� User-defined parameters within scope

� Literal operands.

The braces ({}) instruct Xyce to evaluate the expression and use the resulting value. Ad-
ditional time-dependent constructs are available in expressions used in analog behavioral
modeling sources (see chapter 6).

Example: Using an expression

Scaling the DC voltage of a 12V independent voltage source, designated VF, by some factor can
be accomplished by the following netlist statements (in this example the factor is 1.5):

.PARAM FACTORV=1.5

VF 3 4 {FACTORV*12}

Xyce will evaluate the expression to 12 ∗ 1.5 or 18 volts.

1Logical and relational operators are used only with the IF() function.
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Table 4.2. Expression operators

Class of
operator Operator Meaning

arithmetic + addition or string concatenation

- subtraction

* multiplication

/ division

** exponentiation

logical1 ~ unary NOT

| boolean OR

^ boolean XOR

& boolean AND

relational == equality

!= non-equality

> greater-than

>= greater-than or equal

< less-than

<= less-than or equal
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Table 4.3. Arithmetic functions in expressions

Function Meaning Explanation

ABS(x) |x| absolute value of x

DDT(x) d
dtx(t) time derivative of x

DDX(f(x),x) ∂
∂xf(x) partial derivative of f(x) with respect to x

IF(t,x,y) x if t is true,
t is an expression using the relational operators in
Table 4.2

y otherwise

INT(x) sgn(x)b|x|c integer part of the real variable x

LIMIT(x,y,z) y if x < y

x if y < x < z x limited to range y to z

z if x > z

M(x) |x| absolute value of x

MIN(x,y) min(x, y) minimum of x and y

MAX(x,y) max(x, y) maximum of x and y

PWR(x,y) xy x raised to y power

POW(x,y) xy x raised to y power

PWRS(x,y) xy if x > 0

0 if x = 0 sign corrected x raised to y power

−(−x)y if x < 0
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Table 4.4. Arithmetic functions in expressions (cont’d)

Function Meaning Explanation

RAND() 0 < result < 1 random constant number between 0 and 1

SDT(x)
∫
x(t)dt time integral of x

SGN(x) +1 if x > 0

0 if x = 0 sign value of x

-1 if x < 0

SIGN(x,y) sgn(y)|x| sign of y times absolute value of x

STP(x) 1 if x > 0 step function

0 otherwise

SQRT(x)
√
x square root of x

TABLE(x,y,z,*) f(x) where f(y) = z
piecewise linear interpolation, multiple (y,z) pairs
can be specified

URAMP(x) x if x > 0 ramp function

0 otherwise
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Table 4.5. Exponential, logarithmic, and trigonometric functions
in expressions

Function Meaning Explanation

ACOS(x) arccos(x) result in radians

ACOSH(x) cosh−1(x) hyperbolic arccosine of x

ARCTAN(x) arctan(x) result in radians

ASIN(x) arcsin(x) result in radians

ASINH(x) sinh−1(x) hyperbolic arcsine of x

ATAN(x) arctan(x) result in radians

ATANH(x) tanh−1(x) hyperbolic arctangent of x

ATAN2(x,y) arctan(x/y) result in radians

COS(x) cos(x) x in radians

COSH(x) cosh(x) hyperbolic cosine of x

EXP(x) ex e to the x power

LN(x) ln(x) log base e

LOG(x) log(x) log base 10

LOG10(x) log(x) log base 10

SIN(x) sin(x) x in radians

SINH(x) sinh(x) hyperbolic sine of x

TAN(x) tan(x) x in radians

TANH(x) tanh(x) hyperbolic tangent of x
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Table 4.6. SPICE compatibility functions in expressions

Function Explanation

SPICE EXP(V1,V2,TD1,TAU1,TD2,TAU2) SPICE style transient exponential

V1 = initial value

V2 = pulsed value

TD1 = rise delay time

TAU1 = rise time constant

TD2 = fall delay time

TAU2 = fall time constant

SPICE PULSE(V1,V2,TD,TR,TF,PW,PER) SPICE style transient pulse

V1 = initial value

V2 = pulsed value

TD = delay

TR = rise time

TF = fall time

PW = pulse width

PER = period

SPICE SFFM(V0,VA,FC,MDI,FS) SPICE style transient single frequency FM

V0 = offset

VA = amplitude

FC = carrier frequency

MDI = modulation index

FS = signal frequency

SPICE SIN(V0,VA,FREQ,TD,THETA) SPICE style transient sine wave

V0 = offset

VA = amplitude

FREQ = frequency (hz)

TD = delay

THETA = damping factor
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5. Working with Subcircuits
and Models

Chapter Overview
This chapter provides model ideas and summarizes ways to create and modify models. Sections
include:

� Section 5.1, Model Definition

� Section 5.2, Subcircuit Creation

� Section 5.3, Model Organization

� Section 5.4, Model Interpolation
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5.1 Model Definitions
A model describes the electrical performance of a part, such as a specific vendor’s version of
a 2N2222 transistor. To simulate a part requires specification of simulation properties. These
properties define the model of the part.

Depending on the given device type and the requirements of the circuit design, a model is specified
using a model parameter set, a subcircuit netlist, or both.

In general, model parameter sets define the parameters used in ideal models of specific device
types, while subcircuit netlists allow the user to combine ideal device models to simulate more
complex effects. For example, one could simulate a bipolar transistor using the Xyce BJT device
by specifying model parameters extracted to fit the simulation behavior to the behavior of the part
used. One could also develop a subcircuit macro-model of a capacitor that adds effects such as
lead inductance and resistance to the basic capacitor device.

Both methods of defining a model use a netlist format, with precise syntax rules. In this section
we give an overview of how to define model parameter sets in Xyce. A subsequent section will
provide a similar overview of how to define subcircuit models. For full details, consult the Reference
Guide [3].

Defining models using model parameters

Although Xyce has no built-in part models, models can be defined for a device by changing some
or all of the model parameters from their defaults via the .MODEL statement. For example:

M5 3 2 1 0 MLOAD1

.MODEL MLOAD1 NMOS (LEVEL=3 VTO=0.5 CJ=0.025pF)

This example defines a MOSFET device M5 that is an instance of a part described by the model
parameter set MLOAD1. The MLOAD1 parameter set is defined in the .MODEL statement.

Most device types in Xyce support some form of model parameters. Consult the Xyce Reference
Guide [3] for the model parameters supported by each device type.

Defining models using subcircuit netlists

In Xyce, models may also be defined using the .SUBCKT/.ENDS subcircuit syntax. This syntax
allows the creation of Netlists, which define the configuration and function of the part, and the use
of Variable input parameters, which can be used to create device-specific implementations of the
model. The .SUBCKT syntax, and an example of how to use .SUBCKT to implement a model, are
given in Section 5.2.
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5.2 Subcircuit Creation
A subcircuit can be created within Xyce using the .SUBCKT keyword. The .ENDS keyword is used
to mark the end of the subcircut. All the lines between the two keywords are considered to be part
of the subcurcuit. Figure 5.1 provides an example of how a subcircuit is defined and used.

****other devices

X5 5 6 7 8 l3dsc1 PARAMS: ScaleFac=2.0

X6 9 10 11 12 l3dsc1

****more netlist commands

*** SUBCIRCUIT: l3dsc1

*** Parasitic Model: microstrip

*** Only one segment

.SUBCKT l3dsc1 1 3 2 4 PARAMS: ScaleFac=1.0

C01 1 0 4.540e-12

RG01 1 0 7.816e+03

L1 1 5 3.718e-08

R1 5 2 4.300e-01

C1 2 0 4.540e-12

RG1 2 0 7.816e+03

C02 3 0 4.540e-12

RG02 3 0 7.816e+03

L2 3 6 3.668e-08

R2 6 4 4.184e-01

C2 4 0 4.540e-12

RG2 4 0 7.816e+03

CM012 1 3 5.288e-13

KM12 L1 L2 2.229e-01

CM12 2 4 {5.288e-13*ScaleFac}
.ENDS

Figure 5.1. Example subcircuit model.

In this example, a subcircuit model named l3dsc1, which implements one part of a microstrip
transmission line, is defined between the .SUBCKT/.ENDS lines; and two different instances of the
subcircuit are used in the X lines. This somewhat artificial example shows how input parameters
are used, where the last capacitor in the subcircuit is scaled by the input parameter ScaleFac.
If input parameters are not specified on the X line (as in the case of device X6), then the default
values specified on the .SUBCKT line are used. Non-default values are specified on the X line using
the PARAMS: keyword. Consult the Xyce Reference Guide [3] for precise syntax.

In addition to devices, a subcircuit may contain definitions, such as models via the .MODEL state-
ment, parameters via the .PARAM statement, and functions via the .FUNC statement. Xyce also
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supports the definition of one or more subcircuits within another subcircuit. Subcircuits can be
nested to an arbitrary extent, where one subcircuit can contain another subcircuit, which can con-
tain yet another subcircuit, and so on.

The creation of nested subcircuits requires an understanding of “scope,” such that each subcircuit
defines the scope for the definitions it contains. That is, the definitions contained within a subcircuit
can be used within that subcircuit and within any subcircuit it contains, but not at any higher level.
Definitions occurring in the main circuit have global scope and can be used anywhere in the circuit.
A name, such as a model, parameter, function, or subcircuit name, occurring in a definition at one
level of a circuit hierarchy can be redefined at any lower level contained directly by the subcircuit.
In this case, the new definition applies at the given level and those below.

The idea of “scope” is best provided by an example. In the netlist provided in Figure 5.2, the
model named MOD1 can be used in subcircuits SUB1 and SUB2, but not in the subcircuit SUB3. The
parameter P1 has a value of 10 in subcircuit SUB1 and a value of 20 in subcircuit SUB2. In subcircuit
SUB3, P1 has no meaning.

.SUBCKT SUB1 1 2 3 4

.MODEL MOD1 NMOS(LEVEL=2)

.PARAM P1=10

*

* subcircuit devices omitted for brevity

*

.SUBCKT SUB2 1 3 2 4

.PARAM P1=20

*

* subcircuit devices omitted for brevity

*

.ENDS

.ENDS

.SUBCKT SUB3 1 2 3 4

*

* subcircuit devices omitted for brevity

*

.ENDS

Figure 5.2. Example subcircuit heirarchy.
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5.3 Model Organization
While it is always possible to make a self-contained netlist in which all models for all parts are
included along with the circuit definition, Xyce provides a simple mechanism to conveniently orga-
nize frequently used models into separate model libraries. Models are simply collected into model
library files, and then accessed by netlists as needed by inserting an .INCLUDE directive. This
section describes the process in detail.

5.3.1 Model Libraries

Device model and subcircuit definitions may be organized into model libraries as text files (similar
to netlist files) with one or more model definitions. Many users choose to name model library files
ending with .lib, but they may be named using any convention.

In general, most users create model libraries files that include similar model types. In these files,
the header comments describe the models therein.

5.3.2 Model Library Configuration using .INCLUDE

Xyce uses model libraries by inserting an .INCLUDE statement into a netlist. Once a file is included,
its contents become available to the netlist just as if the entire contents had been inserted directly
into the netlist.

As an example, one might create the following model library file called bjtmodels.lib, containing
.MODEL statements for common types of bipolar junction transistors:

*bjtmodels.lib

* Bipolar transistor models

.MODEL Q2N2222 NPN (Is=14.34f Xti=3 Eg=1.11 Vaf=74.03 Bf=5 Ne=1.307

+ Ise=14.34f Ikf=.2847 Xtb=1.5 Br=6.092 Nc=2 Isc=0 Ikr=0 Rc=1

+ Cjc=7.306p Mjc=.3416 Vjc=.75 Fc=.5 Cje=22.01p Mje=.377 Vje=.75

+ Tr=46.91n Tf=411.1p Itf=.6 Vtf=1.7 Xtf=3 Rb=10)

.MODEL 2N3700 NPN (IS=17.2E-15 BF=100)

.MODEL 2N2907A PNP (IS=1.E-12 BF=100)

The models Q2N2222, 2N3700 and 2N2907A could then be used in a netlist by including the bjtmodels.lib

file.

.INCLUDE "bjtmodels.lib"

Q1 1 2 3 Q2N2222

Q2 5 6 7 2N3700

59



Q3 8 9 10 2N2907A

*other netlist entries

.END

Because the contents of an included file are simply inserted into the netlist at the point where the
.INCLUDE statement appears, the scoping rules for .INCLUDE statements are the same as for other
types of definitions as outlined in the preceding sections.

NOTE: The path to the library file is assumed to be relative to the execution directory, but absolute
pathnames are permissible. The entire file name, including its “extension” must be specified.
There is no assumed default extension.

5.3.3 Model Library Configuration using .LIB

An alternative technique for organizing model libraries employs the .LIB command. With .LIB, a
library file can contain multiple versions of a model and specific versions may be selected at the
top level using a keyword on the .LIB line.

There are two different uses for the .LIB command. In the main netlist, .LIB functions in a similar
manner to .INCLUDE: it reads in a file. Inside that file, .LIB and .ENDL are used to specify blocks
of model code that may be included independently of other parts of the same file.

As an example, if you had two different 2N2222 transistor models extracted at different TNOM
values, you could define them in a model library inside .LIB/.ENDL pairs:

* transistors.lib file

.lib roomtemp

.MODEL Q2N2222 NPN (TNOM=27 Is=14.34f Xti=3 Eg=1.11 Vaf=74.03 Bf=5 Ne=1.307

+ Ise=14.34f Ikf=.2847 Xtb=1.5 Br=6.092 Nc=2 Isc=0 Ikr=0 Rc=1

+ Cjc=7.306p Mjc=.3416 Vjc=.75 Fc=.5 Cje=22.01p Mje=.377 Vje=.75

+ Tr=46.91n Tf=411.1p Itf=.6 Vtf=1.7 Xtf=3 Rb=10)

.endl

.lib hightemp

.MODEL Q2N2222 NPN (TNOM=55 [...parameters omitted for brevity...])

.endl

Note that both models are given identical names, but are enclosed within .LIB/.ENDL pairs with
different names. When this file is used in a netlist, a specific model can be used by specifying it
on the .LIB line in the main netlist.

*This netlist uses only the high temperature model from the library

.lib transistors.lib hightemp

Q1 collector base emitter Q2N2222

[...]
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The exact format and usage of the .LIB command is documented in the Xyce Reference Guide [3].

5.4 Model Interpolation
Traditionally, SPICE simulators handle thermal effects by coding temperature dependence of model
parameters into each device. These expressions modify the nominal device parameters given in
the .MODEL card when the ambient temperature is not equal to TNOM, the temperature at which
parameters were extracted.

These temperature correction equations may be reasonable at temperatures close to TNOM,
but Sandia users of Xyce have found them inadequate when simulations must be performed over
a wide range of temperatures. To address this inadequacy, Xyce implements a model interpola-
tion option that allows the user to specify multiple .MODEL cards, each extracted from real device
measurements at a different TNOM. From these model cards, Xyce will interpolate parameters
based on the ambient temperature using either linear or quadratic interpolation.

Interpolation of models is accessed through the model parameter TEMPMODEL in the models
that support this capability. In the netlist, a base model is specified, and is followed by multiple
models at other temperatures.

Interpolation of model cards in this fashion is currently implemented only in the BJT level 1, JFET,
MESFET, and MOSFETS levels 1-6, 10, and 18.

The use of model interpolation is best shown by example:

Jtest 1a 2a 3 SA2108 TEMP= 40

*

.MODEL SA2108 PJF ( TEMPMODEL=QUADRATIC TNOM = 27

+ LEVEL=2 BETA= 0.003130 VTO = -1.9966 PB = 1.046

+ LAMBDA = 0.00401 DELTA = 0.578; THETA = 0;

+ IS = 1.393E-10 RS = 1e-3)

*

.MODEL SA2108 PJF ( TEMPMODEL=QUADRATIC TNOM = -55

+ LEVEL=2 BETA = 0.00365 VTO = -1.9360 PB = 0.304

+ LAMBDA = 0.00286 DELTA = 0.2540 THETA = 0.0

+ IS = 1.393E-10 RD = 0.0 RS = 1e-3)

*

.MODEL SA2108 PJF ( TEMPMODEL=QUADRATIC TNOM = 90

+ LEVEL=2 BETA = 0.002770 VTO = -2.0350 PB = 1.507

+ LAMBDA = 0.00528 DELTA = 0.630 THETA = 0.0

+ IS = 1.393E-10 RS = 5.66)

Note that the model names are all identical for the three .MODEL lines, and that they all specify
TEMPMODEL=QUADRATIC, but with different TNOM. For parameters that appear in all
three .MODEL lines, the value of the parameter will be interpolated using the TEMP= value in the
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device line, which in this example is 40◦C, in the first line. For parameters that are not interpolated,
such as RD, it is not necessary to include these in the second and third .MODEL lines.

Currently, QUADRATIC and PWL (piecewise linear) are the only arguments for TEMP-
MODEL. The quadratic method includes a limiting feature that prevents the parameter value
from exceeding the range of values specified in the .MODEL lines. For example, the RS value in
the example would take on negative values for most of the interval between -55 and 27, as the
value at 90 is very high. This truncation is necessary as parameters can easily take on values
(such as the negative resistance of RS in this example) that will cause a Xyce failure.

For certain parameters (currently only BJT parameters IS and ISE), interpolation is done not on
the parameter itself, but on the the log of the parameter, which provides for excellent interpolation
of these parameters that vary over many orders of magnitude, and with this type of temperature
dependence.

The interpolation scheme used for model interpolation bases the interpolation on the difference
between the ambient temperature and the TNOM value of the first model card in the netlist,
which can sometimes lead to poorly conditioned interpolation. Thus it is often best that the first
model card in the netlist be the one that has the “middle” TNOM, as in the example above. This
assures that no matter where in the range of temperature values the ambient temperature lies, it
is a minimal distance from the base point of the interpolation.
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6. Analog Behavioral
Modeling

Chapter Overview
This chapter describes analog behavioral modeling in Xyce. Sections include:

� Section 6.1,Overview of Analog Behavioral Modeling

� Section 6.2, Specifying ABM Devices

� Section 6.3, Guidance for ABM Use
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6.1 Overview of Analog Behavioral
Modeling

The analog behavioral modeling capability of Xyce provides for flexible descriptions of electronic
components or subsystems in terms of a transfer function or lookup table. In other words, a
mathematical relationship is used to model a circuit segment removing the need for component-
by-component design information for those components or subsystems.

The B device, or nonlinear dependent source, is the primary device used for analog behavioral
modeling in Xyce. A B device can serve as either a voltage or current source, and by using
expressions dependent on voltages and currents elsewhere in the circuit the user can produce a
wide range of behaviors.

6.2 Specifying ABM Devices
ABM devices (B devices) are specified in a netlist the same way as other devices. Customizing
the operational behavior of the device is achieved by defining an ABM expression describing how
inputs are transformed into outputs.

For example, the following pair of lines would provide exactly the same behavior as a 10K resistor
between nodes 1 and 2, and is written to be a current source with current specified using Ohm’s
law and the constant resistance value of 10K Ω.

.PARAM Res1=10K

Blinearres 1 2 I={(V(2)-V(1))/Res1}

A nonlinear resistor could be specified similarly:

.PARAM R1=0.15

.PARAM R2=6

.PARAM E2 = {2*E1}

.PARAM delr = {R1-R0}

.PARAM k1 = {1/E1**2}

.PARAM r2 = {R0+sqrt(2)*delr}

.FUNC Rreg1(a,b,c,d) {a +(b-a)*c/d}

.Func Rreg2(a,b,c,d,f) {a+sqrt(2-b*(2*c-d)**2)*f}

Bnlr 4 2 V = {I(Vmon) * IF(

+ V(101) < E1, Rreg1(R0,R1,V(101),E1),

+ IF(

+ V(101) < E2, Rreg2(R0,k1,E1,V(101),delr), R2

+ )
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+ )}

In this example, Bnlr provides a voltage between nodes 4 and 2, determined using Ohm’s law with
a resistance that is a function of the voltage on node 101 and a number of parameters. These two
examples demonstrate how the B source can be used either as a voltage source (by specifying
V={expression}) or as a current source (with I={expression}).

NOTE: Unlike expressions used in parameters or function declarations, expressions in the nonlin-
ear dependent source may contain voltages and currents from other parts of the circuit, or even
explicit time-dependent functions. Xyce evaluates these expressions when current or voltage
through the ABM source is needed. Expressions used in parameters or function declarations are
evaluated only once, prior to the start of the circuit simulation.

6.2.1 Additional constructs for use in ABM expressions

ABM expressions follow the same rules as other expressions in a netlist, with the additional abil-
ity to specify signals (node voltages and voltage source currents) and explicitly time-dependent
functions in the expression. In ABM expressions, refer to signals by name. Xyce recognizes the
following constructs in ABM expressions:

� V(<node name>)

� V(<node name>,<node name>) (the voltage difference between the first and second nodes)

� I(<voltage source name>)

� The variable, TIME

� The constants, PI and EXP, which equal π and e, respectively.

� Lookup tables

In a hierarchical circuit (a circuit with possibly nested levels of subcircuits), voltage source names
in an ABM expression must be the name of a voltage source in the same subcircuit as the ABM
device, or in a subcircuit instantiated by that subcircuit. Similarly, node names in an ABM expres-
sion must be the node names of one or more devices in the same subcircuit as the ABM device,
or in a subcircuit instantiated by that subcircuit.

6.2.2 Examples of Analog Behavioral Modeling

A variety of examples of legal usage of analog behavioral modeling is probably the most effective
means of demonstrating what is allowed. The following netlist fragment shows the range of simple
items allowed in ABM expressions:

* Current through B1 given as expression of voltage drop between

* nodes 2 and 3 plus current through voltage source Vr4mon
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B1 1 0 I={V(2,3) + I(Vr4mon)}
R4 2 0 10K

Vr4mon 2a 2 0V

* Voltage across device Em given as time-dependent expression

Em 3 2a VALUE={PAR3+1000*time}
* Voltage across device B2 set to current through device Em

B2 2a 0 V={I(Em)}
M3 Drain 6 0 NMOD

VdrainM3 DrainPrime Drain 0v

* Voltage across B3 is function of voltage on node two and current through

* device VdrainM3

B3 6 4 V={I(VdrainM3)+V(2)}
* Voltage across device B4 is function of an internal node named "5" of

* subcircuit instance X1

X1 1 3 mysubcircuit

B4 4 5 V={V(X1:5)}
* Current through device B5 taken from current through internal device V4

* of subcircuit instance X1

B5 4 5 I={I(X1:V4)}

The range of items that can be used in the current and voltage parameters of a B (or E, F, G, or
H) source is far greater than what is allowed for expressions in other contexts. In particular, the
use of solution values (V(*), V(*,*), I(V*)) are prohibited in all other expressions because they lead
to unstable behavior if used elsewhere beside ABM. Time-dependent expressions are allowed
for some device parameters, but this feature should be used with caution, as the behavior of the
non-ABM device cannot be guaranteed to be correct when its device parameters are not constant
throughout the run.

In addition to these simple items, lookup tables provide a means of specifying a piecewise linear
function in an expression. A table expression is specified with the keyword TABLE followed by an
expression that is evaluated as the independent variable of the function, followed by a list of pairs
of independent variable/dependent variable values. For example:

Example: B1 1 0 V={TABLE {time} = (0, 0) (1, 2) (2, 4) (3, 6)}

An equivalent example uses the table function, which has a simpler syntax, but may be hard to
read for long tables:

Example: B1 1 0 V={TABLE(time, 0, 0, 1, 2, 2, 4, 3, 6)}

The previous two examples will produce a voltage source whose voltage is a simple linear function
of time. At t = 0 the voltage is 0 volts, at time t = 1s the voltage is 2 volts, and at times in between
the voltage is determined by linear interpolation. Similarly, the voltage will be 4 volts at t = 2s and
6 volts at t = 3s with linear interpolation at times in between the tabulated values.
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It is also possible to create ABM sources from files of time-value pairs by providing the name of
the file containing the pairs between quotation marks ("):

Example: Bfile 1 0 V=”myfile”

The file provided must have one time-voltage pair per line, separated by spaces. Comma-separated
files are not supported, and will not be parsed correctly. If the file “myfile” contains the following
data:

0 0

1 2

2 4

3 6

then the “Bfile” example above will be identical to either of the “B1” examples above. The quoted-
file sytax is in fact converted internally to precisely the same TABLE format as the first B1 example,
with an independent variable of TIME and the given time-value pairs inserted.1

Finally, the independent variable of the table source does not have to be a simple expression:

Example: Bcomplicated 1 0 V={TABLE {V(5)-V(3)/4+I(V6)*Res1} = (0, 0) (1, 2) (2, 4) (3,
6)}

6.2.3 Alternate behavioral modeling sources

In addition to the primary nonlinear dependent source, the B source, Xyce also supports the
PSpice extensions to the standard Spice voltage- and current-controlled sources, the E, F, G, and
H sources. Xyce provides these sources for PSpice compatibility, and converts them internally into
equivalent B sources. The Xyce Reference Guide [3]netlist reference chapter provides the syntax
of these compatibility devices.

6.3 Guidance for ABM Use

6.3.1 ABM devices add equations to the system of equations
used by the solver

As Xyce solves a complex nonlinear set of equations at each time step, it is important to remember
this system of equations is solved iteratively to obtain a converged solution. Specifying an ABM

1The use of a B source in this manner is similar to using the FILE option to the PWL voltage source as documented
in the Reference Guide, but unlike the PWL source, the file-based table function does NOT support reading comma-
separated files.
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device in a Xyce netlist adds one or more equations to the nonlinear problem that Xyce must
solve.

When the nonlinear solver has converged, the expression given in the ABM device will be satisfied
to within a solver tolerance. However, during the course of the iterative solve, the unconverged
values of nodal voltages and currents, which are often inputs and outputs of ABM devices, are not
guaranteed to be solutions to the system of equations.

During this preconverged phase, solution variables are not guaranteed to have physically reason-
able values. They could, for example, temporarily have the wrong sign. Only at the end of a
successful nonlinear iterative solve are the solution variables consistent, legal values. This con-
vergence behavior motivates the caveats on ABM usage given in the next subsection.

6.3.2 Expressions used in ABM devices must be valid for any
possible input

While ABM devices look temptingly like calculators, it is potentially dangerous to use them as such.
The previous subsection stated that during the nonlinear solution of each timestep equations,
nodal voltages and currents are usually not solutions to the full set of equations, and often violate
Kirchhoff’s laws. Only at the end of the nonlinear solution are all the constraints on voltages and
currents satisfied. This has some important consequences to the user of ABM devices.

All expressions involving nodal voltages and currents used in ABM devices should be valid for
any possible value they might see — even those that appear to be physically meaningless and
those that a knowledgeable user might never expect to see in the real circuit. This is particularly
important when using square roots or exponentiating to a fractional power. For example, consider
the following netlist fragment:

*...other parts of more complex circuit deleted...

* potentially bad usage of ABM device

Vexample 1 0 5V

d1 1 0 diode_model

B1 2 0 V={sqrt(v(1))}
r1 2 0 10k

*...other parts of more complex circuit deleted...

This example demonstrates a potentially dangerous usage. It is assumed, because node 1 is
connected to a 5V DC source, that the argument of the square root function is always positive.
However, it could be the case that during the nonlinear solution of the full circuit that an uncon-
verged value of node 1 might be negative. Tracking down mistakes such as this can be difficult,
as on most platforms B1 will result in a “Not a Number” value for the nodal voltage of node 2, but
the program will not crash. This frequently results in inexplicable “Timestep too small” errors.

Although such things can be avoided by protecting the arguments of functions with a limited do-
main, care must be taken when doing this. One obvious way to protect the example circuit fragment
would be to take the absolute value of V(1) before calling the square root (sqrt) function:
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*...other parts of more complex circuit deleted...

* safer usage of ABM device

Vexample 1 0 5V

d1 1 0 diode_model

B1 2 0 V={sqrt(abs(v(1)))}
r1 2 0 10k

*...other parts of more complex circuit deleted...

There are many other ways to protect the square root function from negative arguments, such as
by using the maximum of zero and V(1). Some alternatives might be more appropriate than others
in different contexts.

Note, though, that it would be a mistake to attempt to generate the absolute value as shown here:

*...other parts of more complex circuit deleted...

* really bad misuse of ABM device

Vexample 1 0 5V

d1 1 0 diode_model

B2 3 0 V={abs(v(1))} ; watch out!

B1 2 0 V={sqrt(v(3))}; just as bad as first example!

r1 2 0 10k

*...other parts of more complex circuit deleted...

There are two things wrong with this example — first, node 3 is floating and this alone could lead
to convergence problems. Second, by adding the second ABM device one has merely created
an equation whose solution is that node 3 contains the absolute value of the voltage on node 1.
However, until convergence is reached there is no guarantee node 3 will be precisely the absolute
value of V(3), nor is it guaranteed that node 3 will have a positive voltage. To re-iterate, nodes
have values that are solutions to the set of equations created by the netlist only at convergence.

6.3.3 ABM devices should not be used purely for output
postprocessing

Users sometimes use ABM devices to provide output postprocessing. For example, if a user was
interested in the absolute value, or the log of an output voltage then that user might create an ABM
circuit element to calculate the desired output value.

Using ABM sources in this manner is bad practice though. By creating a circuit element whose
only purpose is postprocessing, Xyce is forced to include it and the corresponding nonlinear solve
in the circuit, which can cause unnecessary solver problems. If postprocessing is the goal, it is
much better to use expressions directly on the .PRINT line.

An example of a “bad use” of ABM sources can be found in the following code fragment:

* Bad example
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B1 test1 0 V = {(abs(I(VMON)))*1.0e-10}
VIN 1 0 DC 5V

R1 1 2 2K

D1 3 0 DMOD

VMON 2 3 0

.MODEL DMOD D (IS=100FA)

.DC VIN 5 5 1

.PRINT DC I(VMON) V(3) V(test1)

Although the source B1 provides a postprocessing output, it doesn’t play a functional role in the
circuit; Xyce would still be forced to include B1 in the problem it is attempting to solve.

A better solution to the previous problem is given here:

* Good example

VIN 1 0 DC 5V

R1 1 2 2K

D1 3 0 DMOD

VMON 2 3 0

.MODEL DMOD D (IS=100FA)

.DC VIN 5 5 1

.PRINT DC I(VMON) V(3) {(abs(I(VMON)))*1.0e-10}

Section 9.1 and the Xyce Reference Guide [3]provide a more detailed explanation of how to use
expressions in the .PRINT line.
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7. Analysis Types

Chapter Overview
This chapter describes the different analysis types available in Xyce. It includes the following
sections:

� Section 7.1, Introduction

� Section 7.2, DC Analysis

� Section 7.3, Transient Analysis

� Section 7.4, STEP Parametric Analysis

� Section 7.5, Harmonic Balance Analysis

� Section 7.6, AC Analysis
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7.1 Introduction

Xyce supports several simulation analysis options, including DC bias point (.DC, section 7.2),
transient (.TRAN, section 7.3), AC (.AC, section 7.6), and harmonic balance (.HB, section 7.5).

Using .STEP(section 7.4), Xyce can also apply an outer parametric loop to any type of analysis.
This allows one (for example) to sweep a model parameter and perform a transient simulation for
each parameter value.

There are some analysis types typically found in SPICE-style simulators are still a work in progress
for Xyce. Operating point analysis (.OP, section 7.2.3) is partially supported in Xyce.

7.2 Steady-State (.DC) Analysis

The DC sweep analysis capability in Xyce computes the DC bias point of a circuit for a range of
values of input sources. DC sweep is supported for a source or device parameter, through a range
of specified values. As the sweep proceeds, Xyce computes the bias point for each value in the
specified range of the sweep.

If the variable to be swept is a voltage or current source, a DC source must be used and its value
set in the netlist (see Xyce Reference Guide [3]). In simulating the DC response of an analog
circuit, Xyce eliminates time dependence from the circuit by treating capacitor elements as open
circuits and inductor elements as short circuits, while using only the DC values of voltage and
current sources.

7.2.1 .DC Statement

To specify a .DC analysis, include a .DC line in the netlist. Some examples of typical .DC lines are:

Example:
.DC V1 7m 5m -1m

.DC I1 5u 10u 1u

.DC M1:L 7u 5u -1u

.DC OCT V0 0.125 64 2

.DC DEC R1 100 10000 3

.DC TEMP LIST 10.0 15.0 18.0 27.0 33.0

The examples include all four types of sweep — linear, octave, decade, and list, and demonstrates
sweeping over voltage and current sources as well as device parameters. The Xyce Reference
Guide [3] provides a complete description of each.
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7.2.2 Setting Up and Running a DC Sweep

Following the example given in section 3.2, figure 7.1 shows the diode clipper circuit netlist with
a DC sweep analysis specified. Here, the voltage source Vin is swept from -10 to 15 in 1-volt
increments, resulting in 26 DC operating point calculations.

NOTE: Xyce ignores the default setting for Vin during these calculations. All other source values
use the specified values (in this case, VCC = 5V).

Running Xyce on this netlist produces an output results file named clipper.cir.prn. Obtaining
this file requires specifying the .PRINT DC line. Plotting this data produces the graph shown in
figure 7.2.

Diode Clipper Circuit

** Voltage Sources

VCC 1 0 5V

VIN 3 0 0V

* Analysis Command

.DC VIN -10 15 1

* Output

.PRINT DC V(3) V(2) V(4)

* Diodes

D1 2 1 D1N3940 D2 0 2 D1N3940

* Resistors

R1 2 3 1K

R2 1 2 3.3K

R3 2 0 3.3K

R4 4 0 5.6K

* Capacitor

C1 2 4 0.47u

.MODEL D1N3940 D(

+ IS=4E-10 RS=.105 N=1.48 TT=8E-7

+ CJO=1.95E-11 VJ=.4 M=.38 EG=1.36

+ XTI=-8 KF=0 AF=1 FC=.9

+ BV=600 IBV=1E-4)

.END

Figure 7.1. Diode clipper circuit netlist for DC sweep analysis.

7.2.3 OP Analysis

Xyce also supports .OP analysis statements. In Xyce, consider .OP as a shorthand for a single-
step DC sweep, in which all the default operating point values are used. One may also consider
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Figure 7.2. DC sweep voltages at Vin, node 2 and Vout.

.OP analysis to be the operating point calculation that would occur as the initial step to a transient
calculation, without the subsequent time steps.

This capability was mainly added to enable the code to handle legacy netlists using this analysis
statement type. In most versions of SPICE, using .OP results in extra output not available from a
DC sweep. Xyce will also output some of this extra information about devices, but the capability is
not fully implemented.

7.2.4 Output

During analysis a number of output files may be generated. The selection of which files are created
depends on a variety of factors, most obvious of which is the .PRINT command. Table 7.1 lists the
format options and files created. The column labeled “Additional Columns” lists the additional data
that is written, though not specified on the .PRINT line.

7.3 Transient Analysis
The transient response analysis simulates the response of the circuit from TIME=0 to a specified
time. Throughout a transient analysis, any or all of the independent sources may have time-
dependent values.

In Xyce (and most other circuit simulators), the transient analysis begins by performing its own
bias point calculation at the beginning of the run, using the same method as used for DC sweep.
This is required to set the initial conditions for the transient solution as the initial values of the
sources may differ from their DC values.
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Table 7.1. Output generated for DC analysis

Trigger Files Additional Columns

.PRINT DC circuit-file.prn INDEX TIME

.PRINT DC NOINDEX circuit-file.prn TIME

.PRINT DC FORMAT=CSV circuit-file.csv TIME

.PRINT DC FORMAT=RAW circuit-file.raw TIME

.PRINT DC FORMAT=TECPLOT circuit-file.dat TIME

.PRINT DC FORMAT=PROBE circuit-file.csd TIME

runxyce -r circuit-file.raw
All circuit variables
printed

runxyce -r -a circuit-file.raw
All circuit variables
printed

.OP log-file
Operating point
information

7.3.1 .TRAN Statement

To run a transient simulation, the circuit netlist file must contain a .TRAN command.

Example:
.TRAN 100us 300ms

.TRAN 100p 12.05u 9.95u

The Xyce Reference Guide [3] provides a detailed explanation of the .TRAN statement. The netlist
must also contain one of the following:

� Independent, transient source (see table 7.2),

� Initial condition on a reactive element, or

� Time-dependent behavioral modeling source (see chapter 6)

7.3.2 Defining a Time-Dependent (transient) Source

Overview of Source Elements

Source elements, either voltage or current, are entered in the netlist file as described in the Xyce
Reference Guide [3]. Table 7.2 lists the time-dependent sources available in Xyce for either voltage
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Table 7.2. Summary of Xyce-supported time-dependent sources

Source Element Name Description

EXP Exponential Waveform

PULSE Pulse Waveform

PWL Piecewise Linear Waveform

SFFM Frequency-modulated Waveform

SIN Sinusoidal Waveform

or current. For voltage sources, the name is preceded by V while current sources are preceded by
I.

To use time-dependent or transient sources, place the source element line in the netlist and char-
acterize the transient behavior using the appropriate parameters. Each transient source element
has a separate set of parameters dependent on its transient behavior. In this way, the user can
create analog sources that produce sine wave, square pulse, exponential pulse, single-frequency
FM, and PLWs.

Defining Transient Sources

To define a transient source, select one of the supported sources: independent voltage or current,
choose a transient source type from table 7.2, and provide the transient parameters (refer to the
Xyce Reference Guide [3] to fully define the source).

The following example of an independent sinusoidal voltage source in a circuit netlist creates a
voltage source between nodes 1 and 5 that oscillates sinusoidally between -5V and +5V with a
frequency of 50 KHz. The arguments specify an offset of -5V, a 10V amplitude, and a 50KHz
frequency, in that order.

Example: Vexample 1 5 SIN(-5V 10V 50K)

7.3.3 Transient Time Steps

During the simulation, Xyce uses a calculated time step that is continuously adjusted for accuracy
and efficiency (see [7] and [8]). Calculation timestep increases during periods of circuit idleness,
and decreases during dynamic portions of the waveform. Users may control maximum internal
step size by specifying the step ceiling value in the .TRAN command (see the Xyce Reference
Guide [3]).

The internal calculation time steps used might not be consistent with the user-requested output
time steps. By default, Xyce outputs solution results at every time step it calculates. If the user se-
lects output timesteps via the .OPTIONS OUTPUT statement (see chapter 9), then Xyce will output
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results at the interval requested, interpolating solution variables to desired output times if neces-
sary.

7.3.4 Time Integration Methods

For a transient analysis, several time integration methods can be selected to solve the circuit
model’s differential algebraic equations. The following algorithms are available:

� Variable order Trapezoidal (combines Trapezoidal and Backward Euler)

� Backward Difference Formula, orders 1-5

� Gear method, orders 1-2.

You can set the method, maxord and minord parameters to select the time integration methods
via a .OPTIONS line. The following table shows the possible settings for those three parameters.
(Note: Consult the Reference Guide for the exact syntax of the .OPTIONS line for each time
integration method.) The default time integration method in Xyce is Trap, which is the same as
SPICE, PSPICE and HSPICE.

Table 7.3. Summary of Xyce-supported time integration methods

Integration Methods Option Settings Comments

Backward-Euler method=trap maxord=1 Backward-Euler only

Trap method=trap
combines Trapezoidal and
Backward Euler (default)

Trap only method=trap minord=2 Trapezoidal only

Backward Difference Formula method=bdf higer order integration

Gear method=gear
combines Backward Euler
and 2nd order Gear

Gear2 only method=gear minord=2 2nd order Gear only

The Trapezoidal method is often the preferred method because it is accurate and fast. However,
this method can exhibit artificial point-to-point ringing, which can be controlled by using tighter
tolerances. If a circuit fails to converge with the Trapezoidal method then you can re-run the
transient analysis using the Gear or BDF method.

The Gear method and Backward Difference Formula (BDF) method may help convergence for
some circuits. The 2nd order Gear method is typically more accurate than Backward-Euler method.
However, both of these methods are overly stable methods, and they can damp the actual circuit
behavior when simulating high Q resonators such as oscillators. The Backward-Euler method
has more damping effect than the 2nd order Gear method. This effect can be alleviated by using
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tighter tolerances in the simulations. However, it is suggested to use the pure Trapezoidal method
for oscillators.

The Backward Difference Formula (BDF) method can use higher order integration up to order 5. It
uses variable time step size and variable order. If the order used is more than 2nd order then the
results are interpolated using high order polynomial interpolations.

7.3.5 Error Controls

There are two basic time-step error control methods in Xyce — Local Truncation Error (LTE) based
and non-LTE based.

Local Truncation Error (LTE) Strategy

All time integration methods use the LTE-based strategy by default. The accuracy of the simulation
can be controlled by specifying appropriate relative and absolute error tolerances (RELTOL and
ABSTOL).

Example:
.OPTIONS TIMEINT RELTOL=1e-4 ABSTOL=1e-8

The total tolerance of LTE is
TolLTE = abstol + reltol*ref

The parameter ref is the reference value that the relative error is compared to. It can be controlled
by setting newlte option.

Example:
.OPTIONS TIMEINT NEWLTE=1

When newlte is set to be true, the reference value is the maximum of all the signals at the current
time. When newlte is set to be false, the reference value is the current value at each node.

The Trapezoid integrator algorithm introduces no numerical dissipation. So, a strong ringing (artifi-
cially introduced by the numerical algorithm) will occur when sources or models introduce discon-
tinuities. This can result in a large local truncation error estimate, ultimately leading to a “time-step
too small” error. In this case, using the Gear and BDF methods or a non-LTE strategy may help.

Non-LTE Strategy

The non-LTE strategy used in Xyce is based on success of the nonlinear solve, and is enabled
by setting ERROPTION=1. Since the step-size selection is based only upon nonlinear iteration
statistics rather than accuracy, it is highly suggested that DELMAX be specified, in a circuit-specific
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manner, for all three time integrators. The purpose of DELMAX is to limit the largest time step
taken.

The behavior of this setting (ERROPTION=1) is slightly different for the BDF integrator and other
integrators. For the BDF integrator, if the nonlinear solver converges, then the step-size is doubled.
On the other hand, if the nonlinear solver fails to converge, then the step-size is cut by one eighth.

Example:
.OPTIONS TIMEINT ERROPTION=1 DELMAX=1.0e-4

For the Trapezoid and Gear integrators, the options are slightly more refined. If the number of
nonlinear iterations is below NLMIN, then the step size is doubled. If the number of nonlinear
iterations is above NLMAX then the step size is cut by one eighth. In between, the step size is not
changed. An example using Trap (METHOD=7) is given below.

Example:
.OPTIONS TIMEINT METHOD=7 ERROPTION=1 NLMIN=3 NLMAX=8 DELMAX=1.0e-4

If the number of Newton iterations is bigger than NLmax and TIMESTEPSREVERSAL is not set,
then Xyce will cut the next step. If the number of Newton iterations is bigger than NLmax and
TIMESTEPSREVERSAL is set, then Xyce will reject the current step and also cut the current step.

Example:
.OPTIONS TIMEINT METHOD=7 ERROPTION=1 DELMAX=1.0e-4 TIMESTEPSREVERSAL=1

7.3.6 Checkpointing and Restarting

Xyce was designed to simulate large, complex circuits over long simulation runs. Because com-
plex simulations can take many hours (or even days) to complete, it can sometimes be helpful to
use “checkpointing.” When checkpointing is used, Xyce periodically saves its complete simulation
state. The saved state can be used to restart Xyce from one of these “checkpoints.” In the event
of a computer crash, power outage, or should the simulation need to be interrupted for some other
reason, checkpointing allows the user to restart a long simulation in the middle of a run without
having to start over.

Xyce uses the .OPTIONS RESTART netlist command to control all checkpoint output and restarting.

Checkpointing Command Format

� .OPTIONS RESTART [PACK=<0|1>] JOB=<job name> [INITIAL_INTERVAL=<interval>

[<t0> <i0> [<t1> <i1>...]]]

PACK=<0|1> indicates whether restart data files will contain byte-packed (binary) data(PACK=1,
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the default) or unpacked (ASCII)(PACK=0). JOB=<job name> identifies the prefix for restart
files. The actual restart files will be the job name appended with the current simulation time
(e.g., name1e-05 for JOB=name and simulation time 1e-05 seconds). Furthermore, the
INITIAL INTERVAL=<interval> identifies the initial interval time used for restart output. The
<tx ix> intervals identify times (tx) at which the output interval (ix) will change. This func-
tionality is identical to that described for the .OPTIONS OUTPUT command (section 9.1).

� Example — Generate checkpoints at every time step (default):

.OPTIONS RESTART JOB=checkpt

� Example — Generate checkpoints every 0.1 µs:

.OPTIONS RESTART JOB=checkpt INITIAL_INTERVAL=0.1us

� Example — Generate unpacked checkpoints every 0.1 µs:

.OPTIONS RESTART PACK=0 JOB=checkpt INITIAL_INTERVAL=0.1us

� Example — Initial interval of 0.1 µs, at 1 µs in the simulation, change to interval of 0.5 µs,
and at 10 µs change to an interval of 0.1 µs:

.OPTIONS RESTART JOB=checkpt INITIAL_INTERVAL=0.1us 1us 0.5us

+ 10us 0.1us

Restarting Command Format

� .OPTIONS RESTART <FILE=<filename> | JOB=<job name> START_TIME=<time>>

+ [INITIAL_INTERVAL=<interval> [<t0> <i0> [<t1> <i1> ...]]]

To restart from an existing restart file, specify the file by using either the
FILE=<filename> parameter to explicitly request a file or
JOB=<job name> START TIME=<time> to specify a file prefix and a specific time. The time must
exactly match an output file time for the simulator to correctly load the file.

To continue checkpointing the simulation in a restarted run, append INITIAL INTERVAL=<interval>

and the following intervals to the command in the same format as previously described. Without
these additional parameters, the simulation will restart as requested, but will not generate further
checkpoint files.

� Example — Restart from checkpoint file at 0.133 µs:

.OPTIONS RESTART JOB=checkpt START_TIME=0.133us

� Example — Restart from checkpoint file at 0.133 µs :

.OPTIONS RESTART FILE=checkpt0.000000133

� Example — Restart from 0.133 µs and continue checkpointing at 0.1 µs intervals:

.OPTIONS RESTART FILE=checkpt0.000000133 JOB=checkpt_again

+ INITIAL_INTERVAL=0.1us
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7.3.7 Output

During analysis a number of output files may be generated. The selection of which files are created
depends on a variety of factors, most obvious of which is the .PRINT command. Table 7.4 lists the
format options and files created. The column labeled “Additional Columns” lists the additional data
that is written, though not specified on the .PRINT line.

Table 7.4. Output generated for Transient analysis

Trigger Files Additional Columns

.PRINT TRAN circuit-file.prn INDEX TIME

.PRINT TRAN NOINDEX circuit-file.prn TIME

.PRINT TRAN FORMAT=CSV circuit-file.csv TIME

.PRINT TRAN FORMAT=RAW circuit-file.raw TIME

.PRINT TRAN FORMAT=TECPLOT circuit-file.dat TIME

.PRINT TRAN FORMAT=PROBE circuit-file.csd TIME

runxyce -r circuit-file.raw
All circuit variables
printed

runxyce -r -a circuit-file.raw
All circuit variables
printed

.OP log-file
Operating point
information
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7.4 STEP Parametric Analysis
The .STEP command performs a parametric sweep for all the analyses of the circuit. When the
.STEP command is invoked, typical analyses, such as .DC, .AC, and .TRAN are performed for each
value of the stepped parameter.

This capability is very similar, but not identical, to the STEP capability in PSPICE [4]. Xyce can
use .STEP to sweep over any device instance or device model parameter, as well as the circuit
temperature. It is not legal to sweep parameters defined in .PARAM statements, but it is legal to
sweep global parameters defined in .global param statements. Section 4.3) discusses of these
two distinct parameter definitions.

7.4.1 .STEP Statement

A .STEP analysis may be specified by simply adding a .STEP line to a netlist. Unlike .DC, .STEP
by itself is not an adequate analysis specification, as it merely specifies an outer loop around the
normal analysis. A standard analysis line, either specifying .TRAN, .AC and .DC analysis, is still
required.

Some examples of typical .STEP lines are:

Example:
.STEP M1:L 7u 5u -1u

.STEP OCT V0 0.125 64 2

.STEP DEC R1 100 10000 3

.STEP TEMP LIST 10.0 15.0 18.0 27.0 33.0

.STEP has a format similar to that of the .DC format specification. In the first example, M1:L is the
name of the parameter (in this instance, the length parameter of the MOSFET M1), 7u is the initial
value of the parameter, 5u is the final value of the parameter, and -1u is the step size. Like .DC,
.STEP in Xyce can also handle sweeps by decade, octave, or specified lists of values. Consult the
Xyce Reference Guide [3] for complete explanations of each sweep type.

7.4.2 Sweeping over a Device Instance Parameter

The first example uses M1:L as the parameter, but it could have used any model or instance
parameter existing in the circuit. Internally, Xyce handles the parameters for all device models
and device instances in the same way. Users can uniquely identify any parameter by specifying
the device instance name, followed by a colon (:), followed by the specific parameter name. For
example, all the MOSFET models have an instance parameter for the channel length, L. For a
MOSFET instance specified in a netlist, named M1, then the full name for the M1 channel length
parameter is M1:L.

Figure 7.3 provides a simple application of .STEP to a device instance. This is the same diode
clipper circuit as was used in the transient analysis chapter, except that a single line (in red) has
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been added. The .STEP line will cause Xyce to sweep the resistance of the resistor, R4, from 3.0
KOhms to 15.0 KOhms, in 2.0-KOhms increments, meaning seven transient simulations will be
performed, each one with a different value for R4.

As the circuit is executed multiple times, the resulting output file is a little more sophisticated.
The .PRINT statement is still used in much the same way as before. However, the .prn output
file contains the concatenated output of each .STEP increment. The end of this section provides
details of how .STEP changes output files.

Transient Diode Clipper Circuit with Step Analysis

* Voltage Sources

VCC 1 0 5V

VIN 3 0 SIN(0V 10V 1kHz)

* Analysis Command

.TRAN 2ns 2ms

* Output

.PRINT TRAN V(3) V(2) V(4)

* Step statement

.STEP R4:R 3.0K 15.0K 2.0K

* Diodes

D1 2 1 D1N3940

D2 0 2 D1N3940

* Resistors

R1 2 3 1K

R2 1 2 3.3K

R3 2 0 3.3K

R4 4 0 5.6K

* Capacitor

C1 2 4 0.47u

.MODEL D1N3940 D(

+ IS=4E-10 RS=.105 N=1.48 TT=8E-7

+ CJO=1.95E-11 VJ=.4 M=.38 EG=1.36

+ XTI=-8 KF=0 AF=1 FC=.9

+ BV=600 IBV=1E-4)

.END

Figure 7.3. Diode clipper circuit netlist for step transient analysis

7.4.3 Sweeping over a Device Model Parameter

Sweeping a model parameter can be done in an identical manner to an instance parameter. Fig-
ure 7.4 contains the same circuit as in figure 7.3, but with additional .STEP line referring to a model
parameter, D1N3940:IS.

NOTE: .STEP line syntax differs from .DC line syntax in that multiple parameters require separate
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.STEP lines. Each parameter needs a separate line.

Transient Diode Clipper Circuit with Step Analysis

* Voltage Sources

VCC 1 0 5V

VIN 3 0 SIN(0V 10V 1kHz)

* Analysis Command

.TRAN 2ns 2ms

* Output

.PRINT TRAN V(3) V(2) V(4)

* Step statements

.STEP R4:R 3.0K 15.0K 2.0K

.STEP D1N3940:IS 2.0e-10 6.0e-10 2.0e-10

* Diodes

D1 2 1 D1N3940

D2 0 2 D1N3940

* Resistors

R1 2 3 1K

R2 1 2 3.3K

R3 2 0 3.3K

R4 4 0 5.6K

* Capacitor

C1 2 4 0.47u

.MODEL D1N3940 D(

+ IS=4E-10 RS=.105 N=1.48 TT=8E-7

+ CJO=1.95E-11 VJ=.4 M=.38 EG=1.36

+ XTI=-8 KF=0 AF=1 FC=.9

+ BV=600 IBV=1E-4)

.END

Figure 7.4. Diode clipper circuit netlist for 2-step transient analy-
sis

7.4.4 Sweeping over Temperature

It is also possible to sweep over temperature. To do so, simply specify temp as the parameter
name. It will work in the same manner as .STEP when applied to model and instance parameters.

7.4.5 Special cases: Sweeping Independent Sources,
Resistors, Capacitors

For some devices, there is generally only one parameter that one would want to sweep. For
example, a linear resistor’s only parameter of interest is resistance, R. Similarly, for a DC voltage
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or current source, one is usually only interested in the magnitude of the source. Finally, linear
capacitors generally only have capacitance, C, as a parameter of interest.

For these simple devices, it is not necessary to specify both the parameter and device on the
.STEP line: only the device name is strictly required, as these three types of devices have default
parameters that are assumed if no parameter name is given explicitly.

Examples of usage are given below. The first two lines are equivalent — in the first line, the
resistance parameter of R4 is named explicitly, and in the second line the resistance parameter is
implicit. In the remaining lines, parameter names are all implicit, and the default parameters of the
associated devices are used.

Example:
.STEP R4:R 3.0K 15.0K 2.0K

.STEP R4 3.0K 15.0K 2.0K

.STEP VCC 4.0 6.0 1.0

.STEP ICC 4.0 6.0 1.0

.STEP C1 0.45u 0.50u 0.1u

Independent sources require further explanation. Only some of the many different types of inde-
pendent sources have default parameters. Sources subject to .DC sweeps (swept sources) have
no default parameter, as this could easily lead to infinite loops should a device be specified in both
a .DC and .STEP line. Table 7.5 defines various independent source default parameters.

Table 7.5: Default parameters for independent sources.

Source Type Default

Sinusoidal source V0 (DC value, Offset)

Exponential source V1 (DC value, Initial value)

Pulsed source V2 (Pulsed value)

Constant, or DC source V0 (Constant value)

Piecewise Linear source No default

SFFM source No default

Swept source (specified on a .DC line) No default

7.4.6 Output files

Users can think of .STEP simulations as several distinct executions of the same circuit netlist. The
output data, as specified by a .PRINT line, however, goes to a single (*.prn) file. For convenience,
Xyce also creates a second auxilliary file with the *.res suffix.

Figure 7.3 shows an example file named clip.cir, which when run will produce files clip.cir.res
and clip.cir.prn. clip.cir.res contains one line for each step, showing what parameter value
was used on that step. clip.cir.prn is the familiar output format, but the INDEX field recycles
to zero each time a new step begins. As the default behavior distinguishes each step’s output
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only by recycling the INDEX field to zero, it can be beneficial to add the sweep parameters to the
.PRINT line. For the default file format (format=std), Xyce will not automatically include these
sweep parameters, so for plotting it is usually best to specify them by hand.

If using the default .prn file format (format=std), the resulting .STEP simulation output file will be
a simple concatenation of each step’s underlying analysis output. If using format=probe, the data
for each execution of the circuit will be in distinct sections of the file, and it should be easy to plot
the results using PROBE. If using format=tecplot, the results of each .STEP simulation will be
in a distinct tecplot zone. Finally, format=raw will place the results for each .STEP simulation in a
distinct “plot” region.
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7.5 Harmonic Balance Analysis
Harmonic balance (HB) is a technique that solves for the steady state solution of nonlinear circuits
in the frequency domain. In harmonic balance simulation, voltages and currents in a nonlinear
circuit are represented by truncated Fourier series. HB directly computes the frequency spectrum
of voltages and currents at the steady state solution. This can be more efficient than transient
analysis in applications where transient analysis may take long time to reach the steady state
solution. In particular, HB is well suited for simulating analog RF and microwave circuits.

Xyce supports single-tone HB for driven circuits in its serial build. That means, harmonic balance
analysis can be only applied on a circuit that is excited by a periodic source with one fundamental
frequency. HB outputs the real and imaginary components of voltages and currents in frequency
domain. Xyce also provides time domain responses of a circuit.

For HB simulation, an initial guess of the solution is required. A good initial guess is important
for HB to converge. In Xyce, a transient analysis is performed to automatically determine the
initial guess. The starting time of the transient analysis can be modified by specifying parameter
STARTUPPERIODS in .options hbint. The Xyce Reference Guide [3] provides a detailed explana-
tion of the HB options.

7.5.1 .HB Statement

To run a HB simulation, the circuit netlist file must contain a .HB command.

Example:
.HB 1e4

The parameter following .HB is the fundamental frequency and must be specified by the user. The
Xyce Reference Guide [3] provides a detailed explanation of the .HB statement.

7.5.2 HB Options

Key parameters for .HB simulation can be specified by .options hbint.

Example:
.options hbint numfreq=41 STARTUPPERIODS=2

As shown in the example, numfreq specifies the total number of harmonic frequencies to be cal-
culated, which must be an odd number. For this example, the user will be returned 20 negative
and 20 positive harmonics plus the dc component.

STARTUPPERIODS specifies the number of time periods that Xyce should integrate through using
normal transient analysis before generating the initial conditions for HB analysis. For this example,
Xyce will integrate through two periods before computing the initial conditions, which requires an
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additional period. Thus, Xyce will integrate through three periods to compute the initial conditions
for HB analysis.

Nonlinear Solver Options

The HB analysis uses a different set of default nonlinear solver parameters than that of tran-
sient and DC analysis. Nonlinear solver parameters for HB simulation can be specified by using
.options nonlin-hb.

Example:
.options nonlin-hb abstol=1e-6

The Xyce Reference Guide [3] provides a detailed explanation of the .options nonlin-hb state-
ment.

Linear Solver Options

The single-tone HB analysis provided by Xyce employs direct solvers in the transient analysis
used to generate initial conditions. However, during the HB analysis, only matrix-free operators
are available, which require the use of iterative solvers. Section 10.3 provides a more detailed
discussion of iterative solvers.

Preconditioners have been developed for the iterative solvers used in HB analysis. You can set
iterative solver and preconditioner options using the .options hb-linsol statement.

Example:
.options linsol-hb type=aztecoo prec type=block jacobi AZ tol=1e-9

where, type specifies the iterative solver to use in the HB analysis and AZ tol is the relative
tolerance for the iterative solver. Any of the iterative solver options in section 10.3 are valid.
However, prec type specifies which HB-specific preconditioner to use. The choices for this option
are none (default) and block jacobi.

7.5.3 Output

During analysis a number of output files may be generated. The selection of which files are created
depends on a variety of factors, most obvious of which is the .PRINT HB command. Table 7.6 lists
the format options and files created. The column labeled “Additional Columns” lists the additional
data that is written, though not specified on the .PRINT HB line.

7.5.4 User Guidance

One of the most common errors in HB simulation setup is the use of too few harmonic frequencies
(i.e., numfreq is too small). One way to determine the optimum number of harmonic frequencies
is to first simulate the circuit with a small numfreq, then increase the numfreq until the solution
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Table 7.6. Output generated for HB analysis

Trigger Files Additional Columns

.PRINT HB circuit-file.HB.TD.prn
circuit-file.HB.FD.prn

INDEX TIME
FREQUENCY

.PRINT HB NOINDEX circuit-file.HB.TD.prn
circuit-file.HB.FD.prn

TIME
FREQUENCY

.PRINT HB FORMAT=CSV circuit-file.HB.TD.csv
circuit-file.HB.FD.csv

TIME
FREQUENCY

.PRINT HB FORMAT=RAW circuit-file.raw

.PRINT HB FORMAT=TECPLOT circuit-file.HB.TD.dat
circuit-file.HB.FD.dat

TIME
FREQUENCY

runxyce -r circuit-file.raw
All circuit variables
printed

runxyce -r -a circuit-file.raw
All circuit variables
printed

.PRINT HB

.options hbint STARTUPPERIODS=n
circuit-file.startup.prn INDEX TIME

.PRINT HB FORMAT=CSV

.options hbint STARTUPPERIODS=n
circuit-file.startup.csv TIME

.PRINT HB FORMAT=TECPLOT

.options hbint STARTUPPERIODS=n
circuit-file.startup.dat TIME

.PRINT HB

.options hbint SAVEICDATA=1
circuit-file.hb ic.prn INDEX TIME

.PRINT HB FORMAT=CSV

.options hbint SAVEICDATA=1
circuit-file.hb ic.csv TIME

.PRINT HB FORMAT=TECPLOT

.options hbint SAVEICDATA=1
circuit-file.hb ic.dat TIME

.OP log-file
Operating point
information
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stops changing within a significant bound. Requesting too many harmonic frequencies is wasteful
of memory and simulation time, so it is not practical to just clobber the problem with a very high
numfreq either.

7.6 AC Analysis
The AC small-signal analysis of Xyce computes AC output variables as a function of frequency.
The program first computes the DC operating point of the circuit and linearizes the circuit. The
resultant linear circuit is then analyzed over a user-specified range of frequencies. The desired
output of an AC small-signal analysis is usually a transfer function (voltage gain, transimpedance,
etc). If the circuit has one AC input, it is convenient to set that input to unity and zero phase so
output variables have the same value as the transfer function of the output variable with respect to
input.

7.6.1 .AC Statement

One may specify .AC analyses by adding a .AC line in the netlist. Some examples of typical .AC
lines include:

Example:
.AC DEC 10 1K 100MEG

.AC DEC 10 1 10K

.AC LIN 100 1 100HZ

The examples include some types of sweep (linear and decade). The Xyce Reference Guide [3]
provides a complete description of all types of sweep.

7.6.2 AC Voltage and Current Sources

Xyce assumes the AC source to be a cosine waveform at a specified phase angle. Its frequency
must be defined in a separate “.AC” command defining the frequency for all the sources in the
circuit. The unique information for the individual source is the name (which must start with “V” or
“I”), the node numbers, the magnitude of the source, and its phase angle. Some examples are as
follows:

Example:
Vac 4 1 AC 120V 30

Vin 1 0 1.44 ac .1

Iin 1 0 1.44e-5 ac 0.1e-5 sin(0 1 1e+5 0 0)

NOTE: The type, AC, must be specified because the default is DC. If not specified, Xyce assumes
the phase angle to be zero degrees. The units of the phase angle are in degrees.
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7.6.3 Output

During analysis a number of output files may be generated. The selection of which files are created
depends on a variety of factors, most obvious of which is the .PRINT command. Table 7.7 lists the
format options and files created. The column labeled “Additional Columns” lists the additional data
that is written, though not specified on the .PRINT line.

Table 7.7. Output generated for AC analysis

Trigger Files Additional Columns

.PRINT AC circuit-file.FD.prn
circuit-file.prn

INDEX FREQUENCY
INDEX TIME

.PRINT AC NOINDEX circuit-file.FD.prn
circuit-file.prn

INDEX FREQUENCY
TIME

.PRINT AC FORMAT=CSV circuit-file.FD.csv
circuit-file.csv

FREQUENCY
TIME

.PRINT AC FORMAT=RAW circuit-file.raw TIME

.PRINT AC FORMAT=TECPLOT circuit-file.dat TIME

.PRINT AC FORMAT=PROBE circuit-file.csd TIME

runxyce -r circuit-file.raw
All circuit variables
printed

runxyce -r -a circuit-file.raw
All circuit variables
printed

.OPTIONS NONLIN

CONTINUATION=<method>...

circuit-
file.HOMOTOPY.prn

INDEX TIME

.PRINT AC NOINDEX

.OPTIONS NONLIN

CONTINUATION=<method>...

circuit-
file.HOMOTOPY.prn

INDEX TIME

7.6.4 Using the .PRINT AC Command

Running Xyce on AC analysis produces an output results file named .cir.FD.prn. Obtaining this
file requires that the .PRINT AC line be specified.

Xyce supports printing the real and imaginary parts of phasor values (complex numbers) for AC
analysis output as voltages or currents. For instance, specify “V(1)” to print the real part and
imaginary part of a voltage at nodes 1. Some complete examples are as follows:

Example:
.print AC v(3)
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REWRITE!

Support for other formats of AC analysis output, such as magnitude, phase (angle), and options
to print each format, is still a work in progress for Xyce.
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8. Using Homotopy
Algorithms to Obtain
Operating Points

Chapter Overview
This chapter includes the following sections:

� Section 8.1, Homotopy Algorithms Overview

� Section 8.4, MOSFET Homotopy

� Section 8.2, Natural Parameter Homotopy

� Section 8.3, Natural Multiparameter Homotopy

� Section 8.5, GMIN Stepping Homotopy

� Section 8.6, Pseudo Transient
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8.1 Homotopy Algorithms Overview
Often, circuit convergence problems are most prominent during the DC operating point calculation.
Unlike transient solves, DC operating point analysis cannot rely on a good initial guess from a
previous step, and cannot simply reduce the step size when the solver fails. Additionally, operating
points often have multiple solutions, with no reliance on intent. Multiple solutions can, even for
converged circuit problems, result in a standard Newton solve being unreliable. For example, it
has been observed that the operating point solution to a Schmidt trigger circuit changed with the
computational platform.

Homotopy methods can often provide solutions to difficult nonlinear problems, including circuit
analysis, even when conventional methods (e.g., Newton’s method) fail [9] [10]. This chapter
gives an introduction to using homotopy algorithms (sometimes called continuation algorithms) in
Xyce. The Xyce Reference Guide [3] provides a more complete description of solver options.

8.1.1 HOMOTOPY Algorithms Available in Xyce

Most of the several types of homotopy Xyce are accessed by setting .options nonlin continuation=1,
which allows the user to sweep existing device parameters (models and instances), as well as a
few reserved artificial parameter cases. The most obvious natural parameter to use is the mag-
nitude(s) of independent voltage or current sources, the choice of which is equivalent to “source
stepping” in SPICE. Section 8.2 provides a Xyce source-stepping example. For some circuits (as
in the aforementioned Schmidt trigger), source stepping leads to turning points in the continuation.

A special Xyce-only homotopy, an algorithm designed specifically for MOSFET circuits [11], in-
volves two internal MOSFET model parameters — one for the MOSFET gain, and the other for the
nonlinearity of the current-voltage relationship. This algorithm is invoked with .options nonlin

continuation=2, and has proven to be effective in some large MOSFET circuits. Section 8.4
provides a detailed example.

Xyce invokes another well-known SPICE method, “GMIN stepping,” with .options nonlin continuation=3

or .options nonlin continuation=gmin, and is a special case where the parameter being swept
is artificial. Section 8.5 provides an example of GMIN stepping.

8.2 Natural Parameter Homotopy
Figure 8.1 shows a natural parameter homotopy netlist with parameters pertinent to the homotopy
algorithm highlighted in red. For this example, the parameter being swept is the DC value of the
voltage source VDDdev. As a result, this example demonstrates a version of “source stepping”
similar to that of SPICE.

8.2.1 Explanation of Parameters, Best Practice

Figure 8.1 also illustrates the following “best practice” rules:
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THIS CIRCUIT IS A MOS LEVEL 1 MODEL CMOS INVERTER

.TRAN 20ns 30us 0 5ns

.PRINT tran v(vout) v(in) v(1)

.options timeint reltol=5e-3 abstol=1e-3

* HOMOTOPY Options

.options nonlin continuation=1

.options loca stepper=0 predictor=0 stepcontrol=1

+ conparam=VDDdev

+ initialvalue=0.0 minvalue=-1.0 maxvalue=5.0

+ initialstepsize=0.2 minstepsize=1.0e-4

+ maxstepsize=5.0 aggressiveness=1.0

+ maxsteps=100 maxnliters=200

VDDdev VDD 0 5V

RIN IN 1 1K

VIN1 1 0 5V PULSE (5V 0V 1.5us 5ns 5ns 1.5us 3us)

R1 VOUT 0 10K

C2 VOUT 0 0.1p

MN1 VOUT IN 0 0 CD4012_NMOS L=5u W=175u

MP1 VOUT IN VDD VDD CD4012_PMOS L=5u W=270u

.MODEL cd4012_pmos PMOS

.MODEL cd4012_nmos NMOS

.END

Figure 8.1. Example natural parameter homotopy netlist. NOTE:
This usage example of source stepping shows a circuit that does
not require homotopy to run. Most circuits complex enough to
require homotopy would not fit on a single page.
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� .options nonlin continuation=1. Sets the algorithm to use natural parameter homotopy.

� .options loca conparam=VDDdev. If using natural parameter homotopy, it is necessary in-
clude a setting for conparam. It sets which input parameter to perform continuation. The
parameter name is subject to the same rules as parameter used by the .STEP capability.
(section 7.4.2). In this case, the parameter is the magnitude of the DC voltage source, VD-
Ddev. For this type of voltage source, it was possible to use the default device parameter
(section 7.4.5)

� .options loca initialvalue=0.0. This is required.

� .options loca maxvalue=5.0. This is required.

� .options loca stepcontrol=1 or .options loca stepcontrol=adaptive. This specifies
homotopy steps to be adaptive, rather than constant. This is recommended.

� .options loca maxsteps=100. This sets the maximum number of continuation steps for
each parameter.

� .options loca maxnliters=200. This is the maximum number of nonlinear iterations, and
has precedence over the similar number that can be set on the .options nonlin line.

� .options loca aggressiveness=1.0. This refers to the step size control algorithm, and
the value of this parameter can be anything from 0.0 to 1.0. 1.0 is the most aggressive. In
practice, try starting with this set to 1.0. If the solver fails, then reset to a smaller number.

NOTE: Although using the magnitudes of independent voltage and current sources is a fairly ob-
vious approach, it does not seem to work very well in practice.

8.3 Natural Multiparameter Homotopy
It is possible to use the natural parameter homotopy specification to have Xyce sweep multiple
parameters in sequential order. This requires specifying many of the parameters in the .options

loca statement as vectors, delineated by commas, rather than as single parameters.

NOTE: This is a usage example — the circuit itself does not require homotopy to run. Most circuits
complex enough to require homotopy would not fit on a single page.

8.3.1 Explanation of Parameters, Best Practice

The solver parameters set in figure 8.2 are the same as those from figure 8.1, but many of them are
in vector form. Specify any parameters specific to the continuation variable as a vector, including
conparam, initialvalue, minvalue, maxvalue, initialstepsize, minstepsize, maxstepsize,
and aggressiveness. Otherwise, the specification is identical.
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THIS CIRCUIT IS A MOS LEVEL 1 MODEL CMOS INVERTER

.TRAN 20ns 30us 0 5ns

.PRINT tran v(vout) v(in) v(1)

.options timeint reltol=5e-3 abstol=1e-3

* HOMOTOPY Options

.options nonlin continuation=1

.options loca stepper=0 predictor=0 stepcontrol=adaptive

+ conparam=mosfet:gainscale,mosfet:nltermscale

+ initialvalue=0.0,0.0

+ minvalue=-1.0,-1.0

+ maxvalue=1.0,1.0

+ initialstepsize=0.2,0.2

+ minstepsize=1.0e-4,1.0e-4

+ maxstepsize=5.0,5.0

+ aggressiveness=1.0,1.0

VDDdev VDD 0 5V

RIN IN 1 1K

VIN1 1 0 5V PULSE (5V 0V 1.5us 5ns 5ns 1.5us 3us)

R1 VOUT 0 10K

C2 VOUT 0 0.1p

MN1 VOUT IN 0 0 CD4012_NMOS L=5u W=175u

MP1 VOUT IN VDD VDD CD4012_PMOS L=5u W=270u

.MODEL cd4012_pmos PMOS

.MODEL cd4012_nmos NMOS

.END

Figure 8.2. Example multiparameter homotopy netlist.
NOTE: This netlist reproduces MOSFET homotopy with a manual
specification.
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8.4 MOSFET Homotopy
Figure 8.3 contains a MOSFET homotopy example netlist, and is the same circuit as was used
in figure 8.3, except some of the parameters are different. As before, the lines pertinent to the
homotopy algorithm are highlighted in red.

THIS CIRCUIT IS A MOS LEVEL 1 MODEL CMOS INVERTER

.TRAN 20ns 30us 0 5ns

.PRINT tran v(vout) v(in) v(1)

.options timeint reltol=5e-3 abstol=1e-3

* HOMOTOPY Options

.options nonlin continuation=mos

VDDdev VDD 0 5V

RIN IN 1 1K

VIN1 1 0 5V PULSE (5V 0V 1.5us 5ns 5ns 1.5us 3us)

R1 VOUT 0 10K

C2 VOUT 0 0.1p

MN1 VOUT IN 0 0 CD4012_NMOS L=5u W=175u

MP1 VOUT IN VDD VDD CD4012_PMOS L=5u W=270u

.MODEL cd4012_pmos PMOS

.MODEL cd4012_nmos NMOS

.END

Figure 8.3. MOSFET homotopy netlist example. NOTE: This is
a usage example — the circuit itself does not require homotopy to
run. Most circuits complex enough to require homotopy would not
fit on a single page.

8.4.1 Explanation of Parameters, Best Practice

There are a few differences between the netlist in figures 8.1 and 8.3. This example shows one
set of options, but there are numerous options of working combinations.

MOSFET homotopy requires only .options nonlin continuation=2 or .options nonlin continuation=mos

parameters, which specifies use of the special MOSFET homotopy. This is a two-pass homotopy,
in which first a parameter concerning gain is swept from 0 to 1, and then a parameter relating to
the nonlinearity of the transfer curve is swept from 0 to 1. The default parameters will work for a
variety of MOSFET circuits, so it often will be unneccessary to override them using an .options

loca line. However, it is possible to override the default parameters using the same .options

loca parameters described in section 8.2.1.
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8.5 GMIN Stepping

GMIN stepping is a type of homotopy commonly available in circuit simulators. Although SPICE
automatically attempts GMIN stepping if the initial operating point fails, Xyce requires it to be
to manually specified by setting continuation=3 or continuation=gmin. Figure 8.4 provides a
netlist example of GMIN stepping.

THIS CIRCUIT IS A GMIN STEPPING EXAMPLE.

.TRAN 20ns 30us 0 5ns

.PRINT tran v(vout) v(in) v(1)

.options timeint reltol=5e-3 abstol=1e-3

* HOMOTOPY Options

.options nonlin continuation=gmin

VDDdev VDD 0 5V

RIN IN 1 1K

VIN1 1 0 5V PULSE (5V 0V 1.5us 5ns 5ns 1.5us 3us)

R1 VOUT 0 10K

C2 VOUT 0 0.1p

MN1 VOUT IN 0 0 CD4012_NMOS L=5u W=175u

MP1 VOUT IN VDD VDD CD4012_PMOS L=5u W=270u

.MODEL cd4012_pmos PMOS

.MODEL cd4012_nmos NMOS

.END

Figure 8.4. Example GMIN stepping netlist. NOTE: The contin-
uation parameter is gmin. It can also be specified using continua-
tion=3.

The name ”GMIN stepping” can be somewhat confusing, as ”GMIN” is also a user-specified device
package parameter (unrelated to this algorithm) that one may set. In the device context, “GMIN”
refers to a minimum conductance applied to many device models to enhance convergence. In
the homotopy context, it refers to the conductance of resistors attached from every circuit node to
ground.

The conductance, which is the continuation parameter, is initially very large, and is iteratively
reduced until the artificial resistors have a very high resistance. At the end of the continuation,
the resistors are removed from the problem. At this point, assuming the continuation has been
successful, the original user-specified problem has been solved.
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8.5.1 Explanation of Parameters, Best Practice

In general, GMIN stepping can be very useful. It should be considered the first option whenever a
circuit fails to obtain an operating point. One advantage is that it has the potential to be successful
for any circuit type. Unlike MOSFET homotopy, it doesn’t require specific device models to be
present to run.
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8.6 Pseudo Transient
Pseudo transient continuation is very similar to GMIN stepping, in that both algorithms involve
placing large artificial terms on the Jacobian matrix diagonal, and progressively making these
terms smaller until the original circuit problem is recovered. One difference is, rather than doing
a series on Newton solves, Pseudo transient does a single nonlinear solve while progressively
modifying the pseudo transient parameter. Figure 8.5 provides an example of pseudo transient
homotopy options.

* HOMOTOPY Options

.options nonlin continuation=9

.options loca

+ stepper=natural

+ predictor=constant

+ stepcontrol=adaptive

+ initialvalue=0.0

+ minvalue=0.0

+ maxvalue=1.0e12

+ initialstepsize=1.0e-6

+ minstepsize=1.0e-6

+ maxstepsize=1.0e6

+ aggressiveness=0.1

+ maxsteps=200

+ maxnliters=200

+ voltagescalefactor=1.0

Figure 8.5. Pseudo transient solver options example. NOTE:
The continuation parameter is set to 9.

8.6.1 Explanation of Parameters, Best Practice

Pseudo transient has not been observed to be as successful as MOSFET-homotopy for large
MOSFET circuits. It may, however, be a good candidate for difficult non-MOSFET circuits as it
tends to be faster because the total number of matrix solves is smaller.
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9. Results Output and
Evaluation Options

Chapter Overview
This chapter illustrates how to output simulation results to data or output files and includes the
following sections:

� Section 9.1, Control of Results Output

� Section 9.2, Additional Output Options

� Section 9.3, Output Analysis

� Section 9.4, Graphical Display of Solution Results
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9.1 Control of Results Output

Xyce supports one solution output command, .PRINT, which is quite flexible, and supports several
output formats.

9.1.1 .PRINT Command

The .PRINT command sends the analysis results to an output file. Xyce supports several options
on the .PRINT line of netlists that control the format of the output. The syntax for the command is
as follows:

� .PRINT <analysis type> [options] <output variable> [<output variable>]*

Table 9.1 gives the various options currently available to the .PRINT command.

Table 9.1. .PRINT command options.

Option. . . Action. . .

FORMAT=

<STD|NOINDEX|PROBE|TECPLOT|RAW|CSV>

Controls the output format. See Table 9.2.
The default is STD.

FILE=<filename>

Output filename. The default is the netlist
filename with “.prn” appended.
foo.cir.prn, where foo.cir is the input
netlist filename.

WIDTH=<field-width> Column width for the output data

PRECISION=<floating-point-precision>
Number of significant digits past the decimal
point

FILTER=<floor-value>
Absolute value below which output variables
will be printed as 0.0

DELIMITER=<TAB|COMMA>
Alternate delimiter between columns of output
in the STD output format.

Table 9.2 gives the various output formats currently available to the .PRINT command.
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Table 9.2. .PRINT FORMAT options.

Format. . . Action. . .

STD Outputs data in standard columns

NOINDEX
Outputs the same as the STD except the index
column is omitted.

PROBE
Output is formatted to be compatible with the
PSpice Probe plotting utility.

RAW

Output conforms to the Spice binary rawfile.
Use the -a command line option to produce
an ascii rawfile.

TECPLOT
Output for use in the TecPlot graphics
package.

CSV Produces a comma separated value format.

The <output variable> parameter can be nodal voltages or device currents, as given by

� V(<node name>)

� V(<node name>,<node name>) (the voltage difference between the first and second nodes)

� I(<two-terminal device>)

� Ik(<three-or-more-terminal device>) (the k indicates the device node from which to
acquire the value, which is device specific; see the Xyce Reference Guide [3] for details)

Voltage variables specified in the frequency domain have special processing to handle complex
results. For file formats which have a complex output capability, the complex value is written.
However, for file formats, such as STD and CSV, the complex value is written as two columns of
data, the real part followed by the imaginary part. Pseudo names may also be used to compute
scalar values from a complex voltage variable. These are given in Table 9.3.

Table 9.3. Pseudo Variables for Complex Output

Variable Definitions

VR(node) Voltage Real Component

VI(node) Voltage Imaginary Component

VM(node) Voltage Magnitude

VP(node) Voltage Phase, Radians

VDB(node) Voltage Magnitude, Decibels
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In addition to the above, internal device variables can be specified as an <output variable>.
These take the form, N(device variable). The format of the device variable called by N is
device-specific, and exact forms can be found in the Xyce Reference Guide [3].

Finally, a parameter or expression may also be specified as an <output variable>. To do so,
enclose the parameter or expression within curly braces ({}). See Section 4.3 for a description of
parameters and expressions.

Example:
.PRINT TRAN FILE=Output.prn V(3) I(R3) ID(M5) V(4)

.PRINT DC FORMAT=TECPLOT FILE=Output.dat V(2) {I(C3)+abs(V(4))*5.0}

.print AC v(3)

9.2 Additional Output Options

9.2.1 .OPTIONS OUTPUT Command

The main purpose of the .OPTIONS OUTPUT command is to provide control of the interval at which
data is written to files specified by .PRINT TRAN commands. This can be especially useful in
controlling the size of the results file for simulations that require a large number of time steps.
Also, reducing the output frequency from the default, which outputs results at every time-step,
provides an additional benefit of improved performance.

The format for controlling the output frequency is:

� .OPTIONS OUTPUT INITIAL INTERVAL=<interval> [<t0> <i0> [<t1> <i1> ...]]

where INITIAL INTERVAL=<interval> specifies the starting interval time for output and <tx ix>

specifies later simulation times (tx) where the output interval will change to (ix).

The following example shows the output being requested (via the netlist .OPTIONS OUTPUT com-
mand) every .1µs for the first 10µs, every 1µs for the next 10µs, and every 5µs for the remainder
of the simulation:

Example: .OPTIONS OUTPUT INITIAL INTERVAL=.1us 10us 1us 20us 5us

9.3 Output Analysis

9.3.1 .MEASURE

Xyce supports analysis of the data from a simulation through the .MEASURE command. Using
.MEASURE one can locate extrema in a voltage or current node, calculate integrals, derivatives,
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Fourier transforms, and locate transient events. The general syntax is:

� .MEASURE <analysis type> <measure name> <measure type>

<simulation variable> [qualifiers]

where <analysis type> is the analysis under which the measure should be calculated. Currently
only transient analysis (.TRAN) is supported. The <measure name> is the name by which this
measure is referred. This name is used in the summary output at the end of the simulation to
report the value of this measure. The <measure type> is the type of calculation which be done.
Currently supported measure types are:

� AVG: Computes the arithmetic mean.

� DERIV: Computes the derivative of a simulation variable.

� DUTY: Fraction of time that a given simulation variable is greater than ON and does not fall
below OFF (ON and OFF are defined later in this section).

� FOUR: Calculates the Fourier transform of the solution variable for the .TRAN analysis type
using the fundamental frequency AT. By default, the DC component and first nine harmonics
are computed; more can be reported by setting NUMFREQ to the desired value. More inter-
polation points can be used in the Fourier analysis by setting GRIDSIZE, which is 200 by
default.

� FREQ: An estimate of the frequency of a solution variable found by cycle counting during the
simulation. Thresholds are defined through the values of ON and OFF.

� INTEG: Calculates the integral of a solution variable through second order numerical integra-
tion.

� MAX: Returns the maximum value of a solution variable.

� MIN: Returns the minimum value of a solution variable.

� OFF TIME: Returns the time that a solution variable is below OFF, and not greater than ON for
the simulation.

� ON TIME: Returns the time that a solution variable is above ON, and not less than OFF for the
simulation.

� PP: Returns the difference between the maximum value and the minimum value of a solution
variable during the simulation.

� RMS: Computes the root-mean-squared value of a solution variable.

� WHEN: Returns the time when a solution variable reaches a specified fixed value or is equal
to another solution variable.

The <simulation variable> specifies a voltage or current node that will be used in this measure,
such as V(a). The measure WHEN is different from the other measures in that it can take one or two
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solution variables. For example, WHEN v(a)=5 returns the time when V(a) equals 5. Or, if WHEN
V(a) = V(b) is specified, the time when V(a) equals V(b) is returned.

The .MEASURE command can also take optional [qualifiers] that limit the time window when
.MEASURE is applied. The [qualifiers] also place numeric limits on what state a value is consid-
ered to be in (e.g., ON and OFF), and provide numeric qualification on comparisons of values (e.g.,
MINVAL). The supported qualifiers are:

� TD=value A time delay before which the measurement should be taken or checked.

� RISE=r|LAST The number of rises after which the measurement should be checked. If LAST
is specified, then the last rise found in the simulation will be used.

� FALL=f|LAST The number of falls after which the measurement should be checked. If LAST
is specified, then the last fall found in the simulation will be used.

� CROSS=c|LAST The number of zero crossings after which the measurement should be checked.
If LAST is specified, then the last zero crossing found in the simulation will be used.

� MINVALUE=value An allowed absolute difference between the simulation variable and the
variable to which it is being compared. This has a default value of 1.0e-12. One may need
to specify a larger value to avoid missing the test condition in a transient run.

� ON=value The value at which a signal is considered to be on for frequency, duty and on time
calculations

� OFF=value The value at which a signal is considered to be off for frequency, duty and off time
calculations.

An example of using .measure is shown in the following netlist:

VS 1 0 SIN(0 1.0 1KHZ 0 0)

VP 2 0 PULSE( 0 1 0.2ms 0.2ms 0.2ms 1ms 2ms )

R1 1 0 100

R2 2 0 100

.TRAN 0 10ms

.PRINT TRAN FORMAT=NOINDEX V(1) V(2)

.MEASURE TRAN avg1 AVG V(1)

.MEASURE TRAN avg2 AVG V(2)

.MEASURE TRAN duty1 DUTY V(1) ON=0.75 OFF=0.25

The measure avg1 returns the average of v(1), and avg2 returns the average of v(2). Additionally,
duty1 computes the fraction of time that v(1) is above 0.75 V, without falling below 0.25 V.
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The next netlist provides an example of using the when measure:

VS 1 0 SIN(0 1.0 1KHZ 0 0)

VP 2 0 PULSE( 0 100 0.2ms 0.2ms 0.2ms 1ms 2ms )

R1 1 0 100

R2 2 0 100

.TRAN 0 10ms 0 1.0e-5

.PRINT TRAN FORMAT=NOINDEX V(1) V(2)

.MEASURE TRAN hit1_75 WHEN V(1)=0.75 MINVAL=0.02

.MEASURE TRAN hit2_75 WHEN V(1)=0.75 MINVAL=0.08 RISE=2

In the above netlist, the measure called hit1 75 will return the simulation time where v(1) reaches
a value of 0.75, while hit2 75 returns the second time that v(1) reaches a value of 0.75. The
MINVAL option acts at an absolute tolerance in this case. So, the above measure statements are
more exactly interpreted as hit1 75 is the simulation time when v(1) reaches a value of 0.75±0.02
and hit2 75 is the simulation time when v(1) reaches a value of 0.75± 0.08 on its second rise.

9.3.2 .FOUR

Fourier analysis can be performed as a part of the transient analysis using the .FOUR command.
The general syntax is:

� .FOUR freq ov1 <ovn>*

where freq is the fundamental frequency used for Fourier analysis. The ov1 parameter is the
desired solution variable to be analyzed, specifically

� V(<node name>)

� V(<node name>,<node name>) (the voltage difference between the first and second nodes)

� I(<two-terminal device>)

� Ik(<three-or-more-terminal device>) (see the .PRINT section, 9.1.1, for more detail)

� N(device variable) (see the .PRINT section, 9.1.1, for more detail)

� The pseudo-variables given in Table 9.3 for complex output handling

At least one solution variable must be specified, but Fourier analysis can be performed on several
solution variables for each fundamental frequency, freq. Multiple .FOUR lines may be used in a
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netlist. All results from Fourier analysis will be returned to the user in a file with the same name as
the netlist file suffixed with a .four.

Fourier analysis is performed over the last period (1/freq) of the transient simulation. The dc
component and the first nine harmonics are calculated. The number of harmonics computed by
.FOUR is static. This is the main difference between .FOUR and the Fourier analysis in .MEASURE,
where the later will allow the user to select the number of harmonics. The default options for the
Fourier analysis in .MEASURE is the same as .FOUR. For instance, these two lines will result in the
same Fourier analysis:

.FOUR 20MEG V(2)

.MEASURE TRAN FOURV2 FOUR V(2) AT=20MEG

The Fourier analysis in .MEASURE will allow for more harmonics to be computed using the NUMFREQ

option and more interpolation points to be used in the Fourier analysis with GRIDSIZE. For instance,
to compute twenty harmonics (including the dc component), the previous .MEASURE line can be
amended to:

.MEASURE TRAN FOURV2 FOUR V(2) AT=20MEG NUMFREQ=20

To increase the number of interpolation points from 200, which is the default, to 500, the line can
be amended to:

.MEASURE TRAN FOURV2 FOUR V(2) AT=20MEG NUMFREQ=20 GRIDSIZE=500

For maximum accuracy of the Fourier analysis, it is recommended that the time integration option
DELMAX should be set to period/100. This is the preferred approach to improving the accuracy of
the Fourier analysis over increasing the number of interpolation points.

9.3.3 .SENS

The .SENS command instructs Xyce to calculate the steady-state (DC) sensitivities of an output
expression with respect to a specified list of circuit parameters. The syntax for the command is as
follows:

� .SENS objfunc=<output expression> param=<circuit parameter(s)>

� .options SENSITIVITY [direct=<1 or 0>] [adjoint=<1 or 0>]

The parameter objective function parameter, objfunc, is required. The list of circuit parameters
must have at least one entry as well. Xyce can compute a direct sensitivity, an adjoint sensitivity,
or both. An example of using .SENS is shown in the following netlist:
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R1 A B 10.0

R2 B 0 10.0

* input nodes:

Va A 0 5

.dc Va 5 5 1

.print dc v(A) v(B)

.SENS objfunc={0.5*(V(B)-3.0)**2.0} param=R1:R,R2:R

.options SENSITIVITY direct=1 adjoint=1

.END

The output for this particular example is:

Direct Sensitivities:

R1:R dOdp = 6.2500e-02

R2:R dOdp = -6.2500e-02

Adjoint Sensitivities:

R1:R dOdp = 6.2500e-02

R2:R dOdp = -6.2500e-02

The .SENS capability can only be used for DC calculations. If performing a sweep, it computes the
sensitivities for the final sweep step.

9.4 Graphical Display of Solution Results
Although Xyce does not provide integrated graphical display options, it produces output in a form
that may readily be used with commonly available graphical tools, including TecPlot, gnuplot,
and MS Excel (see figure 9.1 for an example plot using TecPlot, http://www.amtec.com). The
standard Xyce print format (FORMAT=STD or FORMAT=NOINDEX) is well suited for use with gnuplot.
Comma separated variable (FORMAT=CSV) is the best choice for import into Excel. FORMAT=TECPLOT
produces output specifically targeted at the TecPlot tool. And by using the FORMAT=PROBE option
to the .PRINT command, Xyce is able to output .csd files that can be read by the PSpice Probe
utility to view the results. See the PSpice Users Guide [4] for instructions on using the Probe tool,
and the Xyce Reference Guide [3] for details on the .PRINT command options.
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Figure 9.1. TecPlot plot of diode clipper circuit transient response
from Xyce .prn file.
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10. Guidance for Running
Xyce in Parallel

Chapter Overview
This chapter provides guidance for running a parallel version of Xyce, and includes the following
sections:

� Section 10.1, Introduction

� Section 10.2, Problem Size

� Section 10.3, Linear Solver Options

� Section 10.4, Transformation Options
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10.1 Introduction
Xyce is designed from the ground up to be distributed-memory parallel, supported by the message-
passing interface (MPI) standard. Although many of the issues pertinent to running in parallel are
still being researched, Xyce is mature enough that some general principles have emerged for ef-
ficiently running problems in a parallel environment. In addition to the information in this chapter,
reference [12] provides supplemental information about Xyce parallel performance.

Parallel simulations must be run from the command line. Section 2.2.1 provides information about
the parallel execution syntax for Xyce.

10.2 Problem Size
Running Xyce in parallel is often useful for circuits with thousands of devices or more. However,
due to the overhead of interprocessor communication, there is an optimal number of processors
that will achieve the best performance. This number is dependent upon many factors, including
the number and type of devices, topology of the circuit, and the characteristics of the computing
architecture. It is difficult to know a priori what this optimal number of processors is. However,
it is apparent when that optimal number is exceeded because, as the number of processors is
increased, the total simulation time will also increase. This is due to the increasing amount of
required communication and decreasing amount of work per processor. In other words, the ben-
efit of distributing the problem is outweighed by the communication overhead, so increasing the
processor count beyond this optimal point is counterproductive.

10.2.1 Ideal Problem Size

In general, a circuit needs to be relatively large to take full advantage of the parallel capability of
Xyce. However, parallelism is achieved in two distinct phases of the code: the device evaluation
and the linear solve. The device evaluation is, as the name implies, the evaluation of all the device
equations in order to compute the residual vector and Jacobian entries for Newton’s method. Xyce
distributes the number of devices over the number of processors in parallel, so their evaluation
enables speedups in the total simulation time even for thousands of devices.

The linear solve phase is more computationally complex. The Jacobian matrix generated by most
circuits is sparse and has heterogeneous structure, in that there is not a regular sparsity pattern
in the matrix nonzeros. Sparse, direct linear solvers have proven to be efficient on these types
of linear systems up into the tens to hundreds of thousands of unknowns. They become less
efficient for linear systems in the hundreds of thousands of unknowns. This is where iterative linear
solvers can provide scalable performance because of their inherent parallelism. Unfortunately, the
effectiveness of iterative linear solvers is dependent upon preconditioning the linear system (see
Section 10.3.5). The benefit of direct over iterative linear solvers is that they rarely fail to compute
a solution, so direct linear solvers are the more robust option for enabling simulations to complete.

In general, there are three modes in which Xyce can be executed: “Serial load, serial solve”,
“Parallel load, serial solve”, and “Parallel load, parallel solve”. Each of these modes optimizes the
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amount of available parallelism for a given linear system size, see Table 10.1 for a summary. The
“load” refers to the device evaluation phase combined with the assembly of the Jacobian matrix
and residual vector, the “solve” refers to the linear solve phase. “Serial load, serial solve” is the
only mode of computation that a serial version of Xyce will perform, but it can also be obtained in a
parallel version of Xyce by using only one MPI processor. Both the “Parallel load” simulation modes
require a parallel build of Xyce, where the linear solver method can be a direct method (“serial
solve”) or iterative method (“parallel solve”) using the options discussed in Section 10.3. Hybrid
linear solvers, which combine the best attributes of both direct and iterative methods, provide both
a robust and scalable option. They are not reflected in Table 10.1, but more information about
these types of linear solvers will be discussed in Section 10.3.6.

Table 10.1. Xyce simulation modes.

Mode Linear System Size Reason
“Serial load, serial solve” 100 - 102 MPI overhead cannot speed up device

evaluation or linear solve.
“Parallel load, serial solve” 103 - 104 Distributed device evaluations can speed

up the simulation, but iterative linear
solvers are not more efficient than direct
methods.

“Parallel load, parallel solve” 105 or more Distributed device evaluations can speed
up the simulation and so can iterative lin-
ear solvers, if an efficient preconditioner
is available.

10.2.2 Smallest Possible Problem Size

Circuits consist of a discrete set of components (voltage nodes, devices, etc.). For parallel simu-
lation, it is preferable that Xyce be able to put at least one discrete component of the problem on
each processor. In practice, this means the circuit should be distributed across fewer processors
than the number of nodes and devices it contains.

10.3 Linear Solver Options
The different linear solvers available in Xyce are:

� KLU

� SuperLU and SuperLU DIST (optional)

� The AztecOO iterative solver library

� The Belos iterative solver library
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� The ShyLU hybrid solver library (optional)

AztecOO and Belos are the parallel iterative solvers and KLU and SuperLU (optional) are the serial
direct solvers that are available for both serial and parallel builds of Xyce. If KLU or SuperLU is
used with a parallel version of Xyce, the devices are evaluated and linear problem is assembled
in parallel, but the linear system is solved in serial on processor 0. This can be quite effective
for circuits with tens of thousands of devices or fewer (see Table 10.1). The ShyLU hybrid linear
solver, which combines the robustness of a direct solver with the scalability of an iterative solver,
will be discussed in Section 10.3.6.

The user can specify the solver through the .OPTIONS LINSOL control line in the netlist. The default
linear solver used by Xyce is described in Table 10.2. By default, a parallel version of Xyce uses
AztecOO as the linear solver when the linear system is larger than a thousand unknowns. For any
linear system smaller than a thousand unknowns, Xyce uses KLU as the linear solver. A serial
version of Xyce uses KLU as its default linear solver. To use a solver other than the default the
user needs to add the option “TYPE=<solver>” to the .OPTIONS LINSOL control line in the netlist,
where <solver> is ‘KLU,’ ‘SUPERLU,’ ‘SUPERLUDIST,’ ‘AZTECOO,’ ‘BELOS,’ or ‘SHYLU.’

Table 10.2. Xyce default linear solver.

Solver Version Linear System Size
KLU Serial all
KLU Parallel 1− 1000 unknowns
AztecOO Parallel 1001+ unknowns

10.3.1 KLU

KLU is a serial, sparse direct solver native to the Amesos package in Trilinos [13] and is the
default solver for serial builds of Xyce. KLU is the default solver for small circuits in parallel builds
of Xyce as well, but this requires the linear system to be solved on one processor and the solution
communicated back to all processors. As long as the linear system can fit on one processor, KLU
is often a superior approach to using an iterative linear solver.

Some of the solver parameters for KLU can be altered through the ‘.OPTIONS LINSOL’ control line
in the netlist. Table 10.3 lists solver parameters and their default values for KLU.

10.3.2 SuperLU and SuperLU DIST

SuperLU is a serial, sparse direct solver and SuperLU DIST is a parallel, sparse direct solver with
an interface in the Amesos package. SuperLU and SuperLU DIST support are optionally built
in Xyce, so they are not available by default in any Xyce build or provided binary. Furthermore,
to enable SuperLU and SuperLU DIST support in Xyce, it is necessary to build SuperLU and
SuperLU DIST support in Amesos/Trilinos. Similar to KLU, SuperLU can be used in a parallel
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Table 10.3. KLU linear solver options.

Option Description Default Value
KLU REPIVOT Recompute pivot order each solve 1 (true)
OUTPUT LS Write out linear systems solved by KLU to file every #

solves
0 (false)

OUTPUT BASE LS Write out linear systems before any transformations
to file every # solves

0 (false)

OUTPUT FAILED LS Write out linear systems KLU failed to solve to file 0 (false)

version of Xyce, but the linear system is solved on one processor. SuperLU DIST can only be
used in a parallel version of Xyce, the Amesos interface handles the redistribution of the matrix
into the format required by SuperLU DIST. Xyce does not allow modifications to SuperLU and
SuperLU DIST solver parameters.

10.3.3 AztecOO

AztecOO is a package in Trilinos [13] that offers an assortment of iterative linear solver algorithms.
Xyce uses the Generalized Minimal Residual (GMRES) method [14] from this suite of iterative
solvers. Some of the solver parameters for GMRES can be altered through the ‘.OPTIONS LINSOL’
control line in the netlist. Table 10.4 provides a list of solver parameters for AztecOO and their
default values.

Table 10.4. AztecOO linear solver options.

Option Description Default Value
AZ max iter Maximum allowed iterations 500
AZ tol Iterative solver (relative residual) tolerance 1.0e-12
AZ kspace Krylov subspace size 500
OUTPUT LS Write out linear systems solved by AztecOO to file

every # solves
0 (false)

OUTPUT BASE LS Write out linear systems before any transformations
to file every # solves

0 (false)

Common AztecOO Warnings

If Xyce is built with the verbosity enabled for the linear algebra package, it is not uncommon to see
warnings from AztecOO usually indicating the solver returned unconverged due to a numerical
issue.
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NOTE: AztecOO warnings do not indicate the entire simulation has failed, Xyce
uses a hierarchy of solvers so if the iterative linear solver fails, the nonlinear solver
or time integrator will usually make adjustments and attempt the step again; so the
warnings can often be ignored. If the entire simulation eventually fails (i.e., gets a
“time-step-too-small” error), then the AztecOO warnings might contain clues as to
what went wrong.

The simplest reason for AztecOO to return unconverged would be when the maximum number of
iterations is reached, resulting in the following warning:

***************************************************************

Warning: maximum number of iterations exceeded without convergence

***************************************************************

Another reason AztecOO may return unconverged is when the GMRES Hessenberg matrix is
ill-conditioned, which is usually a sign that the matrix and/or preconditioner is nearly singular,
resulting in the following warning:

***************************************************************

Warning: the GMRES Hessenberg matrix is ill-conditioned. This may

indicate that the application matrix is singular. In this case, GMRES

may have a least-squares solution.

***************************************************************

It is also common to lose accuracy when either the matrix or preconditioner, or both, are nearly
singular. GMRES relies on an estimate of the residual norm, called the recursive residual, to
determine convergence. Xyce uses the recursive residual instead of the actual residual for com-
putational efficiency. However, numerical issues can cause the recursive residual to differ from the
actual residual. When AztecOO detects but cannot rectify this situation, it outputs the following
warning:

***************************************************************

Warning: recursive residual indicates convergence

though the true residual is too large.

Sometimes this occurs when storage is overwritten (e.g. the

solution vector was not dimensioned large enough to hold

external variables). Other times, this is due to roundoff. In

this case, the solution has either converged to the accuracy

of the machine or intermediate roundoff errors occurred

preventing full convergence. In the latter case, try solving

again using the new solution as an initial guess.

***************************************************************
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10.3.4 Belos

Belos is a package in Trilinos [13] that offers an assortment of iterative linear solver algorithms.
Many of the algorithms available in Belos can also be found in AztecOO. However, Belos offers
a few computational advantages because its solvers are implemented using templated C++. In
particular, AztecOO can solve linear systems only in double-precision arithmetic, while Belos can
solve linear systems that are complex-valued or in extended-precision arithmetic. At this time,
Xyce is using a subset of Belos capabilities, the default method is GMRES, and the interface to
Belos will recognize most of the AztecOO linear solver options, as shown in Table 10.5.

Table 10.5. Belos linear solver options.

Option Description Default Value
AZ max iter Maximum allowed iterations 500
AZ tol Iterative solver (relative residual) tolerance 1.0e-12
AZ kspace Krylov subspace size 500
OUTPUT LS Write out linear systems solved by Belos to file every

# solves
0 (false)

OUTPUT BASE LS Write out linear systems before any transformations
to file every # solves

0 (false)

10.3.5 Preconditioning Options

Iterative linear solvers often require the assistance of a preconditioner to efficiently compute a
solution of the linear system

Ax = b (10.1)

to the requested accuracy. A preconditioner, M , is an approximation to the original matrix A that
is inexpensive to solve. Then (10.1) can be rewritten to include this (right) preconditioner as

AM−1y = b, (10.2)

where x = M−1y is the solution to the original linear system. If M = A, then the solution to
the linear system is found in one iteration. In practice, M is a good approximation to A, then it
will take few iterations to compute the solution of the linear system to the requested accuracy.
By default, Xyce uses a non-overlapped additive Schwartz preconditioner with an incomplete LU
factorization on each subdomain [15]. The parameters of the incomplete LU factorization are
found in Table 10.6. This is a simple preconditioner that always works, but is not always the most
effective, so other preconditioning options will be presented in this section.

Xyce provides access to preconditioning packages in Trilinos [13], such as Ifpack and ML (op-
tionally), through an expanded preconditioning interface. If modifications to the preconditioner are
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necessary, the user may specify the preconditioner through the ‘.OPTIONS LINSOL’ control line in
the netlist. Table 10.6 provides a list of preconditioner parameters and their default values.

Table 10.6. Preconditioner options.

Option Description Default Value
prec type Preconditioner Ifpack
AZ ilut fill ILU fill level 2.0
AZ drop ILU drop tolerance 1.0e-3
AZ overlap ILU subdomain overlap 0
AZ athresh ILU absolute threshold 0.0001
AZ rthresh ILU relative threshold 1.0001
ML MAX LEVEL ML maximum allowable levels 5
USE IFPACK FACTORY Additive Schwarz w/ KLU subdomain solve 0 (false)
USE AZTEC PRECOND Use native ILU from AztecOO package 0 (false)

In practice, the choice of an effective preconditioner is highly problem dependent. By default,
Xyce provides a preconditioner that works for most circuits, but is not the best preconditioner for
all circuits. One simple modification to the default preconditioner that often makes it more effective
is the use of a sparse direct solver on each subdomain, instead of an inexact factorization:

.OPTIONS LINSOL USE_IFPACK_FACTORY=1

This preconditioner will fail if there is a singular subdomain matrix because the KLU solver on
that subdomain will fail. If numerical difficulties are not encountered during the simulation, this
preconditioner is superior to inexact factorizations. A more advanced preconditioner that has
been effective for certain types of circuits uses the block triangular form (BTF) permutation of the
original matrix before generating the additive Schwartz preconditioner. This preconditioner, which
is published in [16], will be presented in Section 10.4.4.

10.3.6 ShyLU

ShyLU is a package in Trilinos [13] that provides a hybrid linear solver designed to be a black-box
algebraic solver [17]. ShyLU support is optionally built in Xyce, so it is not available by default in
any Xyce build or provided binary. Furthermore, to enable ShyLU support in Xyce, it is necessary
to build the ShyLU package in Trilinos.

ShyLU is hybrid in both the parallel programming sense - using MPI and threads - and in the
mathematical sense - using features from direct and iterative methods. Xyce uses ShyLU as a
global Schur complement solver [15]. This solver can be expensive, but also has proven to be a
robust and scalable approach for circuit matrices [18].

ShyLU is under active development and testing in Xyce, so a minimum number of options are
provided to the user for controlling this flexible solver. For instance, the diagonal blocks of the
partitioned matrix are solved using KLU, while the Schur complement is solved using an itera-
tive method (AztecOO’s GMRES specifically). The matrix partitioning is generated using a wide
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separator, which is a conventional vertex separator where all the vertices that are adjacent to the
separator in one of the subgraphs are added in. This solution approach is static, the only options
that can be modified are shown in Table 10.7. This includes the maximum number of iterations
and solver tolerance used by GMRES and the dropping threshold that ShyLU uses to generate a
preconditioner for GMRES.

Table 10.7. ShyLU linear solver options.

Option Description Default Value
AZ max iter Maximum allowed iterations 30
AZ tol Iterative solver (relative residual) tolerance 1.0e-12
ShyLU rthresh Relative dropping threshold for Schur complement

preconditioner
1.0e-3

OUTPUT LS Write out linear systems solved by ShyLU to file every
# solves

0 (false)

OUTPUT BASE LS Write out linear systems before any transformations
to file every # solves

0 (false)

10.4 Transformation Options
Transformations are often used to permute the original linear system to one that is easier or more
efficient for direct or iterative linear solvers. Xyce has many different permutations that can be
applied to remove dense rows and columns from a matrix, reduce fill-in, find a block triangular
form, or partition the linear system for improved parallel performance.

10.4.1 Removing Dense Rows and Columns

The transformation that reduces the linear system through removal of all rows and columns with
single non-zero entries in the matrix is called singleton filtering. The values associated with these
removed entries can be resolved in a pre- or post-processing phase with the linear solve. A by-
product of this transformation is a more tractable and sparse linear system for the load balancing
and linear solver algorithms. This functionality can be turned on by adding ‘TR SINGLETON FILTER=1’
to the ‘.OPTIONS LINSOL’ control line in the netlist. This option is enabled by default whenever it-
erative solvers are used in Xyce.

10.4.2 Reordering the Linear System

Approximate Minimum Degree (AMD) ordering is a symmetric permutation that reduces the fill-in
for direct factorizations. If given a nonsymmetric matrix A, the transformation computes the AMD
ordering of A + AT . This functionality may be turned on by adding ‘TR AMD=1’ to the ‘.OPTIONS
LINSOL’ control line in the netlist. For parallel builds of Xyce, AMD ordering is enabled by default
whenever iterative solvers are used. In parallel, the AMD ordering is performed only on the local
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graph for each processor, not the global graph. This is to reduce the fill-in for the incomplete LU
factorization used by the additive Schwartz preconditioner, see Section 10.3.5.

10.4.3 Partitioning the Linear System

Partitioning subdivides the linear system and then distributes it to the available processors. A good
partition can have a dramatic effect on the parallel performance of a circuit simulation tool. There
are two key components to a good partition:

� Effective load balance

� Minimizing communication overhead.

An effective load balance ensures the computational load of the calculation is equally distributed
among available processors. Minimizing communication overhead seeks to distribute the problem
in a way to reduce impacts of underlying message passing during the simulation run. For runs
with a small number of devices per processor the communication overhead becomes the critical
issue, while for runs with larger numbers of devices per processor the load balancing becomes
more important.

Xyce provides for graph and hypergraph partitioning via the Zoltan library of parallel partitioning
heuristics integrated into Xyce. The Isorropia package in Trilinos provides access to Zoltan and
can be controlled through the ‘.OPTIONS LINSOL’ control line in the netlist. Table 10.8 provides the
partitioning options and their default parameters. For parallel builds of Xyce, when iterative solvers
are used, Isorripia is enabled by default to use graph partitioning via ParMETIS. The linear system
is statically load balanced at the beginning of the simulation based on the graph of the Jacobian
matrix.

Table 10.8. Partitioning options.

Option Description Default Value
TR PARTITION Partitioning package 0 (none), serial,

1 (Isorropia), parallel
TR PARTITION TYPE Isorropia partitioner type GRAPH

Xyce includes an expanded partitioning interface to allow the user to access multiple partitioners
through Isorropia. Users may change the partitioner provided by adding ‘TR PARTITION TYPE’ to
the ‘.OPTIONS LINSOL’ control line in the netlist. There are two options for partitioning: graph
(‘TR PARTITION TYPE=GRAPH’) and hypergraph (‘TR PARTITION TYPE=HYPERGRAPH’). Occasionally it
is desirable to turn off the partitioning option, even for parallel simulations. To do so, users can
add the ‘TR PARTITION=0’ to the ‘.OPTIONS LINSOL’ control line.

These techniques can be very effective for improving the efficiency of the iterative linear solvers.
See the Zoltan User Guide [19] for more details.
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10.4.4 Permuting the Linear System to Block Triangular Form

The block triangular form (BTF) permutation is often useful for direct and iterative solvers, enabling
a more efficient computation of the linear system solution. In particular, the BTF permutation has
shown promise when it is combined with an additive Schwartz preconditioner (see Section 10.3.5)
in the simulation of circuits with unidirectional flow.

The global BTF transformation computes the permutation of the linear system to block triangular
form, and uses the block structure to partition the linear system. The partitioning can be a simple
linear distribution of block rows, ‘TR GLOBAL BTF=1’, or a hypergraph partitioning of block rows,
‘TR GLOBAL BTF=2.’ As the global BTF transformation includes elements of other tranformations, it
is imperative to turn off other linear solver options. To use the global BTF, the linear solver control
line in the netlist should contain:

.OPTIONS LINSOL TR_GLOBAL_BTF=<1,2> TR_SINGLETON_FILTER=1

+ TR_AMD=0 TR_PARTITION=0

This transformation is only useful in parallel when using a preconditioned iterative solver. It is
often more effective when combined with the exact factorization of each subdomain, given by the
‘USE IFPACK FACTORY=1’ option. In practice, the structure that this transformation takes advantage
of is found in CMOS memory circuits [16].
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11. Handling Power Node
Parasitics

Chapter Overview
This chapter includes the following sections:

� Section 11.1, Power Node Parasitics

� Section 11.2, Two Level Algorithms Overview

� Section 11.3, Examples

� Section 11.4, Restart
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11.1 Power Node Parasitics

Parasitic elements (R, L, C) are frequently required for circuit simulations to capture important
circuit behavior. Most parasitic elements (interconnect, etc.) can be added to netlists without
causing any difficulties for the Xyce solvers. Small circuits in particular are very robust to the
addition of parasitic elements. Larger circuits, however, that must be simulated in parallel will in
general tend to have more solver difficulties with the addition of parasitic devices. Of particular
note are parasitic elements attached to the power and/or ground nodes of large digital circuits. An
example of this is shown in figure 11.1. As these nodes tend to be highly connected, they can
potentially have very high impact on solver difficulties.

One of the parallel algorithms used by Xyce is called singleton removal [16], which is applied at
the linear solver level and is crucial for getting many large circuits to run in parallel. This algorithm
takes advantage of the fact that, in circuit simulation, some solution values are available explicitly,
rather than being a quantity that needs to be calculated as the solution to a particular equation.
In circuit simulation, such quantities are usually the values of independent sources. For instance,
the presence of an independent voltage source at a particular node in a circuit fixes the voltage at
that node to be the value of the independent source; therefore, equations reflecting the value of
the voltage at that particular node do not have to be added to the set of linear equations used (in
part) to determine the voltages at all the nodes in the circuit. The technique of fixing such node
voltages without including them in the rest of the linear solve can be handled in a preprocessing
phase referred to as the singleton removal phase.

When simulating in parallel, singleton removal is crucial as some voltage sources (especially
power supplies in digital circuits) are connected to hundreds or thousands of circuit nodes. This
presents a big problem in parallel because having numerous connections can often mean a com-
munication bottleneck during the linear solve. Using singleton removal eliminates that bottleneck.

While singleton removal can result in a great improvement for circuits with ideal power supplies,
for circuits with nonideal power supplies, the communication bottleneck remains. Once parasitic
elements are placed between the power supply and the rest of the circuit, it is only the voltage at
the circuit node directly connected to the independent source that can be removed via singleton
removal. Other nodes connected to this independent source through parasitic elements have

Figure 11.1. Power node parasitics example. NOTE: An RLC
network sits between the VDD, VSS sources and the main circuit,
so these highly connected nodes cannot be removed with a sin-
gleton filter.
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voltages that must now be solved for directly.

11.2 Two Level Algorithms Overview
Fortunately, Xyce [12] provides a workaround that allows power node parasitics to be included in
large circuits without breaking singleton removal. The workaround requires the use of a two-level
Newton solve, in which the problem is divided into two very separate pieces, each for the most
part treated as an entirely separate circuit with minimal coupling terms linking the pieces together.

For power-node problems, two-level users will typically split the netlist into ”top” and ”inner” netlists.
The top netlist contains the power node parasitics and the ideal voltage sources, and very little
else. The inner circuit should contain the rest of the circuit. Xyce couples the two circuits through
an ”EXT” (external) device in the top circuit, and two or more independent voltage sources on the
inner circuit. The values on the inner voltages are imposed from the top circuit, and the currents
and conductances of the EXT device come from the inner circuit.

Xyce will construct a different linear system for each circuit. As such, the inner circuit will appear
to have independent sources, allowing the singleton removal algorithm to work.

Since at least the 1980s, literature has included the two-level Newton algorithm, although mostly
as it applied to circuit-device simulation. [20] and [21] provide a mathematical description, while
[12] provides more information about the Xyce implementation.

11.3 Examples

11.3.1 Explanation and Guidance

Figures 11.2 and 11.3 provide an example of a circuit that uses the two level algorithm. The top
circuit (compTop.cir) (figure 11.2) invokes the inner circuit (compInner.cir) with the extern device,
y1. To run this circuit, the user will only specify the top circuit on the command line:

Xyce compTop.cir <return>

The extern device (YEXT y1 sits between the contents of compTop.cir and compInner.cir and is
connected to two nodes in the top-level circuit, DD1 and SS1. From the perspective of compTop.cir,
the YEXT y1 device looks like a nonlinear two-terminal resistor, which is the equivalent of the entire
inner circuit.

In the inner circuit, Xyce applies nodes DD1 and SS1 though the independent sources Vconnect0000
and Vconnect0001. By convention, the inner circuit must contain and independent voltage source
for each node to which the EXT device is connected. The default naming convention requires that
these sources be named vconnectxxxx, with xxxx being a four-digit integer starting at 0000.

NOTE: The .tran statement on the inner circuit must match the .tran statement on the top circuit.
The same is true for .DC analysis. Also, as both circuit files have their own .print statements,
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THIS CIRCUIT IS THE TOP PART OF A TWO LEVEL EXAMPLE.

* compTop.cir - BSIM3 Transient Analysis

YEXT y1 DD1 SS1 externcode=xyce netlist=compInner.cir

Vdd DDorig 0 5.0

Vss SSorig 0 0.0

.options linsol type=klu

.options timeint abstol=1.0e-6 reltol=1.0e-3

* PARASITICS

l Lwirevdd DDorig Ny .50n

l Lwirevss SSorig Nx .50n

R Rbw Ny DD1 50m

R Rwi Nx SS1 50m

.tran 0.01ns 60ns

.print tran v(DD1) v(SS1) i(Vdd)

.END

Figure 11.2. Two-level top netlist example.

both will produce *.prn output files.

The coupling between the top and inner layers requires extra linear solves, so when using this
algorithm the code will run more slowly. In general, one can expect a factor-of-two slowdown,
for circuits that can be run either as conventional or two-level simulations. So, in practice this
algorithm should only be applied when it is really needed (i.e., when conventional simulations fail).

Finally, when using this method, one must take particular care with file names. In practice, a Xyce
user may frequently change netlist file names to reflect new details about the run. When this
happens, the name of the netlist invoked on the YEXT y1 line must be changed. Failure to do so
may result in using the wrong file for the inner simulation.

11.4 Restart
Restart works with the two-level algorithm. However, as the two-level algorithm involves two sep-
arate netlist input files, a two-level restart requires a separate restart file for each phase of the
problem. So, the two files (e.g., compTop.cir and compInner.cir) require .options restart

statements, and the statements in the two files must be consistent with each other.

Currently, the user must enforce this because the code does not make any attempt to check
consistency between the top and inner file ”.options restart” statements.
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THIS CIRCUIT IS THE INNER PART OF A TWO LEVEL EXAMPLE.

* compInner.cir - BSIM3 Transient Analysis

M1 Anot A DD1 DD1 PMOS w=3.6u l=1.2u

M2 Anot A SS1 SS1 NMOS w=1.8u l=1.2u

M3 Bnot B DD1 DD1 PMOS w=3.6u l=1.2u

M4 Bnot B SS1 SS1 NMOS w=1.8u l=1.2u

M5 AorBnot SS1 DD1 DD1 PMOS w=1.8u l=3.6u

M6 AorBnot B 1 SS1 NMOS w=1.8u l=1.2u

M7 1 Anot SS1 SS1 NMOS w=1.8u l=1.2u

M8 Lnot SS1 DD1 DD1 PMOS w=1.8u l=3.6u

M9 Lnot Bnot 2 SS1 NMOS w=1.8u l=1.2u

M10 2 A SS1 SS1 NMOS w=1.8u l=1.2u

M11 Qnot SS1 DD1 DD1 PMOS w=3.6u l=3.6u

M12 Qnot AorBnot 3 SS1 NMOS w=1.8u l=1.2u

M13 3 Lnot SS1 SS1 NMOS w=1.8u l=1.2u

MQLO 8 Qnot DD1 DD1 PMOS w=3.6u l=1.2u

MQL1 8 Qnot SS1 SS1 NMOS w=1.8u l=1.2u

MLTO 9 Lnot DD1 DD1 PMOS w=3.6u l=1.2u

MLT1 9 Lnot SS1 SS1 NMOS w=1.8u l=1.2u

CQ Qnot 0 30f

CL Lnot 0 10f

Vconnect0000 DD1 0 0

Vconnect0001 SS1 0 0

Va A 0 pulse(0 5 10ns .1ns .1ns 15ns 30ns)

Vb B 0 0

.model nmos nmos (level=9)

.model pmos pmos (level=9)

.options linsol type=klu

.options timeint abstol=1.0e-6 reltol=1.0e-3

.tran 0.01ns 60ns

.print tran v(a) v(b) 1.0+v(9) 1.0+v(8)

.END

Figure 11.3. Two-level inner netlist example.
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12. Specifying Initial
Conditions

Chapter Overview
This chapter includes the following sections:

� Section 12.1, Initial Conditions Overview

� Section 12.2, Device Level IC= Specification

� Section 12.3, .IC and .DCVOLT Initial Condition Statements

� Section 12.4, .SAVE Statements

� Section 12.5, DCOP Restart

� Section 12.6, UIC and NOOP
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12.1 Initial Conditions Overview
Xyce provides several different options for users to set an initial condition. Reasons for setting
initial conditions include, but are not limited to:

� Improving the robustness of the DCOP solution

� Optimizing performance by reusing DCOP solution of a previous run to start new transient
runs

� Setting an initial state for a digital circuit

� Initiating an oscillator circuit.

As noted, setting initial conditions can be particularly useful for multistate digital circuits. Fig-
ure 12.1 provides an example result demonstrating how initial conditions can be used to set the
state of a digital circuit. In this case, obtaining the state purely through transient simulation can be
time-consuming and often is not practical..

Figure 12.1. Example result with (left) and without (right) IC=
preset. NOTE: The preset example starts in the initial state directly
out of the DCOP calculation, while the nonpreset example requires
a long transient to equilibrate.
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12.2 Device Level IC= Specification
Many devices in Xyce support setting initial junction voltage conditions on the device instance
line with the IC= keyword. This is frequently used to set the state of digital circuits. Figure 12.2
presents a simple inverter example demonstrating the use of IC= on a BSIMSOI device.

While many circuit simulators have a similar IC= capability, Xyce implementation differs in some
important respects. For any device with an IC= statement, Xyce enforces the junction drop in par-
allel with the device junction as a voltage source in parallel with the device. Xyce then applies the
parallel voltage source through the DCOP calculation, and then removes it prior to the beginning
of the transient. This strongly enforces the requested junction drop, meaning that if the DCOP con-
verges, the requested voltage drop will in the solution. In many other circuit codes, Xyce applies
IC= as a weaker constraint, with the intent of improving DCOP calculation robustness.

IC= can be applied to the following devices: BSIM3, BSIM4, BSIMSOI, Capacitor, and Inductor.

MOS LEVEL=10 INVERTER WITH IC=

.subckt INV IN OUT VDD GND

MN1 OUT IN GND GND GND NMOS w=4u l=0.15u IC=2,0

MP1 OUT IN VDD GND VDD PMOS w=10u l=0.15u

.ends

.tran 20ns 30us

.print tran v(vout) v(in)+1.0 v(1)

VDDdev VDD 0 2V

RIN IN 1 1K

VIN1 1 0 2V PULSE (2V 0V 1.5us 5ns 5ns 1.5us 3.01us)

R1 VOUT 0 10K

C2 VOUT 0 0.1p

XINV1 IN VOUT VDD 0 INV

.MODEL NMOS NMOS ( LEVEL = 10 )

.MODEL PMOS PMOS ( LEVEL = 10 )

.END

Figure 12.2. Example netlist with device-level IC=.
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12.3 .IC and .DCVOLT Initial Condition
Statements

.IC and .DCVOLT are equivalent methods for specifying initial conditions. How Xyce applies them,
however, depends on whether the UIC parameter is present on the .TRAN line. If UIC is not speci-
fied, then Xyce applies the conditions specified by a .IC and .DCVOLT statements throughout the
DCOP phase, ensuring the specified values will be the solved values at the end of the DCOP
calculation. Xyce allows unspecified variables to find their computed values, consistent with the
imposed voltages.

RC circuit

.ic v(1)=1.0

c1 1 0 1uF

R1 1 2 1K

v1 2 0 0V

.print tran v(1)

.tran 0 5ms

.options timeint reltol=1e-6 abstol=1e-6

.end

Figure 12.3. Example netlist with .IC. NOTE: Without the .IC

statement, the capacitor is not given an initial charge, and the
transient signals are flat. With the .IC statement, it has an initial
charge, which then decays in transient.Without the .IC statement,
the capacitor is not given an initial charge, and the signals in tran-
sient are all flat. With the .IC statement, it has an initial change
which then decays in transient.

If UIC is specified on the .TRAN line, then Xyce skips the DCOP calculation altogether, and uses
the values specified on .IC and .DCVOLT lines as the initial values for the transient calculation.
Unspecified values are set to zero.

For the UIC and non-UIC cases, Xyce ignores specified values that do not correspond to existing
circuit variables. Also, the .IC capability can only set voltage values, not current values.

12.3.1 Syntax
.IC V(node1) = val1 <V(node2) = val2> ...

.DCVOLT V(node1) = val1 <V(node2) = val2> ...

where: val1, val2, ... specify nodal voltages and node1, node2, ... specify node numbers.
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12.3.2 Example
.IC V(1) = 2.0 V(A) = 4.5

.DCVOLT 1 2.0 A 4.5

Fig. 12.3 provides a more complete example (showing a full netlist).
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12.4 .SAVE Statements
Xyce stores operating point information using .SAVE statements, and then reuses it to start sub-
sequent transient simulations. Using .SAVE results in solution data being stored in a text file,
comprised of .NODESET or .IC statements. This file can be applied to other simulations using
.INCLUDE.

The form of .SAVE is as follows:

.SAVE <TYPE=type keyword> <FILE=save file> <LEVEL=level keyword> <TIME=save time>

where:

type keyword can be set to “NODESET” or “IC”. By default, it will be “IC”.

save file is the user-specified output file name for the *.ic file. If this is not specified, Xyce uses
netlist.cir.ic.

level keyword is an Hspice compatibility parameter. Xyce supports “ALL” and “NONE.”

save time is an Hspice compatibility parameter. Currently unsupported, Xyce outputs the *.ic file
at time=0.0.
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12.5 DCOP Restart
DCOP restart is a capability similar to .NODESET and .SAVE used in combination. Similar to
.NODESET, starting a simulation with DCOP restart will result in Xyce performing two nonlinear
solves. The first solve strictly enforces the previous answer, and the second solve allows all the
values to float and obtain their unconstrained solution. The second solve relies on the results of
the first solve as an initial guess.

If the UIC keyword appears on the .TRAN line, Xyce applies the contents of the DCOP restart file
as the initial condition and skips the DCOP calculation altogether. This is, the same as for .IC and
.NODESET.

While .NODESET and DCOP restart are similar, there are a few differences. The biggest difference
is the handling of voltage source voltages and currents. DCOP restart will attempt to restart
from all the variables of the simulation, including voltage source variables. .NODESET, on the
other hand, will ignore specified variables associated with voltage sources, and explicitly does
not allow currents to be set. In general, voltage sources are constraints in and of themselves,
so reconstraining them can cause singular matrices. To avoid this issue, DCOP restart makes
changes to the linear system to prevent matrices from being singular.

12.5.1 Saving a DCOP restart file

To create a DCOP restart file, add a .DCOP output=filename line to the netlist:

.dcop output=saved.op

This will result in Xyce producing the file “saved.op” immediately after the operating point calcu-
lation. The produced file is similar to a *.ic file that can be produced by .SAVE, but with different
format. Both file types are two-column text files. One column has the variable name, the other
column the value of that variable.

12.5.2 Loading a DCOP restart file

To use a DCOP restart file, add a .DCOP input=filename line to the netlist:

.dcop input=saved.op

If the specified file does not exist in the local directory, Xyce will simply ignore the .DCOP statement
and run normally.
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12.6 UIC and NOOP
As noted earlier, the UIC key word on the TRAN line will disable the DCOP calculation, and result
in Xyce immediately going to transient. If the user specifies .IC, .NODESET, or .DCOP input, then
the transient calculation will use the specified initial values as the initial starting point. The NOOP

keyword works exactly the same way as UIC.

pierce oscillator

c1 1 0 100e-12

c2 3 0 100e-12

c3 2 3 99.5e-15

c4 1 3 25e-12

l1 2 4 2.55e-3

r1 1 3 1e5

r2 3 5 2.2e3

r3 1 4 6.4

v1 5 0 12

Q1 3 1 0 NBJT

.MODEL NBJT NPN (BF=100)

.print tran v(2) v(3)

.tran 1ns 1us UIC

.ic v(2)=-10000.0 v(5)=12.0

Figure 12.4. Example netlist with UIC.
NOTE: This circuit is a pierce oscillator, which only oscillates if the
operating point is skipped. If the .IC statement is not included,
the oscillator will take a long time to achieve its steady-state am-
plitude. By including the .IC statement, the amplitude of node 2
is preset to a value close to its final steady-state amplitude. The
transient in this example only runs for 10 cycles as a demonstra-
tion. In general, the time scales for this oscillator are much longer
and require millions of cycles.

12.6.1 Example
.tran 1ns 1us UIC

.tran 1ns 1us NOOP

Some circuits, particularly oscillator circuits, will only function properly if the operating point is
skipped, as they need an inconsistent initial state to oscillate. Figure 12.4 presents a Pierce
oscillator example.
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13. Working with
.PREPROCESS Commands

Chapter Overview
This chapter includes the following sections:

� Section 13.1, Introduction

� Section 13.2, Ground Synonym Replacement

� Section 13.3, Removal of Unused Components

� Section 13.4, Adding Resistors to Dangling Nodes
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13.1 Introduction
In an effort to make Xyce more compatible with other commercial circuit simulators (e.g., HSPICE),
some optional tools have been added to increase the netlist processing capabilities of Xyce. These
options, which occur toward the beginning of a simulation, have been incorporated not only to
make Xyce more compatible with different (i.e. non-Xyce) netlist syntax, but also to help detect
and remove certain singular netlist configurations that can often cause a Xyce simulation to fail.
Because all of the commands described in this section occur as a precursory step to setting up
a Xyce simulation, they are all invoked in a netlist file via the keyword .PREPROCESS. This chapter
describes each of the different functionalities that can be invoked via a .PREPROCESS statement in
detail and provides examples to illustrate its use.

13.2 Ground Synonym Replacement
In certain versions of SPICE, keywords such as GROUND, GND, and GND! can be used as node
names in a netlist file to represent the ground node of a circuit. Xyce, however, only recognizes
node 0 as an official name for ground. Hence, if any of the prior node names is encountered in a
netlist file, Xyce will treat these as different nodes from ground. To illustrate this point, consider
the netlist of figure 13.1. When the node Gnd is encountered in the definition of resistor R3, Xyce
instantiates this as a new node. The schematic diagram corresponding to this netlist (figure
reffig:gndreplace2) shows that the resistor R3 is “floating” between node 2 and a node with only
a single device connection, node Gnd. When Xyce executes the netlist of figure 13.1, the voltage
V(2) will evaluate to 0.5V.

Circuit with "floating" resistor R3

V1 1 0 1

R1 1 2 1

R2 2 0 1

R3 2 Gnd 1

.DC V1 1 1 0.1

.PRINT DC V(2)

.END

Figure 13.1. Example netlist where Gnd is treated as being dif-
ferent from node 0.

If one would rather treat Gnd the same as node 0 in the above example, use the figure 13.3 netlist
instead. When the statement .PREPROCESS REPLACEGROUND TRUE is present in a netlist, Xyce will
treat any nodes named GND, GND!, GROUND, or any capital/lowercase variant of these keywords (e.g.,
gROunD) as synonyms for node 0. Hence, according to Xyce, the figure 13.3 netlist corresponds to
figure 13.4 schematic diagram, and the voltage V(2) will evaluate to 0.33V.
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Figure 13.2. Circuit diagram corresponding to the netlist of figure
13.1 where node Gnd is treated as being different from node 0.

Circuit where resistor R3 does *not* float

V1 1 0 1

R1 1 2 1

R2 2 0 1

R3 2 Gnd 1

.PREPROCESS REPLACEGROUND TRUE

.DC V1 1 1 0.1

.PRINT DC V(2)

.END

Figure 13.3. Example netlist where Gnd is treated as a synonym
for node 0.
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Figure 13.4. Circuit diagram corresponding to figure 13.3 where
node Gnd is treated as a synonym for node 0.
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NOTE: Only one .PREPROCESS REPLACEGROUND statement is allowed per netlist file (this is to pre-
vent the user from setting REPLACEGROUND to TRUE on one line and then to FALSE on another).
There is no way to differentiate between different keywords (i.e., it is not possible to treat GROUND
as a synonym for node 0 while allowing GND to represent an independent node). If REPLACEGROUND
is set to TRUE, Xyce will treat both of these keywords as node 0 if present in a netlist file.

13.3 Removal of Unused Components
Consider a slight variant of the circuit in figure 13.3 with the netlist given in figure 13.5. Here,
the resistor R3 is connected in a peculiar configuration: both terminals of the resistor are tied to
the same circuit node, as is illustrated in figure 13.6. Clearly, the presence of this resistor has no
effect on the other voltages and currents in the circuit since, by the very nature of its configuration,
it has no voltage across it and, hence, does now draw any current. Therefore, in some sense,
the component can be considered as “unused.” The presence of a resistor such as R3 is rarely or
never introduced by design, rather the presence of such components is the result of either human
or automated error.

Circuit with an unused resistor R3

V1 1 0 1

R1 1 2 1

R2 2 0 1

R3 2 2 1

.DC V1 1 1 0.1

.PRINT DC V(2)

.END

Figure 13.5. Netlist with a resistor R3 whose device terminals
are both the same node (node 2).

While the presence of the resistor R3 in figure 13.3 does not change the behavior of the circuit, it
adds an additional component to the netlist Xyce must include when solving for the voltages and
currents in the circuit. If the number of such components in a given netlist is large, it is potentially
desirable to remove them from the netlist to ease the burden on Xyce’s solver engines. This, in
turn, can help to avoid possible convergence issues. For example, even though the netlist in figure
13.5 will run properly in Xyce, the netlist of figure 13.7 will abort. The voltage source V2 attempts
to place a 1V difference between its two device terminals; however, as both nodes of the voltage
source are the same, the voltage source is effectively shorted.

Xyce includes the following command to prevent similar situations:

.PREPROCESS REMOVEUNUSED <component list>

where <component list> is a list of device types separated by commas. For each device type
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Figure 13.6. Circuit of figure 13.5 containing a resistor R3 whose
terminals are tied to the same node (node 2).

Circuit with improperly connected voltage source V2

V1 1 0 1

R1 1 2 1

R2 2 0 1

V2 2 2 1

.DC V1 1 1 0.1

.PRINT DC V(2)

.END

Figure 13.7. Circuit with an improperly connected voltage source
V2.
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specified in the list, Xyce checks for instances of that device type for which all of the device
terminals are connected to the same node. If such a device is found, Xyce removes that device
from the netlist. For instance, if executing the netlist of figure 13.8, Xyce will seek out such
devices and remove them from the netlist. This causes the resistor R3 to be removed from the
netlist. Figure 13.9 presents the schematic of the resulting Xyce-simulated circuit. NOTE: The
presence of “C” in the REMOVEUNUSED statement does not cause Xyce to abort even though there
are no capacitors in the netlist. Also, as in the case of a REPLACEGROUND statement, only one
.PREPROCESS REMOVEUNUSED line may be present per netlist, or Xyce will abort.

Table 13.1 lists devices that can be removed via a REMOVEUNUSED statement. In the case of MOS-
FETs and BJTs, three device terminals must be the same (the gate, source, and drain in the case
of a MOSFET; the base, collector, and emitter in the case of a BJT) to remove either device from
the netlist.

Circuit with improperly connected voltage source V2

V1 1 0 1

R1 1 2 1

R2 2 0 1

R3 2 2 1

.PREPROCESS REMOVEUNUSED R,C

.DC V1 1 1 0.1

.PRINT DC V(2)

.END

Figure 13.8. Circuit with an “unused” resistor R3 removed from
the netlist.
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Figure 13.9. Circuit of figure 13.8 where resistor R3 has been
removed via the .PREPROCESS REMOVEUNUSED statement.
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Table 13.1: List of keywords and device types which can be used
in a .PREPROCESS REMOVEUNUSED statement.

Keyword Device Type
C Capacitor
D Diode
I Independent Current Source
L Inductor
M MOSFET
Q BJT
R Resistor
V Independent Voltage Source

13.4 Adding Resistors to Dangling Nodes
Consider the netlist of figure 13.10 and the corresponding schematic of figure 13.11. Nodes 3

and 4 of the netlist are what we will henceforth refer to as dangling nodes. We say that node 4

dangles because it is only connected to the terminal of a single device, while we say that node
3 dangles because it has no DC path to ground. The first of these situations—connection to a
single device terminal only—can arise, for example, in a netlist which contains nodes representing
output pins that are not connected to a load device. For instance, the resistance R2 in figure 13.10
could represent the resistance of an output pin of a package that is meant to drive resistive loads.
Hence, an actual physical implementation of the circuit of figure 13.11 would normally include a
resistor between node 4 and ground, but, in creating the netlist, the presence of such an output
load has been (either intentionally or unintentionally) left out.

Circuit with two dangling nodes, nodes 3 and 4

V1 1 0 1

R1 1 2 1

C1 2 3 1

C2 3 0 1

R2 2 4 1

.DC V1 0 1 0.1

.PRINT DC V(2)

.END

Figure 13.10. Netlist of circuit with two dangling nodes, nodes 3

and 4.

The second situation—where a node has no DC path to ground—is sometimes an effect that
is purposely incorporated into a design (e.g., the design of switched capacitor integrators (e.g.,
see [22], chapter 10), but oftentimes it is also the result of some form of error in the process of
creating the netlist. For instance, when graphical user interfaces (GUIs) are used to create circuit
schematics that are then translated into netlists via software, one very common unintentional error
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Figure 13.11. Schematic of netlist in figure 13.10.

is to fail to connect two nodes that are intended to be connected. To illustrate this point, consider
the schematic of figure 13.12. The schematic seems to indicate that the lower terminal of resistor
R2 should be connected to node 3. This is not the case as there is a small gap between node 3

and the line intended to connect node 3 to the resistor. Such an error can often go unnoticed when
creating a schematic of the netlist in a GUI. Thus, when the schematic is translated into a netlist
file, the resulting netlist would not connect the resistor to node 3 and would instead create a new
node at the bottom of the resistor, resulting in the circuit depicted in figure 13.11.

While neither of the previous situations is necessarily threatening (Xyce will run the figure 13.10
netlist successfully to completion), there are times when it is desirable to somehow make a dan-
gling node not dangle. For instance, returning to the example in which the resistor R2 represents
the resistance of an output pin, one may want to simulate the circuit when a 1K load is attached
between node 4 and ground in figure 13.11. In the case where a node has no DC path to ground,
the situation is slightly more dangerous if, for instance, the node in question is also connected to
a high-gain device such as the gate of a MOSFET. As the DC gate bias has a great impact on the
DC current traveling through the drain and source of the transistor, not having a well-defined DC
gate voltage can greatly degrade the simulated performance of the circuit.

In both prior examples, the only true way to “fix” each of these issues is to find all dangling nodes in
a particular netlist file and augment the netlist at/near these nodes to obtain the desired behavior.
If, however, the number of components in a circuit is very large (say on the order of hundreds of
thousands of components), manually augmenting the netlist file for each dangling node becomes
a practical impossibility if the number of such nodes is large.

Hence, it is desirable for Xyce to be capabable of automatically augmenting netlist files so as
to help remove dangling nodes from a given netlist. The command .PREPROCESS ADDRESISTORS

is designed to do just this. Assuming the netlist of figure 13.13 is stored in the file filename,
the .PREPROCESS ADDRESISTORS statements will cause Xyce to create a new netlist file called
filename xyce.cir (depicted in figure 13.14). The line .PREPROCESS ADDRESISTORS NODCPATH

1G instructs Xyce to create a copy of the netlist file containing a set of resistors of value 1G that
are connected between ground and nodes which currently have no DC path to ground. Similarly,
the line .PREPROCESS ADDRESISTORS ONETERMINAL 1M instructs Xyce to add to the same netlist file
a set of resistors of value 1M that are connected between ground and devices that are connected
to only one terminal. The resistor RNODCPATH1 in figure 13.14 achieves the first of these goals
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while RONETERM1 achieves the second. Figure 13.15 shows a schematic of the resulting circuit
represented by the netlist in figure 13.14.
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Figure 13.12. Schematic of a circuit with an incomplete connec-
tion between the resistor R2 and node 3.

Circuit with two dangling nodes, nodes 3 and 4

V1 1 0 1

R1 1 2 1

C1 2 3 1

C2 3 0 1

R2 2 4 1

.PREPROCESS ADDRESISTORS NODCPATH 1G

.PREPROCESS ADDRESISTORS ONETERMINAL 1M

.DC V1 0 1 0.1

.PRINT DC V(2)

.END

Figure 13.13. Netlist of circuit with two dangling nodes, nodes 3

and 4, with .PREPROCESS ADDRESISTORS statements.

Some general comments regarding the use of .PREPROCESS ADDRESISTOR statements include:

• Xyce does not terminate immediately after the netlist file is created. In other words, if Xyce
is run on the filename of figure 13.13 netlist, it will attempt to execute this netlist as given
(i.e., it tries to simulate the circuit of figure 13.11) and generates the file filename xyce.cir

as a biproduct. It is important to point out that the resistors that are added at the bottom
of the netlist file filename xyce.cir do not get added to the original netlist when Xyce is
running on the file filename. If one wishes to simulate Xyce with these resistors in place,
one must run Xyce on filename xyce.cir explicitly.

• The naming convention for resistors which connect to ground nodes which do not have a DC
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XYCE-generated Netlist file copy: TIME=’07:32:31 AM’

* DATE=’Dec 19, 2007’

*Original Netlist Title:

*Circuit with two dangling nodes, nodes 3 and 4.

V1 1 0 1

R1 1 2 1

C1 2 3 1

C2 3 0 1

R2 2 4 1

*.PREPROCESS ADDRESISTORS NODCPATH 1G

*Xyce: ".PREPROCESS ADDRESISTORS" statement

* automatically commented out in netlist copy.

*.PREPROCESS ADDRESISTORS ONETERMINAL 1M

*Xyce: ".PREPROCESS ADDRESISTORS" statement

* automatically commented out in netlist copy.

.DC V1 0 1 0.1

.PRINT DC V(2)

*XYCE-GENERATED OUTPUT: Adding resistors between ground

* and nodes connected to only 1 device terminal:

RONETERM1 4 0 1M

*XYCE-GENERATED OUTPUT: Adding resistors between ground

* and nodes with no DC path to ground:

RNODCPATH1 3 0 1G

.END

Figure 13.14. Output file filename xyce.cir which results from
the .PREPROCESS ADDRESISTOR statements for the netlist of figure
13.12 (with assumed file name filename).
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Figure 13.15. Schematic corresponding to the Xyce-generated
netlist of figure 13.14.

path to ground is RNODCPATH<i>, where i is an integer greater than 0; the naming conven-
tion is similar for nodes which are connected to only one device terminal (i.e., of the form
RONETERM<i>). Xyce will not change this naming convention if a resistor with one of the
above names already exists in the netlist.

Hence, if a resistor named RNODCPATH1 exists in netlist file filename, and Xyce detects there
is a node in this netlist file that has no DC path to ground, Xyce will add another resistor with
name RNODCPATH1 to the netlist file filename xyce.cir (assuming that either .PREPROCESS
ADDRESISTORS NODCPATH or .PREPROCESS ADDRESISTORS ONETERMINAL are present in filename).
If Xyce is subsequently run on filename xyce.cir, it will exit in error due to the presence of
two resistors with the same name.

• Commands .PREPROCESS ADDRESISTORS NODCPATH and .PREPROCESS

ADDRESISTORS ONETERMINAL do not have to be simultaneously present in a netlist file. The
presence of either command will generate a file filename xyce.cir, and the presence of
both will not generate two separate files. As with other .PREPROCESS commands, however, a
netlist file is allowed to contain only one NODCPATH and one ONETERMINAL command each. If
multiple NODCPATH and/or ONETERMINAL lines are found in a single netlist file, Xyce will exit in
error.

• It is possible that a single node can have no DC path to ground and be connected to only
one device terminal. If a NODCPATH and ONETERMINAL command are present in a given netlist
file, only the resistor corresponding to the ONETERMINAL command is added to the netlist file
filename xyce.cir and the resistor corresponding to the NODCPATH command is omitted. If
a NODCPATH command is present but a ONETERMINAL command is not, then Xyce will add a
resistor corresponding to the NODCPATH command to the netlist, as usual.

• In generating the file filename xyce.cir, the original .PREPROCESS ADDRESISTOR state-
ments are commented out with a warning message. This is to prevent Xyce from creating
the file filename xyce.cir xyce.cir when the file filename xyce.cir is run.

NOTE: This act is put in place simply to avoid generating redundant files. While filename xyce.cir xyce.cir

would be slightly different from filename xyce.cir (e.g., a different date and time stamp),
both files would functionally implement the same netlist.
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14. TCAD (PDE Device)
Simulation with Xyce

Chapter Overview
This chapter provides guidance for using the mesh-based device simulation capability of Xyce. It
includes the following sections:

� Section 14.1, Introduction

� Section 14.2, One-Dimensional Example

� Section 14.3, Two-Dimensional Example

� Section 14.4, Doping Profile

� Section 14.5, Electrodes

� Section 14.6, Meshing

� Section 14.8, Mobility Models

� Section 14.9, Bulk Materials

� Section ??, Solver Options

� Section 14.10, Output and Visualization
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14.1 Introduction
This chapter describes how to use the mesh-based device simulation functionality of Xyce, which
is based on the solution a coupled set of partial differential equations (PDEs), discretized on a
mesh. Such devices are often referred to as Technology Computer-Aided Design (TCAD) de-
vices. While the rest of Xyce is intended to be similar to analog circuit simulators such as SPICE,
the TCAD device capability is intended to be similar to commercial device simulators, such as
PISCES [23] and DaVinci [24].

Xyce offers two different TCAD devices — a one-dimensional device and a two-dimensional device
— and enables both to be invoked in the same way as a conventional lumped parameter circuit
device. Generally, this capability is intended for very detailed simulation of semiconductor devices,
such as diodes, bipolar transistors, and MOSFETs. As the Xyce TCAD devices can be invoked
from the netlist, they can be embedded in a circuit as part of a mixed-mode simulation.

The Xyce TCAD devices should be considered to be a beta-level capability. The primary focus
of Xyce has been traditional analog circuit simulation, so these devices have not received the
same level of attention. This capability should be regarded as a prototype for Charon([25]), a
high-performance TCAD simulator under development at Sandia.

14.1.1 Equations

Kramer [26] and Selberherr [27], among others, describe device simulation equations. The most
common formulation and the one used in Xyce, is the drift-diffusion (DD) formulation, which con-
sists of three coupled PDEs (a single Poisson equation for electrostatic potential and two continuity
equations; one each for electrons and holes).

Poisson equation

The electrostatic potential φ satisfies Poisson’s equation:

−∇ · (ε∇φ(x)) = ρ(x) (14.1)

where ρ is the charge density and ε is the permittivity of the material. For semiconductor devices,
local carrier densities and local doping determine charge density;

ρ(x) = q(p(x)− n(x) + C(x)) (14.2)

Here, p(x) is the spatially dependent concentration of holes; n(x), the concentration of electrons;
and q, the magnitude of the charge on an electron. C(x) is the total doping concentration, which
can also be represented as C(x) = N+

D (x) − N−
A (x), where N+

D the concentration of positively
ionized donors, N−

A the concentration of negatively ionized acceptors.
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Species continuity equations

Continuity equations relate the convective derivative of the species concentrations to the creation
and destruction of particles (“recombination/generation”).

∂n(x)

∂t
+∇ · Γn = −R(x) (14.3)

∂p(x)

∂t
+∇ · Γp = −R(x) (14.4)

Here n is the electron concentration and p is the hole concentration. R is the recombination
rate for both species. Γn and Γp are particle fluxes for electrons and holes, respectively. R is
the recombination rate for both species, and the right hand sides are equal since creation and
destruction of carriers occurs in pairs. The quantities Γn and Γp are electron and hole fluxes, and
are determined from the following expressions:

Γn = n(x)µnE(x) +Dn∇n(x) (14.5)
Γp = p(x)µpE(x) +Dp∇p(x) (14.6)

µn, µp are mobilities for electrons and holes, and Dn, Dp are diffusion constants. E(x) is the
electric field, which is given by the gradient of the potential, or −∂φ/∂x.

14.1.2 Discretization

Xyce uses a box-integration discretization, with the Scharfetter-Gummel method to model the flux
of charged species. For a more-detailed description of this method, refer to [26] [27] [28].

14.2 One Dimensional Example
The one-dimensional device was the first PDE-based device to be implemented in Xyce. The sin-
gle dimension limits its usefulness, but its simplicity makes it a good device to use for a preliminary
example. One dimensional devices are almost always two-terminal diodes, and this fact allows for
assumptions that simplify the specification and shorten the parameter list of the device.

Figure 14.2 provides an example netlist for a simulation of a one-dimensional diode, while fig-
ure 14.2 shows its corresponding schematic. This regulator circuit is based on the principle that
connecting one or more diodes in series with a resistor and a power supply will produce a rela-
tively constant voltage. The input voltage (node 2) is a sinewave, with a frequency of 50 Hz and
an amplitude of 1 V. The expected output (node 3) signal should be (mostly) flat.

14.2.1 Netlist Explanation

Currently, there are almost no model parameters for PDE devices. The model line serves only
to set the level. The default level is 1, for a one-dimensional device. Setting level=2 will invoke
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PDE Diode Regulator Circuit

VP 1 0 PULSE(0 5 0.0 2.0e-2 0.0 1.0e+20 1.2e+20)

VF 2 1 SIN(0 1 50 2.0e-2)

VT1 4 0 0V

R1 2 3 1k

* TCAD/PDE Device

YPDE Z1 3 4 DIODE na=1.0e17 nd=1.0e17 graded=1

+ l=5.0e-4 nx=101

.MODEL DIODE ZOD

.TRAN 1.0e-3 12.0e-2

.print TRAN format=tecplot

+ v(1) v(2) v(3) v(4) I(VF) I(VT1)

.options NONLIN maxstep=100 maxsearchstep=3

+ searchmethod=2

.options TIMEINT reltol=1.0e-3 abstol=1.0e-6

.END

Figure 14.1. Voltage regulator circuit, using a one-dimensional
TCAD diode. Figure 14.3 illustrates the result of this netlist. The
PDE device instance line is in red, and the PDE device model line
is in blue.
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Figure 14.2. Voltage regulator schematic
The diode, Z1, is the PDE device in this example.

two-dimensional devices. In this example, the level is not explicitly set, and so Xyce uses the
default value (1).

The instance line is where most of the specific parameters are set for a TCAD device. In this
example, the line appears as:

YPDE Z1 3 4 DIODE na=1.0e17 nd=1.0e17 graded=1 l=5.0e-4 nx=101

Doping parameters na and nd represent the majority carrier doping levels on the N- and the P-
sides of the junction, respectively. graded=1 is also a doping parameter, and specifies that the
junction is a graded junction, rather than an abrupt step-function junction. l=5.0e-4 specifies the
length of the device, in cm. nx=101 specifies that there are 101 mesh points, including the two
endpoints. For the one-dimensional device, the mesh is always uniform, so the size of each mesh
cell, ∆x will be:

∆x =
l

nx− 1
=

5.0e-4 cm
100

= 5.0e-6 cm (14.7)

The mesh points i = 0− 101 will have the following locations, xi:

xi = i∆x

xo = 0.0 cm
x1 = 5.0e-6 cm

.

.

.

x101 = 5.0e-4 cm
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14.2.2 Boundary Conditions and Doping Profile

The cited netlist example relies mostly on default parameters; therefore, it specifies nothing about
electrodes, or boundary conditions, and has a minimal doping specification. A one-dimensional
device can have only two electrodes connected to the circuit. The electrodes are at opposite ends
of the domain, one at the first mesh point (x=0.0 cm, i=0) and the other at the opposite end of the
domain, at the last mesh point (x=5.0e-4 cm, i=101).

The electrode associated with the first mesh point (x=0.0 cm) is connected to the second circuit
node on the instance line, while the electrode associated with the last mesh point (x=l) is con-
nected to the first circuit node on the instance line. For the doping used in this example, the
junction is in the exact center of the device (x=l/2), and the n-side is the region defined by x<l/2,
and the p-side is the region defined by x>l/2. This default doping, along with the electrode-circuit
connectivity, result in the one-dimensional device to behave like a traditional SPICE-style diode.
For a complete discussion of how to specify a doping profile see section 14.4.1. For a complete
discussion of how to specify electrodes in detail (including boundary conditions), see section 14.5.

14.2.3 Results

Figure 14.3 shows the transient result of this circuit. The voltage drop across the diode (V(3)) is
nearly the same for a wide range of currents, and is nearly constant. The voltage drop across the
series resistor, R1, is much more sensitive(V(2)-V(3)), and so most of the voltage variation of the
input sinewave is accounted for by R1.
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Figure 14.3. Results for voltage regulator. In the left plot, the
transient output is shown, in which the input voltage is blue and the
output voltage is red. In the right plot, the initial carrier densities
are shown, with the electron density in red and the hole density in
blue.
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14.3 Two-Dimensional Example
Figure 14.4 presents an example netlist for a simulation of a two-dimensional bipolar transistor.
As before, the PDE device instance line is in red, while the PDE device model line is in blue. In
this case, note that the model line specifies the level, which is set to 2. This is required for the
two-dimensional device. This particular example is a DC sweep of a bipolar transistor device.
Figure 14.5 presents a schematic illustrating this circuit.

Two-Dimensional Example

VPOS 1 0 DC 5V

VBB 6 0 DC -2V

RE 1 2 2K

RB 3 4 190K

YPDE BJT 5 3 7 PDEBJT meshfile=internal.msh

+ node = {name = collector, base, emitter}
+ tecplotlevel=2 txtdatalevel=1

+ mobmodel=arora

+ l=2.0e-3 w=1.0e-3

+ nx=30 ny=15

.MODEL PDEBJT ZOD level=2

* Zero-volt sources acting as an ammeter to measure the

* base, collector, and emmitter currents, respectively

VMON1 4 6 0

VMON2 5 0 0

VMON3 2 7 0

.DC VPOS 0.0 12.0 0.5 VBB -2.0 -2.0 1.0

.options NONLIN maxstep=70 maxsearchstep=1

+ searchmethod=2

.options TIMEINT reltol=1.0e-3 abstol=1.0e-6

+ firstdcopstep=0 lastdcopstep=1

.PRINT DC V(1) I(VMON1) I(VMON2) I(VMON3)

.END

Figure 14.4. Two-dimensional BJT netlist. Figures 14.6 and 14.7
provide some of the results of this netlist.

14.3.1 Netlist Explanation

The two-dimensional device can have 2 to 4 electrodes. In this example there are three; nodes 5,
3, and 7, corresponding to the three names on the “node” line, which appears as:
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Figure 14.5. Two-dimensional BJT circuit schematic This
schematic is for the circuit described by the netlist in figure 14.4.
The mesh in the large circle is the mesh used in the example. The
other mesh, which contains some mesh refinement, is included in
the figure as an example of what is possible with an external mesh
generator.

+ node = {name = collector, base, emitter}

This line specifies that node 5 is connected to an electrode named “collector,” node 3 is connected
to an electrode named “base,” and node 7 is connected to an electrode named “emitter”. Although
this example only contains the electrode names, the “node” specification can contain a lot of
information. Section 14.5 provides a full explanation of the electrode parameters.

The next line contains parameters concerned with plotting the results, and appears as follows:

+ tecplotlevel=2 txtdatalevel=1

These are not related to the output specified by .PRINT, which outputs circuit data. The tecplotlevel

command enables files to be output readable by Tecplot, which can then be used to create contour
plots of quantities such as the electron density, electrostatic potential and the doping profile. Fig-
ures 14.6 and 14.7 contain examples of Tecplot-generated contour plots, which were generated
from the results of this example.

The txtdatalevel command enables a text file with volume averaged information to be output to
a file. Currently, Xyce will update both of these output files at each time step or DC sweep step.
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The next line, mobmodel=arora, specifies which mobility model to use. Section 14.8 provides for
more detail on available mobility models.

The last two lines, specify the mesh of the device, and are given by:

+ l=2.0e-3 w=1.0e-3

+ nx=30 ny=15

This numbers are used in nearly the same way as the one-dimensional case used l and nx pa-
rameters. The mesh is Cartesian, and the spacing is uniform.

14.3.2 Doping Profile

As in the one-dimensional example, the two-dimensional example in figure 14.4 specifies nothing
about the doping profile, and thus relies on default settings. In this case there are three specified
electrodes, which by default results in the doping profile of the bipolar junction transistor (BJT).
Section 14.4 provides a complete description of how to specify a doping profile in detail, and
describes the various default impurity profiles.

14.3.3 Boundary Conditions and Electrode Configuration

As in the one- and two-dimensional examples in figure 14.4 specify nothing about the electrode
configuration or the boundary conditions, and rely on default settings. To be consistent with the
default three-terminal doping, the device has terminals that correspond to that of a BJT. All three
electrodes (collector, base, emitter) are along the top of the device.

By default all electrodes are considered to be neutral contacts. The boundary conditions applied
to the electron density, hole density, and electrostatic potential are all Dirichlet conditions.

Section 14.5 discusses how to specify electrodes in detail (including boundary conditions).

14.3.4 Results

Figures 14.6, 14.7 and 14.8 provide results for the two-dimensional example. The first two figures
are contour plots of the electrostatic potential. The first corresponds to the first DC sweep step,
where VPOS is set to 0.0 Volts. The second corresponds to the final DC sweep step, in which
VPOS has a value of 12.0 volts. The voltage source, VPOS, applies a voltage to the emitter load
resistor, RE, so some of the 12.0V is dropped across RE, an the rest is applied to the BJT.

The third figure is an I-V curve of the dependence of the three terminal currents on applied emitter
voltage. For the entire sweep, −2.0 V has been applied to the base load resistor and, as this
transistor is a PNP transistor, this results in the transistor being in an “on” state. The emitter-
collector current varies nearly linearly with the applied emitter voltage. Also, as can be expected
because of current conservation, the three currents sum to nearly zero.
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Note that the mesh used to generate these results is visible in figure 14.6, and was generated
using the internal “uniform mesh”. This mesh will not produce a very accurate result, as it does
not resolve the depletion regions very well. Accuracy can, in theory, be improved using mesh
refinement near the depletion regions. However, such meshes must be read in from an external
mesh generator(currently unsupported).

Figure 14.6. Initial two-dimensional BJT result
A Tecplot-generated contour plot of the electrostatic potential at
the first DC sweep step of the netlist in figure 14.4.

Figure 14.7. Final two-dimensional BJT result.
A Tecplot-generated contour plot of the electrostatic potential at
the last DC sweep step of the netlist in figure 14.4.

14.4 Doping Profile
Xyce used the defaults in the two examples as no doping parameters were specified. Default pro-
files are uniquely specified by the number of electrodes. In practice, especially for two-dimensional
simulations, the user will generally need to specify the doping profile manually.
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Figure 14.8. I-V two-dimensional BJT result for the netlist in
figure 14.4. The three plotted currents are through the three BJT
electrodes, and as expected they add (if corrected for sign) to zero.
I(VMON1) is the base current, I(VMON2) the collector current, and
I(VMON3) the emitter current. V(1) is the voltage applied to the
emitter load resistor, RE.

14.4.1 Manually Specifying the Doping

Figure 14.9 shows a circuit netlist for a one-dimensional device with a detailed, manual specifica-
tion of the doping profile. Figure 14.11 illustrates a similar, two-dimensional version of this problem.
For this discussion, the one-dimensional example will be referred to, but information conveyed is
equally applicable to the two-dimensional case.

In both examples, the parameters associated with doping are in red text. The doping is specified
with one or more regions, which are summed together to obtain the total profile. Doping regions
are specified in a tabular format, with each column representing a different region.

In the one-dimensional example, there are three regions, which are illustrated in figure 14.10.
Region 1 is a uniform n-type doping, with a constant magnitude of 4.0e+12 donors per cubic cm.
This magnitude is set by the parameter nmax. As the doping in this region is spatially uniform,
the only meaningful parameters are function (which in this case specifies a spatially uniform
distribution), type (ntype or ptype) and nmax. The other parameters, nmin through flatx (1D) or
flaty (2D), are ignored for a spatially uniform region.

Region 2 is a more complicated region, in that the profile varies with space. This region is doped
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Doping and Electrode specification example

vscope 0 1 0.0

rscope 2 1 50.0

cid 3 0 1.0u

r1 4 3 1515.0

vid 4 0 5.00

YPDE Z1DIODE 2 3 PDEDIODE nx=301 l=26.0e-4

* DOPING REGIONS: region 1, region 2, region 3

+ region= {name = reg1, reg2, reg3

+ function = uniform, gaussian, gaussian

+ type = ntype, ptype, ntype

+ nmax = 4.0e+12, 1.0e+19, 1.0e+18

+ nmin = 0.0e+00, 4.0e+12, 4.0e+12

+ xloc = 0.0 , 24.5e-04, 9.0e-04

+ xwidth = 0.0 , 4.5e-04, 8.0e-04

+ flatx = 0 , 0 , -1 }
*--------end of Diode PDE device ----------------

.MODEL PDEDIODE ZOD level=1

.options NONLIN maxsearchstep=1 searchmethod=2

.options TIMEINT reltol=1.0e-3 abstol=1.0e-6

.DC vscope 0 0 1

.print DC v(1) v(2) v(3) v(4) I(vscope) I(vid)

.END

Figure 14.9. One-dimensional example, with detailed doping
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with p-type impurities, and has a Gaussian shape. Semiconductor processing often consists of
an implant followed by an anneal, which results in a diffusive profile. The Gaussian function is a
solution to the diffusion problem, when it is assumed that the impurity exists in a fixed quantity.

The peak of the Region 2 doping profile is given by the parameter nmax, and is 1.0e+19 accep-
tors per cubic cm. This peak has a location in the device specified by xloc=24.5e-04 cm. The
parameters nmin and xwidth are fitting parameters.

Figure 14.10. Doping profile, absolute value
This corresponds to the doping specified by the netlist in fig-
ure 14.9

Region 3 is also based on a Gaussian function, but unlike Region 2, it is flat on one side of the
peak. This is set by the flatx parameter. Table 14.1 lists conventions for “flat” parameters.

Table 14.1: Description of the flatx, flaty doping parameters

flatx or flaty value Description 1D Cross Section

0 Gaussian on both sides of the peak (xloc) location.
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Table 14.1: Description of the flatx, flaty doping parameters

flatx or flaty value Description 1D Cross Section

+1 Gaussian if x>xloc, flat (constant at the peak value) if

x<xloc.

-1 Gaussian if x<xloc, flat (constant at the peak value) if

x>xloc.

14.4.2 Default Doping Profiles

Xyce has a few default doping profiles that are invoked when the user doesn’t specify detailed
doping information. The default doping profiles are an artifact of early TCAD device development
in Xyce, but are sometimes still useful. In particular, the simple step-junction diode is often a
useful canonical problem. It is convenient to invoke a step-junction doping without having to use
the more complex region tabular specification.

Most real devices will have doping profiles that do not exactly match the default profiles. When
attempting to simulate a realistic device, it will be necessary to skip the defaults and use the region
tables described in the previous section.

One-Dimensional Case

For the one-dimensional case, Xyce assumes that the doping profile is a simple junction diode,
with the junction location exactly in the middle. The acceptor and donor concentrations are given
by the parameters Na and Nd, respectively.

The use of Na and Nd, implicitly specifies a step junction doping profile, and is mutually exclusive
with the more complex “doping region” table specification, described in section 14.4.1. If a netlist
is input to Xyce with a region table and Na (or Nd), the code will immediately exit with an error.

Two-Dimensional Case

Doping level defaults in the two-dimensional case are somewhat more complicated than in the
one-dimensional case, because having two-dimensions allows for more configurations, and an
arbitrary number (2 to 4) of electrodes. During Xyce development, it was decided default doping
profiles would be determined uniquely by the number of electrodes present. Table 14.2 provides
the three available default dopings. In the case of the BJT and MOSFET dopings, it is possible to
specify either n-type or p-type using the type instance parameter. If the detailed, manual doping
is used, then the type parameter is ignored.

For a two-electrode device, the default doping is that of a simple diode. Xyce uses the acceptor
and donor doping parameters, Na and Nd, in the same manner as in the one-dimensional device—
the junction is assumed to be exactly in the middle of the domain.

For a three-electrode device (as shown in the example), the default doping is that of a bipolar
junction transistor (BJT). By default the transistor is a PNP, but by setting the instance parameter
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type=NPN, an NPN transistor can be specified instead. The two-dimensional example in sec-
tion 14.3 relies on this default.

For a four-terminal device, the default doping is that of a metal-oxide-semiconductor (MOSFET).
The maximum number of electrodes is four, and no default profiles are available for more than four
electrodes. By default this transistor is assumed to be NMOS, rather than PMOS.

Table 14.2: Default doping profiles for different numbers of elec-
trodes

Number of

Electrodes
Doping Profile

2 Step Function Diode

3 Bipolar Junction Transistor (BJT)

4 Metal-Oxide Semiconductor Field-Effect

Transistor(MOSFET)
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14.5 Electrodes
Because minimal electrodes were specified in the two examples, Xyce used the defaults. In
practice, especially for two-dimensional simulations, the user must specify the electrodes in more
detail.

14.5.1 Electrode Specification

A detailed electrode specification is specified in blue text in figure 14.11. As with the doping
parameters, the electrode parameters are specified in a tabular format, in which each table column
specifies the different electrode parameters. The name parameter is the only required parameter.

The number of specified electrodes must match the number of connected circuit nodes, and the
order of the electrode columns, from left to right, is in the same order as the circuit nodes, also
from left to right. In the figure 14.11 example, the first electrode column, which specifies an
electrode named “anode,” is connected to the circuit through circuit node 2. Respectively, the
second column, for the “cathode” electrode, is connected to the circuit via circuit node 3.

Boundary Conditions

In the example, the default bc parameter has been set to “Dirichlet” on all the electrodes. The bc

parameter sets the type of boundary condition applied to the density variables, the electron density
and the hole density. Dirichlet and Neumann are two possible settings for the bc parameter. If
Dirichlet is specified, the electron and hole densities are set to a specific value at the contact,
and the applied values enforce charge neutrality. See the Xyce Reference Guide [3] provides
the charge-neutral equation. If Neumann is specified, Xyce applies a zero-flux condition, which
enforces that the current through the electrode will be zero.

This parameter does not affect the electrostatic potential boundary condition. The boundary con-
dition applied to the potential is always Dirichlet, and is (in part) determined from the connected
nodal voltage. To apply a specific voltage to an electrode contact, a voltage source should be
attached to it, such as VBB in figure 14.5.

Electrode Material

Table 14.3 lists several different electrode materials that can be specified. The main effect of
any metal (nonneutral) material is that Xyce imposes a Schottky barrier at the contact, generally
making numerical solutions more difficult, so materials should be applied with caution.

The Xyce Reference Guide [3] provides a detailed description of Schottky barriers and how they
are imposed on contacts in Xyce. The guide also provides values for electron affinities of various
bulk materials and workfunction values for the various metal contacts.
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Doping and electrode specification example

vscope 1 0 0.0

rscope 2 1 50.0

cid 3 0 1.0u

r1 4 3 1515.0

vid 4 0 1.00

*------------- Diode PDE device ------------------

YPDE Z1DIODE 2 3 PDEDIODE

+ tecplotlevel=1 txtdatalevel=1 cyl=1

+ meshfile=internal.msh

+ nx=25 l=70.0e-4 ny=40 w=26.0e-4

* ELECTRODES: ckt node 2, ckt node 3

+ node = {name = anode, cathode

+ bc = dirichlet, dirichlet

+ start = 0.002, 0.002

+ end = 0.005, 0.005

+ side = top, bottom

+ material = neutral, neutral

+ oxideBndryFlag = 0, 0 }
* DOPING REGIONS: region 1, region 2, region 3

+ region= {name = reg1, reg2, reg3

+ function = uniform, gaussian, gaussian

+ type = ntype, ptype, ntype

+ nmax = 4.0e+12, 1.0e+19, 1.0e+18

+ nmin = 0.0e+00, 4.0e+12, 4.0e+12

+ xloc = 0.0 , 60.0e-04, 100.0

+ xwidth = 0.0 , 4.0e-04, 1.0

+ yloc = 0.0 , 24.5e-04, 9.0e-04

+ ywidth = 0.0 , 4.5e-04, 8.0e-04

+ flatx = 0 , -1 , -1

+ flaty = 0 , 0 , -1 }
*--------end of Diode PDE device ----------------

.MODEL PDEDIODE ZOD level=2

.options NONLIN maxsearchstep=1 searchmethod=2

.options TIMEINT reltol=1.0e-3 abstol=1.0e-6

.DC vscope 0 0 1

.print DC v(1) v(2) v(3) v(4) I(vscope) I(vid)

.END

Figure 14.11. Two-dimensional example, with detailed doping
and detailed electrodes.
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Table 14.3: Electrode Material Options. NOTE: Neutral contacts
are the default, and pose the least problem to the solvers.

Material Symbol Comments

neutral neutral Default

aluminum al

p+-polysilicon ppoly

n+-polysilicon npoly

molybdenum mo

tungsten w

molybdenum disilicide modi

tungsten disilicide wdi

copper cu

platinum pt

gold au

There is also an oxideBndryFlag parameter, which if set to true (1), will model the contact as
having an oxide layer in between the metal contact and the bulk semiconductor. By default,
oxideBndryFlag is false (0).

Location Parameters

Each electrode has three location parameters: start, end, and side.

Xyce assumes the internal mesh to be rectangular, with electrodes on any of the sides. The
four side possibilities are: top, bottom, right and left. These four sides are parallel to mesh
directions. The start and end parameters are floating-point numbers that specify the starting and
ending location of an electrode, in centimeters.

The lower left hand corner of the mesh rectangle is located at the origin. A side=bottom electrode
with start=0.0 and end=1.0e-4 will originate at the lower left hand corner of the mesh (x=0.0,
y=0.0) and end at (x=1.0e-4, y=0.0).

Xyce will attempt to match the specified electrode to the specified mesh. However, if the user
specifies a mesh that is not consistent with the electrode locations, the electrodes will not be able
to have the exact length specified. For example, if the mesh spacing is ∆x = 1.0e-5, then the
electrodes can only have a length that is a multiple of 1.0e-5.

14.5.2 Electrode Defaults

Defaults exist for each electrode parameter other than names. In practice, the electrode locations
are usually explicitly specified using the electrode table. Default electrode locations were created
to correspond with the default dopings; they should only be used in that context.
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Location Parameters

In practice, the electrode locations will usually be explicitly specified, but they have defaults to
correspond with the default dopings. The default electrode locations in one-dimensional devices
are for a diode. One electrode is located at x=xmin, while the other is located at x=xmax.

The default electrode locations in two-dimensional devices depend on the number of electrodes,
similar to the default dopings. Table 14.2 can be used to determine such configurations. For the
two-terminal diode, the two electrodes are along the y-axis, at the x=xmin and x=xmax extrema.
For the three-terminal BJT, all three electrodes are parallel to the x-axis, along the top, at y=ymax.
For the four-terminal MOSFET, the drain, gate, and source electrodes are also along the top, but
the bulk electrode spans the entire length of the bottom of the mesh, at y=ymin.

14.6 Meshes
One- and two-dimensional devices can create Cartesian meshes. For two-dimensional devices,
users must specify meshfile=internal.msh to invoke the Cartesian meshing capability (this is
necessary for historical reasons). Meshes generated in this manner are very simple as there are
only two parameters per dimension, and the resulting mesh is uniform. Figure 14.6 provides an
example of such a mesh. Mesh spacing is determined from the following expressions:

∆x =
l

nx− 1
(14.8)

∆y =
w

ny − 1
(14.9)

This mesh specification assumes the domain is a rectangle. Nonrectangular domains can only
be described using an external mesh program. However, externally-generated meshes are not
currently supported.

14.7 Cylindrical meshes
For two-dimensional devices, the simulation area may be a cylinder slice. This capability is turned
on by the instance parameter cyl=1 It is assumed that the axis of the cylinder corresponds to
the minimum radius (or x-axis value) of the mesh, while the circumference corresponds to the
maximum radius (or maximum x-axis value).

14.8 Mobility Models
There are several mobility models available to the one- and two-dimensional devices, and they
are listed in Table 14.4. These models are fairly common, and can be found in most device
simulators. [23] [24]. The Xyce Reference Guide [3] descibes these models in more detail.
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Table 14.4: Mobility models available for PDE devices

Mobility Name Description Reference

arora Basic mobility model Arora, et al. [29]

analytic or caughey-thomas Basic mobility model Caughy and Thomas [30]

carr
Includes carrier-carrier

interactions
Dorkel and Leturq [31]

philips Philips model Klassen [32, 33]

Setting the mobmodel parameter to the name of the model (as provided in the first column of
table 14.4) specifies the mobility model from the netlist. The mobility model is specified as an in-
stance parameter on the device instance line, as (typically) mobmodel=arora. Figure 14.4 provides
a more detailed example.

The default mobility is “arora”, which is a basic model lacking carrier or field dependence. Because
it lacks these dependencies, it generally is more numerically robust. The “carr” model include
carrier-carrier dependence, as does the “philips” model. For all of these models, field dependence
can be optionally turned on from the netlist, using the fielddep=true parameter.

14.9 Bulk Materials
The bulk material is specified using the bulkmaterial instance parameter. Xyce supports Silicon
(si) as a default bulk material. It can also simulate several III-V materials, including Gallium
Arsenide (gaas), Germanium (ge), Indium Aluminum Arsenide (inalas or alinas) Indium Galium
Arsenide (ingaas or gainas), Indium Phosphide(inp), and Indium Galium Phosphide (ingap); but
these materials have not been extensively tested. The mobility models described in the previous
section each support most of these materials.

14.10 Output and Visualization

14.10.1 Using the .PRINT Command

For simple plots (such as I-V curves), output results for Xyce can be generated with the .PRINT

statement, which is described in detail in section 9.1.1. Figures 14.3 and 14.8 are examples
of the kind of data that is produced with .PRINT statement netlist commands. These particular
figures were plotted in Tecplot, but many other plotting programs would also have worked, including
XDAMP [34].

14.10.2 Multidimensional Plots

Device simulation has visualization needs which go beyond that of conventional circuit simulation.
Multidimensional perspective and/or contour plots are often desirable. Xyce is capable of out-
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putting multi-dimensional plot data in several formats, including Tecplot (available for purchase
from http://www.tecplot.com), gnuplot (available free from http://www.gnuplot.info), and Sgplot.
Currently, the options for each of these formats can only enable or disable the output of files,
and when enabled, a new file (or a new append to an existing file) will happen at every time step
or DC sweep step.

For long simulations, this may produce a prohibitive number of files. Currently, there is no equiv-
alent to the .OPTIONS OUTPUT INITIAL INTERVAL command, nor does the output of plot data cur-
rently use this command. Plot files are either output at every step or not at all.

For each type of plot file, the file is placed in the execution directory. Each individual device
instance is given a unique file, or files, and the file names are derived from the name of the
PDE device instance. The instance names provides the prefix, and the file type (Tecplot, gnuplot,
Sgplot) determines the suffix.

Tecplot Data

Tecplot is a commercial plotting program from Amtec Engineering, Inc., and is the best choice for
creating contour plots of spatially dependent data. All of the graphical examples in this chapter
were created with Tecplot. (see figures 14.6 and 14.7 for examples) The output of Tecplot files is
enabled using the instance parameter, tecplotlevel=1. If set to zero, no Tecplot files are output.
If set to one, Xyce outputs a separate Tecplot file for each nonlinear solve. If set to two, Xyce
creates a single Tecplot file containing data for every nonlinear solve and appends the file at the
end of each solve.

By default tecplotlevel is set to one, meaning the code will produce a separate Tecplot file for
each time step or DC sweep step. The suffix for a Tecplot (ASCII text) data file is *.dat.

Gnuplot Data

Gnuplot is an open source plotting program available on most Linux/Unix platforms. The parameter
for this type of output is gnuplotlevel=1. This type of output file is off (zero) by default, meaning
no gnuplot files will be output. The suffix for gnuplot files is *gnu.dat. Like Tecplot files, gnuplot
files are also in ASCII text format.

14.10.3 Additional Text Data

Xyce can also output additioanl information for each PDE device by setting the instance parameter,
txtdatalevel=1. It is on (1) by default, so this output will happen unless specifically disabled by
setting the parameter to zero. A typical output file (associated with the netlist given in figure 14.4)
is shown in figure 14.12.
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Global data for DC step 1:

Current Time = 0.0000e+00

Vmin = -8.6931e-06

Vmax = 5.4030e-01

NnMin = 0.0000e+00

NnMax = 1.0000e+16

NpMin = 3.9240e+03

NpMax = 1.0000e+19

Information for electrode: COLLECTOR

potential: 2.9795e-01

current: 8.5365e-06

charge: -6.6211e-15

dIdVckt: 3.7993e-02

dQdVckt: 0.0000e+00

Information for electrode: BASE

potential: 5.4030e-01

current: -8.5408e-06

charge: 1.5958e-14

dIdVckt: 1.0463e+01

dQdVckt: 0.0000e+00

Information for electrode: EMITTER

potential: -8.6931e-06

current: 4.3465e-09

charge: -2.3232e-13

dIdVckt: 7.2130e+01

dQdVckt: 0.0000e+00

Figure 14.12. Text output, from the circuit given in figure 14.4.
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