CONFa50923]--1
lA-Ur- 95=-29%1

TiTLe: | THE ACL MESSAGE PASSING LIBRARY

AUTHOR(S):
Michael Krogh, CIC/ACL

James Painter, CIC/ACL
Pat McCormick, CIC/ACL
Charles Hansen, CIC/ACL
Guillaume Colin de
Verdiere,

Saint-Georges, France

SUBMITTED TO: | European T3D Workshop
September 7, 1995
Lausanne, Switzerland

Los Alamos

NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy
under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory
requests that the publisher identify this article as work performed under the auspices of the U.S. Depariment of Energy.

Form No. 836 RS
ST 2629 10/91

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED M

DISCLAIMER

Portions of this document may be illegible

in electronic image products. Images are
produced from the best available original

document.

)

/\ O b\ A

AR

- TR

o

The ACL Message Passing Library

James Painter, Pat McCormick, Michael Krogh, Charles Hansen
{jamie, pat, krogh, hansen}@aci.lanl.gov

Los Alamos National Laboratory
Advanced Computing Lab

Mailstop B-287
Los Alamos, NM 87545

Guillaume Colin de Verdiére
Centre d’Etudes de Limeil-Valenton
CEL-V/DMA/AIM
94195 Villeneuve-Saint-Georges, France

coling@limeil.cea.fr

Abstract

This paper presents the ACL (Advanced Computing Lab) Message Passing Library. It is a high throughput, low
latency communications library, based on Thinking Machines Corp.’s CMMD, upon which message passing appli-
cations can be built. The library has been implemented on the Cray T3D, Thinking Machines CM-5, SGI worksta-

tions, and on top of PVM,

1. Introduction

Parallel programs are typically written in one of two
styles: SPMD or MIMD. SPMD (Single Program,
Multiple Data) programs are typically written in a
data parallel language, such as Fortran 90'. With
such programs interprocessor communications is hid-
den from the program via the compiler and runtime
system.

With MIMD (Multiple Instruction, Multiple Data)
programs the programmer must explicitly call mes-
sage passing primitives for interprocess communica-
tions. For such programs to run efficiently and gain
the best possible speedup as additional processors are
used, the communications cost of the program must
be as small as possible. By small, we mean lowest
latency and highest throughput. If communications
costs are high, then the program will be severely lim-
ited in terms of speedup potentiai as the number of
processors increases.

The development of the ACL Message Passing Li-
brary was driven by two motivations: performance
and portability.

As already mentioned, performance of a communica-
tions library is crucial of overall program perform-
ance. This fact was made all too clear when we
started porting our message passing programs from
the Thinking Machines Corp. CM-5 massively paral-

' SIMD (Single Instruction, Muitiple Data) can be
thought of as a more constrained SPMD.

lel computer to the Cray Research Inc. T3D. CRI
supplies an implementation of the PVM message
passing library for the T3D. The performance of
which is poor. We found that our codes not only
performed poorly but that they did not scale up (or
run in some cases) to large numbers of processors.
This was entirely due to the implementation of PVM
on the T3D.

Our second motivation, portability, was driven by
our investment in CM-5 software. The CM-5 uses a
message passing library called CMMD. CMMD is
an efficient, simple, but complete, message passing
library. In the several years that we had been devel-
oping software for the CM-5, we had amass a large
collection of libraries and programs based on CMMD
and portability was highly desirable.

The remaining sections describe previous message
passing systems, describe the implementation o
ACLMPL, present timings, describe a few applica-
tions that use ACLMPL, and draw conclusions.

2. Previous Work

The Parallel Virtual Machine (PVM) library was de-
signed to treat a collection of computers, which may
be workstations, servers, vector computers, or even
MPPs, as a single distributed parallel computer
[PVM]. To accomplish this, PVM supports hetero-
geneous processors, networks and data types. Be-
sides basic communication primitives (synchronous
and asynchronous send and receives), PVM has
primitives for process control, synchronization, sig-
naling, process groups, and virtual machine control.

The Message Passing Interface (MPI) library was
designed with efficiency and porability in mind.
The MPI feature set was designed by committee
which used features and concepts from many various
message passing systems [MPI). What resulted is a

“full-featured” message passing library that includes
many variations on send and receive
(blocking/nonblocking, buffered/unbuffered, receiver-
ready, different data types including user specified,
and more). Additionally, MPI includes support for
global operations (barriers, reductions, gather/scatters,
broadcasts, scans, etc.), processor topologies, proces-
sor groups, profiling, and emor handling. Process
management (creation, deletion, migration), active
messages, and I/O support are not included in the
current standard.

Thinking Machines Corporation created CMMD for
the CM-5 massively paraliel computer [CMMD].
CMMD supports three styles of communication: syn-
chronous, asynchronous. and acuve messages (used
for event driven applications). The library also in-
cludes functions for global operations (reductions,
scans, broadcasts, barriers) and YO. CMMD has no
primitives for process control or virtual machine con-
trol.

Many other message passing systems exist that pro-
vide similar functionality to these three. PVM, MPI,
and CMMD are of particular interest to us since they
are the “supported” message passing systems for the
T3D and the CM-5.

3. The Need for Performance

Our software efforts are targeted towards high perform-
ance softiware for MPPs and SMPs (Symmetric
Multi-Processors). Qur focus is not on hamessing
the latent power of desktop workstations. Nor is in
running a single program on several supercomputers.
Given this, several key differences should be noted
between PVM, MPI, and CMMD.

PVM is widely available for most unix workstations
and for many common supercomputers and MPPs. It
has many basic communications primitives and
primitives for process management. PVM’s main
weakness is that it is not high performance. Past
versions utilize a deamon process on each computer
node which is involved in communications. Recent
versions of PVM allow these deamons to be by-
passed; however, performance is still lacking as wiil
be shown.

MPI is a recent message passing system and is not
widely available. MPI includes numerous primitives
(far more than PVM), except for process management.
While efficiency is a main goal for MPI, our bench-
marks on the T3D show that it is lacking as well.

)

~

N
~)\\ 2
ANV oM ' et A

A ¥4

Both PVM and MPI also have the goal of supporting
heterogeneous data types and computers.

CMMD differs from PVM and MPI in that it is not
widely available; however, it is does have a large user

base since it is the only supported message passing
system available on the CM-5. CMMD has sufficient
primitives without trying to include everything. It
has the basic communications primitives as well as
active messages. It also has the most common
global operations.

CMMD was designed for interprocessor communica-
tions within the CM-5 and not with processes exter-
nal to the MPP. This allows for several optimiza-
tions. The library does not need to communicate
with heterogeneous processors or data types; which
avoids unnecessary data conversion and the need for a
plethora of different primitives for various data types.
CMMD also takes advantage of the underlying hard-
ware. [t makes use of both the data network and the
control network in the CM-5. In particular, the con-
trol network is used in global communications opera-
tions such as reductions and broadcasts.

ACLMPL was developed with similar constraints as
CMMD: message passing within a single multiproc-
essor machine (MPPs and SMPs) and sufficient
primitives without trying to be all encompassing.

4. Implementation

ACLMPL is split into two groups: the synchronous
communications primitives and the asynchronous
primitives. On top of the synchronous primitives are
layered the global communications primitives. Split-
ting synchronous and asynchronous primitives into
two separate groups, with no overlap, makes sense.
Layering asynchronous on top of synchronous does
not make sense. Layering synchronous on top of
asynchronous will work, but it introduces additional
overhead (extra function calls, buffering, etc.); and as
the timings will show, synchronous communication
is faster than asynchronous communications. Addi-
tionally, both are faster than the other message pass-
ing systems.

The following sections will describe the implementa-
tion of ACLMPL on the T3D. Later sections will
discuss the differences on the CM-5 and SGI.

Synchronous Communications

The synchronous message passing API in ACLMPL
was implemented first. Synchronous message pass-
ing has some potential performance advantages over
asynchronous methods since there is no need for in-
termediate buffering. Data can be sent directly from
the sender to the receiver with no need for additional
data copying. This can result in much higher band-

width and lower latency than is possible with an
asynchronous protocol. The tradeoff is that computa-
tion cannot be overlapped with communications™.

A simple protocol built on the CRI SHMEM library
shmem_put () function is used as the lowest level
communications primitive on the T3D [CRI]. Figure
| showsthe protocol used to send data between two
processes on two separate Processing Elements (PEs).
The receiving PE first writes a request block to the
sending PE which contains the receive buffer address,
its buffer length and a control flag. The request biock
totals 16 bytes. Each PE has an armray of request
blocks, indexed by receiving PE. This avoids the
need for locks on the request blocks since each block
has only one writer.

The sending PE blocks, via a spin-wait loop check-
ing the control flag, until this request block arrives.
Once the request block is received by the sender, the
sender initiates a shmem_cut () from the local send
buffer address to the receivers buffer address which is
taken from the receive request block. Finally, after

the data is transferred, a finalization block is transmit-

request (16 bytes)

—

Sender | iata wansfer Receiver

finalize (8 bytes)

Figure 1: Synchronous Protocol

ted back to the receiver, indicating the size of the
transfer, in bytes, and a flag value (DONE) indicating
the transfer has completed. This finalization block
consists of 8 bytes.

The receiver, after initiating the request, waits in a
spin-wait loop for its flag to change to DONE. Once
the flag changes to DONE, both sender and receiver
return. The synchronous protocol requires one round
trip between the sending and receiving PEs and a
total of 24 bytes of overhead information. This re-
sults in very low end-to-end latency (4.5 microsec-
onds for a one word message transmitted between
direct neighbor PEs) and high bandwidth (greater
than 100MB/sec for one-to-all and all-to-one com-

munication patterns).

Based upon the synchronous protocol are three user
callable functions: send, receive, and
send_and_receive (send to one PE and receive from
another PE, possibly the same).

: Except through the use of a thread package which
allows multiple threads of execution on each PE.

~ -
kvuﬁj/\]\‘ It

T3D Asynchronous Protoccl

Efficient asynchronous message passing exposes a
number of implementation challenges on the T3D.
Unlike the synchronous case, buffer management is-
sues come into play. Additionally, at least one extra
data copy will be necessary between the application
memory and a buffer within the message passing li-
brary, which is avoided in the synchronous case.
Since world aligned memcpy () speeds on the T3D
are only 170MB/sec’ (approximately), it is important
1o minimize the number of data copies in order to
achieve high bandwidth.

Our approach to the buffer management problem fol-
lows that used in the Illinois Fast Messaging library
[FM]. As in FM, we use the fetch-and-increment
registers on the T3D to allocate remote buffers from a
fixed sized pool of buffers as shown in Figure 2. A
sending PE reads the fetch-and-increment register on
the receiving PE. The read operation returns the cur-
rent value of the fetch-and-increment register, while
atomically incrementing it as well. If the fetch-and-
increment register is out of the bounds of the buffer
pool, the sender must block until the receiver re-
moves messages from the buffer pool and resets the
fetch-and-increment register. If it is in bounds, the
value read gives an index into the receiver’s buffer
pool, providing a buffer which the sender has exclu-
sive access to. The sender transfers the message data
to this buffer, via shmem_put (), and transfers a flag
value DONE, indicating the transfer is complete.

RECEIVER

SENDER

Petxh &

Figure 2: Asynchroneus Protocol

The receiving PE first checks a linked list of sent-but-
not-yet-received messages for a message that matches
the receive request. If matching message is found, the
data is memcpy'd to the callers buffer and the linked

list node is freed. If a matching message is not found
in the linked list, the buffer pool itself is scanned for a
matching message. If a matching message is found,
the data is memcpy'd to the caller’s buffer and the
buffer pool slot is marked as RECEIVED. In most

* In earlier releases of the CRI memcpy, bandwidth
performance was 10-30X worse!

cases, the linked list is empty and a matching mes-
sage is found directly from the buffer pool, resuiting
in a one data copy, in addition to the shmem_puct.

Each PE periodically checks whether its fetch-and-
increment register has overflowed. This check is
made each time a send or receive request is processed.
The check can be accomplished by examining the last
buffer in the buffer pool to see if it is marked as
DONE or RECEIVED. If the fetch-and-increment
register is out of bounds, all messages in the buffer
pool are copied out into a linked list of sent-but-not-
yet-received messages. and the fetch and increment
register is reset to zero. This allows blocked senders
to resume.

The user callable functions for the asynchronous pro-
tocol are asynchronous send. asynchronous receive.

and blocking_asynchronous receive. ** SHOULD
THIS BE WORDED DIFFERENTLY?

Global Operations

Broadcast and reduce global operations are imple-
mented in ACLMPL using efficient tree based algo-
rithms (Ho]. For simplicity, both broadcast and re-
duce use PE 0 as the root processor, though the algo-
rithms can be generalized to handle any root PE.

A broadcast from PE 0 is sent in log(P) phases,
where P is the partition size. In the first phase, only
PE 0 is active and the broadcast is sent from PE 0 to
PE (P+2). In the second phase, PE 0 and PE
(P+2) are active and each sends to PE
selff +(P+4). Inthe [th phase, PEs which have
received the data forward the data onto the PE whose
PE number differs only in the jth bit. This is a
well known algorithm whose complexity is
(N elog(P)), where N is the size of the broadcast
and P is the partition size . The reduction operation

uses the same tree structure used in the broadcast but
in reverse, again yielding a (Q(Nelog(P)) time

bound. Initially all PEs are active. In the 7 th phase

of the algorithm, the PE's which have a 1 in the 7 th
bit of their PE number send to the PE whose PE
number is identical except fora O in the 7 th bit.
The sending node becomes inactive, while the receiv-
ing node combines the received data with its own and
proceeds to the next phase. At the end of the reduc-
tion, PE 0 holds the entire reduced array.

¥ Technically, this time bound and those that follow
assume a hypercube interconnection network, though
empirical evidence indicate that they match well to
measured performance on the T3D 3D torus network
as well.

)\\i IORW BZ\ b V&>{/-

Note that in each phase of the reduction, as we move
up to the root of the tree, fewer processors are partici-
pating in the reduction. This suggests that a more
efficient algorithm could be devised which utilizes all
the processors during every phase. We first made
this observation in a special case of the reduction
algorithm: image compositing in a sort last volume
renderer [PRS93]. In our binarv-swap reduction al-
gorithm we split the array being reduced in half at
each phase of the algorithm and keep all PEs active
throughout all phases.

In the 7 th phase of the algorithm, two PE's whose
PE numbers differ only in the 7 th bit split their re-
duction array into two sub-arrays of equal size. One
PE takes the lower sub-array while the other takes the
upper sub-array. The two PE's exchange data, com-
bine the received data with their own, and both pro-
ceeding to the next phase. At the end of the final
phase, the entire array has been reduced, but it is dis-
tributed across all the PE's. A final gather stage
brings the result together in PE 0. The binary swap
reduction algorithm runs in time Q(N) when the
array size N is much larger than the partition size
P. On the T3D we have found that N >=1024 is
sutficient for binary swap reduction to outperform the
simple tree based algorithm.

As previously mentioned, the global operations are
built upon the synchronous primitives. Since all
PEs must participate in a global operation, asyn-
chrony is not needed. Furthermore, the synchronous
primitives are faster since they do not do any buffer
ing of data.

The global operations consist of a broadcast and re-
duce primitive. The reduce primitive is extensible in
that the user can write a reduction operator.

ACLMPL for the CM-5

Since ACLMPL closely mimics CMMD, The CM-5
version of ACLMPL consists mainly of #defines
instead of actual functions. This results in no over-
head for using ACLMPL on the CM-5. The only
real ACLMPL function is the reduction primitive.
This is so that the user can write his or her own re-
duction operator, which is not supported by CMMD.
Additionally, we have found the ACLMPL version of
broadcast to be faster than the CMMD version for
larger message sizes (greater than | KB 77?).

ACLMPL for the SGI

The Silicon Graphics version of ACLMPL is based
upon IRIX specific interprocess communication (IPC)

functions.” These functions allow for the creation and
management of a shared memory pool which is used
to facilitate the communication of messages between
processors. The current implementation lacks several
optimizations, such as using direct memory map-
ping, which can be used to increase performance.
Future development will address this optimization
and othefs.

In addition, ACLMPL has been implemented on top
of PVM’s psend () and precv () functions. This
not only provides us with a more portable version of
the library, but can also help in the early stages of
application development and debugging without the
use of an MPP.

5. Timings

Numerous benchmarks were pertormed on ACLMPL,
MPI®, PVM. and SHMEM using the T3D. Perform-
ance figures are include for SHMEM to give a refer-
ence for how the message passing systems compare to
using shared memory for communications. Six dif-
ferent test cases were run on various partition sizes
and for various message sizes. The six cases are: one
PE communicating with all others (one-to-all), all
PEs communicating with all others (all-to-all), all
PEs communicating with one PE (all-to-one), global
reduction, global broadcast, and latency.

The six cases were chosen for the following reasons.
One-to-all is typical of initial data distribution, such
as when one PE is responsible for reading a file and
distributing parts of it to different PEs. Similarly,
all-to-one is representative of gathering resuits back
from all PEs for performing serial /O. All-to-all is
indicative of worse case, general communications.
Global reduction and broadcast are included since
they are very common global operations. The la-
tency benchmark measures the overhead involved in
sending very short messages (1 word) and measures
the minimum overhead in sending short messages.
Because many of the graphs exhibit similar curves,
we have chosen just a representative few for this pa-
per.

* The IRIX routines have better performance than the
standard AT&T System V Release 4 IPC routines.
See the SGI Insight manual “Topics in IRIX Pro-
gramming”, for details.

® The T3D MPI implementation was from EPCC.

The MPICH implementation could not properly exe-
cute the test programs.

MB/sec
T

Py Sync. ACLMPL —— 7
SR ex Async. ACLMPL —---
K Async. MPl -x—
0 x X Sync. MP| -x--
a\: X PVM -a--
o1k 1/

0.01 1 1 L 1 1 L
1 10 100 1000 10000 100000 194068 1e+07
Message Size (in bytes)

Figure 3: all-to-all using 2 processors

Figure 3 and Figure 4 show the performance curves
for the all-to-all case on 2 and 128 processors. The Y
axis shows throughput and the X axis shows message
size in bytes. Several interesting features can be seen.

100 T T T T T

MB/sec

Sync. ACLMPL =—
. Async. ACLMPL —~--
oy R
yad C. M-
82x > ¥ PVM -O--
0.4 | o™ SHMEM ~+— |

0-01 i 1 L 1 1 1
1 10 100 1000 10000 100000 18406 16407
Message Size (in bytes)

Figure 4: all-to-all using 128 processors

Throughput for all of the message passing systems
increases greatly until the message size becomes suffi-
ciently large (greater than 1K bytes) and then tapers
off. ACLMPL is as fast as all of the other message
passing systems for all cases; and for large partitions,
it is the fastest including shared memory for certain
message sizes. This seems curious at first since
ACLMPL is built on top of SHMEM. The explana-
tion is that the SHMEM version floods the T3D
network and causes collisions, thus reducing perform-
ance. ACLMPL requires serialization (a PE can only
receive from one sender at a time) which helps avoid
saturating the network switches, thus resulting in
greater performance. As the partition size increases,
maximum throughput decreases from 67 MB/s to 23
MB/s. The kink in the PVM curve is due to a differ-

ent, internal algorithm used by PVM for handling

large messages’. Finally, asynchronous ACLMPL
functions are also faster than the other message pass-

ing systems for large partitions.

1000 T T T T T T
o - . o-d
100 ¢ X E
x
'X . .
e
o Raart a4
g .
3 10F x E
s /
a-2°59
1k 4
Sync. ACLMPL —o—
Async. ACLMPL —--
Async. MP} -»—
I Sync. MP] -» -
L] PYM -g--
0.1 L l L L 1SHMEM 4=,]
1 10 100 "000 10000 100000 1e+06 1e+07
Message Size (in bytes)

Figure 5: all-to-one using 128 processors

Figure 5 shows performance curves for all processors

sending to one processor on a 128 processor parti-
tion. The synchronous version of ACLMPL is faster
than the other message passing systems, as is the
asynchronous version in all but a few cases.
SHMEM is faster than ACLMPL in all cases since
there is not the abundance of collisions on the net-
work as there is with the all-to-all case. Maximum
throughput is greater than 110 MB/s for ACLMPL.

1000 T T T T T T

MB/sec
o
]

Sync. ACLMPL -o—
Async. ACLMPL --—--
Async. MP| -»—
Sync. MPI -2
PVM -g--
0.1 L L 1 1 1SHMEM -,]
1 10 100 1000 10000 100000 10+06 1e+07
Message Size (in bytes)

Figure 6: one-to-all using 128 processors

The one-to-all case, Figure 6, exhibits similar per-
formance curves with the exception that PVM seems
to do better than it did in the all-to-one case. Curi-

ously, the spike in the PVM curve changes direction
(HOW TO EXPLAIN??).

7 See the Cray T3D documentation on the

PVM_DATA_MAX environment variable.

0.1 T T T T T T
.'a
001 & - 4
0.001 + 4
K2}
2 2
3 @
Q .
0 =]
0.0001 | Q.E'x Sync. ACLMPL <— A
. - MPI ->—
TR RRQ e PVM -g--
1e-05 b
18‘06 1 1 1 1 1 L
1 10 100 1000 10000 100000 1e+06 16407

Size (in bytes)
Figure 7: broadeast using 2 processors

Figure 7 and Figure 8 show broadcast times for 2 and
128 processors Both graphs exhibit similar curves
with the exception of the PVM curve. As the number
of processors increases, the upward spike in the PVM
curve grows. [t should also be noted, that as the

number of processors increases. the time for all mes-
sage passing systems increases regardless of message
size.

10 T T T T T T

o1b i .
g
s omfb .
Q
(7]
0.001 | i
0.0001 £ Sync. ACLMPL —— -
MPI -%—
PVM -8--
‘e_os 1 L 1 i 1 L
1 10 100 1000 10000 100000 10406 18407

Size (in bytes)
Figure 8: broadcast using 128 processors
Figure 9 shows times to perform a global reduce us-
ing 128 processors. MPI is significantly slower than

ACLMPL; and PVM performs well for small mes-
sages but then degrades for larger messages.

I T L) T T L} 1
01 | 4
001 | E
8
5
& L
(]
0.001 j
0.0001 |- 4
‘e,os 1 1 1 1 1 1
1 10 100 1000 10000 100000 1e+06 1e+07
Size (in bytes)

Figure 9: reduce using 128 processors

Protocol Time (}L seconds)
ACLMPL (sync) 5
ACLMPL (async) 10

PVM 25
MPI (sync) 47
MPI (async) 40

Table 1: Latency

Table | shows the latency times for sending a one
word message. Both the MPI synchronous and asyn-
chronous versions incur significant overhead in send-
ing a short message (greater than 8 times that of
ACLMPL synchronous messages).

Table 2 presents performance numbers for 1024 byte
messages on a 32 processor partition. The numbers
for all-to-all, all-to-one, and one-to-all are in mega-
bytes per second; and the numbers for broadcast and
reduce are in seconds. For the first three cases, the
synchronous functions in ACLMPL are approxi-
mately between 4 and 7 times faster than the other
message passing systems, and broadcast and reduce
are roughly 10% to 80% faster

6. Results

While ACLMPL grew out of the efforts of the visu-
alization group at the Advanced Computing Lab, it is
a general purpose communications library. One ex-
ample of its use is a molecular dynamics application
for massively parallel computers. Their application

I’ ' N D [

.- T
N 2L NIEQN P OPT

is used to simulate molecules containing several
hundreds of millions of atoms. In 1993 they won a
Gordon Bell prize for performance (they were able to
sustain >53 Gflops on the CM-5). It should be noted
that at that time the application was based on
CMMD. It is currently being ported to ACLMPL.

ACLMPL has been used in two newly developed
visualization applications. One, a sphere renderer, is
used by the molecular dynamics projects for display-
ing their data. The renderer can be used as either a
standalone program or as a MIMD callable library.
As a standalone program, the renderer can be used

either interactively with an X11 graphical user inter-
face (GUI) or in a batch mode. Images are either dis-
played in an X11 window, a HIPPI frame buffer, or
written to disk. Rendering rates on the T3D are ap-
proximately 660K spheres per second. For compan-
son. a SGI Onyx graphics workstation can sustain
roughly 19K spheres per second.

The second visualization application is a renderer for
volumetric data based upon Binary-Swap Compo-
siting [HAN]. The renderer distributes a 3D data set
to the PEs. Each PE is responsible for rendering its
own subvolume. After each PE is done, then the
subimages are composited together using a technique
called Binary-Swap. The user can interact with the
renderer either through an X11 interface or through
AVS. The renderer can generate approximately 4
frames per second using 128 PEs to render a 128°
data set into a 256 x 256 image that is displayed on a
HIPPI frame buffer.

7. Conclusions

ACLMPL was developed with two goals in mind: to
provide high throughput, low latency communica-
tions for message passing applications, and to pro-
vide portability. As previously shown, ACLMPL is
approximately XX times faster than either MPI or
PVM on the Cray T3D. This is significant to MPP
applications since slow communications can reduce
performance and scalability.

Since ACLMPL is based very closely on Thinking
Machine Corp.’s CMMD, we can preserve our soft-
ware investment. We have found ACLMPL to be
quite portable and still retain efficiency.

ACLMPL ACLMPL MPI (sync) MPI PVM
(sync) {async) (async)
alltoall 19.00 7.93 4.71 4.58 4.43
ailtoone 61.90 36.43 10.70 10.72 8.94
onetoall 74.00 60.61 10.70 9.96 57.02
bcast 0.000076 0.000135 0.000138
reduce 0.000162 0.000452 0.000180

Table 2: Performance for 1KB messages on 32 processors

) i

‘\‘Nhile we don’t expect ACLMPL to become the

_hew message passing standard”, we would hope that

it can be seen as a challenge to other message passing

systems implementators. ACLMPL should be

;'ll;::ved asb;;ro?lf that it is possible to develop a port-
, useable, i

e fos VPP gh performance message passing sys-

Finally, three major points should be noted. First.
synchronous message passing is inherently simpler
than asynchronous message passing. This is because
buffer management and additional data movement can
be avoided. These optimizations should be used.
Sepond, efficient global communications algorithms
exist and. should be used; otherwise, scalability to
largt? partition sizes is impaired. Last. on the T3D
efﬁgem buffer management can be performed using
the fetch-and-increment facilities.)

[PVM] PVM User’s Guide and Reference

[MPI] MPI Manual

[CMMD] A Reference to CMMD.

[CRI] Cray Research Inc., SHMEM Manual Page.
[FM] Fast Messages.

[Ho] \cite{Ho,Geijn91}

[PRS93) “Parallel Volume Rendering Using Binary-
Swap Compositing”, Kwan-Lui Ma, James §.
Painter, Charles D. Hansen, and Michael F. Krogh,
IEEE Computer Graphics and Applications, Vol. 14,
No. 4, July 1994.

[HA{:J] “Binary-Swap Volumetric Rendering on the
T3p s Chugk Hansen, Michael Krogh, James
Painter, Guillaume Colin de Verdiére, and Roy

Troutman, Cray Users Group Conference, March
1995, Denver, CO.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the

United States Government or any agency thereof.

