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ABSTRACT
In this work we study the diffusion of multiple attitudes
within a population by using “broad” influence strategies.
We define broad influence strategies are ones that have an
effect on a large number of people, in contrast to “nar-
row”strategies which identify and target specific individuals.
Mass media ads are the prototypical type of broad influence
strategies. Identifying “opinion leaders” in communities and
targeting them with free samples etc., is a type of narrow
influence strategy.

We develop a new model, the Multi-Agent, Multi-Attitude
(MAMA) model that captures social interaction through a
social network and the internal dynamics of attitudes pred-
icated on the theory of cognitive consistency. We imbue
agents with a “cognitive network” that models the interac-
tion between attitudes. We show that when we have an
agenda setting influence strategy (where some entity induces
discussion on certain topics) diffusion time can be (statisti-
cally) significantly reduced. Which topics are discussed, and
with what frequency, has a significant impact on diffusion
time.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: Model Development

General Terms
Experimentation

Keywords
social simulation, cognitive consistency

1. INTRODUCTION
We are interested in understanding how populations make

decisions that have significant cost and/or long-term impact
and how they are influenced by others, internal attitudes
and mass media. For instance, purchasing a residential solar
panel is capital intensive and also includes assessing non-
monetary costs such as maintenance time etc. [25].

A characteristic of these types of behaviors is how they
are influenced by a variety of underlying beliefs, values and
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attitudes. While choosing to retweet or click on a link may
be influenced by local factors (I’m bored, let me surf ran-
domly!), longer term, capitol investment decisions will be
more thoughtful.

For example, in purchasing a solar panel, a consumer must
consider the economics of the purchase, however the atti-
tudes of the consumer can play a role as well. For example,
[12] showed how attitudes towards carbon emissions and po-
litical ideology can affect energy efficiency product purchas-
ing decisions.

Interpersonal communication and influence still plays a
strong role – in fact, [25] shows that peer effects can signif-
icantly reduce the decision making time by reducing infor-
mation uncertainty – they are mediated by these “internal”
factors.

In this work we will model the underlying attitudinal
change the often precedes behavior change. Specifically, we
will model attitudes, which are “general and relatively en-
during evaluative responses to objects” where objects can
be “a person, a group, an issue or a concept” [40, Page 1].
Attitudes have a long history in social psychology, and have
been shown to have an impact on the behaviors of individu-
als (e.g., voting behavior [15], consumer purchases [13, 10]).

An important fact of attitudes is that there are many of
them, on many objects. Attitudes are linked to each other
as well, and can influence each other. Theories of cognitive
consistency suggest that individuals strive to hold a consis-
tent set of attitudes.

We divide influence mechanisms into two general cate-
gories. “Narrow” influence mechanisms focus on identifying
specific individuals or small groups that have disproportion-
ate influence on others (also called “opinion leaders” [26]).
Many of the techniques derived to solve the influence maxi-
mization problem [14, 18, 6, 29] rely on this type of identifi-
cation of individuals. While powerful, these often require ex-
tensive knowledge of the social network of individuals, which
may be difficult outside of the online social network realm.

In contrast, we will focus on what we call“broad”influence
techniques, such as mass media ads through TV, radio and
print media. Somewhat surprisingly, considering the heavy
focus on online media, TV is still the “king” of advertising,
with a lions share of advertising dollars going to it [1]. The
reason is simple, TV ads still work. In fact, in a recent
survey of college students, 42% responded that TV ads were
the most effective forms of advertising [1].

We believe broad influence techniques merit more atten-
tion.

Thus the goal of this work is to develop a better under-
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standing of “broad” influence techniques in the context of
population wide attitude change. Specifically, in this work
we:

1. Develop the Multi-Agent, Multi-Attitude (MAMA) frame-
work that captures social interaction and attitudinal
interaction via cognitive consistency.

2. Develop a representation for the“agenda setting”effect
that mass media can provide.

3. Show that through “agenda setting” we can (statisti-
cally) significantly reduce the time for a particular set
of attitudes to diffuse through a population.

1.1 Cognitive consistency
Cognitive consistency is a hypothesized drive for individ-

uals to have attitudes that are “consistent” with each other.
Cognitive consistency has long been shown to be an im-
portant factor in attitude change. The drive for cognitive
consistency is that individuals tend to want to hold a set of
attitudes that are consistent with each other [28, 32, 35]. For
instance, according to these theories, an individual holding
a strong positive attitude towards environmentalism should
also hold a strong positive attitude towards recycling; if they
do not, the attitudes are inconsistent with each other and
could cause an uncomfortable feeling (i.e. cognitive disso-
nance) which tends to result in either attitude or behavior
change [41].

The surprising, and counter-intuitive, aspect is bidirec-
tional reasoning – under a cognitive consistency model con-
clusions can affect understanding of premises, rather than
the “traditional” means by which premises imply conclu-
sions.

1.2 The role of media
Mass media has been studied extensively to understand

its affects on peoples attitudes (and thus behaviors). While
there are numerous aspects of media effecting the public, we
will discuss two, that of agenda setting and framing.

Framing refers to how information is presented, and thus
how it impacts individuals. This seems to be the most com-
mon way of modeling media effects – we can consider it a
type of “virtual agent” that interacts with everyone and has
a particular set of attitudes.

However, there is another role that media plays, that of
agenda setting. Agenda setting is when the media’s focus
on certain stories increases their importance in the minds
of the viewers [42, 20]. Agenda setting and interpersonal
communication interact to influence individuals.

2. MODEL
To explore the impact of multiple attitudes we have de-

veloped a multi-level agent based model that incorporates
two levels. The model contains two levels, the social level
– which captures interpersonal interaction between agents –
and the cognitive level which captures the interactions be-
tween attitudes within an agent.

Let Gs =< Vs, Es > be a undirected graph that repre-
sents the social level of the model. Let ai ∈ Vs be the set
of agents, and (ai, aj) ∈ Es represents a bidirectional influ-
encing relationship between agents i and j. Figure 1 depicts
an example social network. Each rectangle is an agent, and
each agent has their own cognitive network.

Figure 1: Social net-
work. See text for de-
tails.
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Figure 2: Cognitive
network. See text for
details.

Each agent has a cognitive network associated with it. A
cognitive network is a weighted undirected graph, Gc =<
Vc, Ec > that represents cognitions and the interactions be-
tween them. Let ck ∈ Vc be the set of cognitions, and
(ck, cl) ∈ Ec represents a bidirectional influencing relation-
ship between cognitions k and l. w(k, l) is the weight of
edge (ck, cl); the weight can either be +1, or −1: w(k, l) ∈
{1,−1}. For convenience, we let nc = |Vc|.

Each cognition represents a concept and the evaluation
of the concept. For instance, this could be the concept of
”environmentalism”and the evaluation for a particular agent
could be positive or negative.

We represent this as a value for each cognition within an
agent: v(i, k) is the value of cognition k of agent i. In this
work we only consider binary values, either the evaluation
can be positive or it can be negative: v(k) ∈ {−1,+1}.

Figure 2 depicts a cognitive network. The lines represent
a relationship between the cognitions, with the weights in-
dicated. The top of the node is the node name, and the
bottom is the currently assigned value.

Let χi(k, l) be the consistency of an edge (ck, cl) in the
cognitive network of agent ai. The value of χi(k, l) is:

χi(k, l) =

{
1 if w(k, l)v(i, k)v(i, l) > 0,

0 Otherwise
(1)

Intuitively, if an edge has negative weight, the edge is
consistent if the two vertices have opposing values. If an
edge has a positive weight, the edge is consistent if the two
vertices have the same value.

Let the state of a cognitive network be an assignment of
values to its cognitions. There are m = 2nc states for a
cognitive network, labelled: s0 . . . sm. sp(k) is the value of
cognition k in state p.

The consistency of a concept k for agent i is:

φi(k) =

∑
(ck,ci)∈Ec

χi(k, i)

li
(2)

where li is the number of edges incident to concept i.
The consistency of the cognitive network for agent i under

state assignment sp is Φi(sp) and is defined as:

Φi(sp) =

∑
(ck,cl)∈Ec

χi(k, l)

|Ec|
(3)

Intuitively, the consistency of a cognitive network is the
proportion of edges within the cognitive network that are
consistent.



Cognitive networks can be viewed as bi-valued, binary con-
straint satisfaction network [8]. A significant body of work
has been developed around binary constraint satisfaction.
The problem there is finding the correct solution; our prob-
lem is understanding when a solution diffuses across a net-
work.

It is easy to see that the set of edges will determine whether
there exists a fully consistent state (where Φi(sp) = 1.0). It
may be the case that there are no fully consistent states.

2.1 Cognition change
In this model attitude change occurs as a function of inter-

personal communication (social influence) mediated by cog-
nitive aspects. The baseline probability of attitude change
is represented by Pbase. We consider two related effects on
concept change – the drive for cognitive consistency and the
embeddeness of the concept – drawing from the social psy-
chology literature.

2.1.1 Drive for cognitive consistency
As mentioned before, the drive for cognitive consistency

would change the likelihood of changing attitudes.
In Figure 2, concept c1 is in an inconsistent state with con-

cept c3 – the link between them is negative, so they should be
opposite, however there are positive attitudes towards both
concepts. Based on cognitive consistency theory, we should
expect c1 to be more likely to change1. On the other hand,
concepts that are highly consistent should be less likely to
change – since they are consistent with most of their neigh-
bors.

We represent this drive to consistency as a multiplicative
weight on the baseline probability.

Let fcon(k, i) represent the inclination to change concept
k of agent i based on the how consistent it is with other
concepts (for simplicity we occassionaly drop the reference
to the particular agent). Intuitively, the more consistent the
concept is with it’s neighbors, the less likely to change.

We define fcon(k, i) as

fcon(k) = ε+
2

1 + e−10((1−φi(k))−.5))
(4)

Figure 3 plots this as a function of 1−φ i(k) for ε = 0.01.
For concepts that have more than 50% of their neighbors in
an inconsistent state,fcon(k) > 1.0, increasing the probabil-
ity to change (with a max of 2). For those with less than 50%
of their neighbors in an inconsistent state, fcon(k) < 1.0, de-
creasing the probability to change (with a minimum of ε).

For example, consider Figure 2; fcon(1) = 0.5 because
concept c3 is inconsistent with c1, however c2 is consistent.

On the other hand, fcon(2) = ε, since all of its neighbors
are consistent with it. Finally, fcon(3) ≈ 2.0, since all of its
neighbors are inconsistent with it.

2.1.2 Concept Embeddedness
The second cognitive factor that we capture is the concept

of embeddeness which captures a resistance to change based
on how connected the concept is to other concepts. Consider
an individual who initially does not have a positive attitude
towards environmentalism. If the individual were to switch,

1We are greatly oversimplifying, there are a host of me-
diating factors, including the type of attitude (implicit or
explicit), the persuasion route, etc. See [9, 21]
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Figure 3: fcon(k,i) for ε = 0.01 as a function of 1−φ i(k)

it would have serious consequences to other aspects, such as
their attitude towards types of cars, energy production, and
energy consumption.

A host of research has shown the importance of embed-
dedeness on resistance to change (see [9, Chap. 12] for a
review).

In Figure 2, concept c1 is connected to two other concepts
vs. c2, which is only connected to 1 other concept. Thus,
we would expect c1 to have more resistance to change than
c2 or c3.

We represent this resistance to change as a multiplicative
weight on the baseline probability of changing.

Let fdeg(k, i) be the resistance to change concept k of
agent i based on the concepts embeddedness, which we mea-
sure through its degree (deg(k)). Intuitively, we want fdeg(k)
to decrease as we increase the degree of the concept.

fdeg(k, i) =

{
1.0 if deg(k) < deg(max)/2,

0.5 else
(5)

where deg(max) is the highest degree in the cognitive net-
work. We chose this relative measure because it can apply
to a wide variety of cognitive network structures – the re-
sistance to change is relative to the other concepts in your
network.

For example, Figure 2; fdeg(1) = 0.5, since concept c1 has
the highest degree. fdeg(2) = fdeg(3) = 1.0, since they only
have one neighbor.

2.1.3 Probability of Change
Bringing everything together, let Pchange(k) be the proba-

bility of concept k changing value, given that it is interacting
with another agent with the opposite value. Then:

Pchange(k) = Pbaseline · fdegree(k) · fcon(k) (6)

2.2 Model Dynamics
Algorithm 1 specifies the dynamics of the model. Similar

to other work ([14]) we study the progressive case. Since we
have multiple concepts in our model, we designate a single
state s∗ as the goal state. Once a concept switches to the
value in the progressive state, it cannot switch back.

Each iteration of t is called a single timestep, and within
each timestep we randomly and with replacement, sample
N = |Vs| agents. Thus on average, every agent is chosen



Algorithm 1: Model Dynamics

for t ← 1 to tmax do
Choose a strategy π
for ts ← 1 to N do

Choose a random agent ai
Choose aj a random neighbor of ai
Choose a topic concept τ according to π.
if v(ai, τ) 6= s∗(τ) and v(ai, τ) 6= v(aj , τ) then

Set v(ai, τ) = v(aj , τ) with probability
Pchange(τ)

end

end

end

once per timestep.
Note that these dynamics correspond closely to a voter

model , except the probability of switching is varies over the
length of the simulation.

2.3 Agenda Setting
The choice of the topic concept will be of significant inter-

est to this work. We define an agenda π = [P (c1), . . . , P (cnc)]
as a probability distribution over concepts that can vary over
the time of the simulation.

A time-independent, uniform agenda is a fixed, uniform
probability distribution over the concepts. Every concept
has a probability of 1/nc of being chosen.

A time-independent, non-uniform agenda is a fixed, non-
uniform probability distribution over concepts. For instance,
we may choose a particular concept with a higher probability
than another.

A time dependent, non-uniform agenda (TDNU) is a fixed,
non-uniform probability distribution over concepts that vary
with time. For instance, from timestep 0 to timestep 1000,
the strategy may be π1000 = [1/3, 1/3, 1/3], but from 1000
onwards, may be π∞ = [1/9, 1/9, 7/9].

3. EXPERIMENTAL STUDIES
In this section we go over three experiments. First, estab-

lish that diffusion time is significantly higher in the MAMA
model than in the voter model. Secondly, we identify the
impact of different time independent strategies on diffusion
time. Thirdly, we investigate the impact of time dependent
strategies on diffusion time.

3.1 Experimental Setting
We used two social networks. The first was a k-regular

graph – a graph where each vertex has degree k. The sec-
ond social network was a small-world network. A small-
world network feature a high clustering coefficient and short
average path length. Small world networks appear in many
real-world social networks [43]. We used the algorithm de-
fined in [43], implemented in [7]. Following [43], we set the
initial number of neighbors to 10, and the rewiring proba-
bility to 0.01. This produces a small world network with
clustering coefficient of 0.668519 and average path length of
6.289300.

We assumed that all agents had the same type of cognitive
network, and only varied in their states. We focus on a single
type of cognitive network, depicted in Figure 2. We call this
the “3-Fan” network, because it has one central cognition

(c1) and two ancillary nodes that connect to it (c2, c3. More
generally, a “n-Fan” network would have 1 central cognition
and n− 1 ancillary nodes connected to it.

The fan network, while simple, represents the interaction
between attitudes. Consider the central cognition as an at-
titude towards a specific decision, such as purchasing an
energy efficient lightbulb. The ancillary nodes represent the
other cognitions that can impact this decision, say political
preference [12]. The bidirectional link between the central
node and the ancillary nodes illustrate the bidirectionality
of influence; your attitudes can influence your behavior, but
your behavior can influence your attitudes (which is in line
with the work on cognitive dissonance described earlier).

The goal state in these experiments is s∗ =< +1,+1,−1 >.
Initially, a random 10% of the population is assigned the
goal state. The rest of the agents are assigned the state of

s
′

=< −1,−1,+1 >. Note that these are the only two fully
consistent states in the 3-Fan network.

We say that a population has converged, or a behavior has
diffused, when more than 90% of the agents have reached
state s∗. The main metric we use is the mean diffusion
time – the average number of timesteps till the population
converges.

In all the experiments we set the baseline probability to
Pbase = 0.333.

3.2 Experiment 1: MAMA and the Voter Mod-
els

The first question that should be asked is whether adding
the cognitive consistency aspects makes any difference to
convergence time. To address this, we tested three different
update algorithms on the regular and small world networks:

Multi-Agent, Multi-Attitude Model The update mech-
anism outlined in 1, with a time independent uniform
agenda.

Simple Voter model Set Pchange(τ) = 1.0,∀τ .

Probabilistic voter model Set Pchange(τ) = Pbase, ∀τ (sim-
ilar to the Heterogenous voter model [19]

As we mentioned before, the voter model comes closest
in terms of update rules to the MAMA model. The Ta-
ble 1 shows the results, which make it clear that incorporat-
ing interacting attitudes dramatically changes the time to
convergence. All pairs of expected convergence time were
statistically significant (Wilcox rank sum test, p ≈ 0)

As expected from existing results [4], convergence time
for the small world networks was lower than the regular
network.

Table 1: Mean convergence time (over 100 runs)

Adoption Mechanism Regular Small World

MAMA 1050.700 920.600
Simple Voter 30 20.800

Probabilistic Voter 70.400 61.200
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Figure 4: Mean convergence time on a regular net-
work. The x axis indicates the probability of choos-
ing a particular cognition, and each line is a partic-
ular cognition (e.g., the red line is the mean conver-
gence time when choosing cognition 1). The bars
indicate one standard deviation.

3.3 Experiment 2: Time Independent Agen-
das

In this experiment, we identify the best time-independent
agenda.

We constructed agendas of the following form. Let πk

be an agenda that sets cognition k to p ∈ [0.3, 0.9] and the
other cognitions to (1 − p)/2. This strategy will be used
through the entire time period of the experiment. We have
two parameters that can vary, p and k

Figure 4 5show the mean convergence time (over 100 runs)
for the regular graph and small world graph for k = 1, 2, 3
and p ∈ {.33, .44, .55, .66, .77, .88, .99}. Notice that focusing
discussion on the center node doesn’t decrease convergence
time, and in fact, it increases it as p increases.

On the other hand, a focus on the ancillary cognitions
slightly reduces the mean convergence time, although we do
see an inflection point p∗, beyond which the convergence
time actually increases. Note that none of the runs con-
verged for p = .99. The mean convergence time at p = .66
is statistically significantly less than the other (two-sided
non-paired t-test, p ≈ 0).

A separate experiment was conducted with agendas of the
form [p1, p2, p3], with p1, p2, p3 ∈ {.3, .4, .5, .6, .7, .8, .9} and
p1+p2+p3 = 1.0. These results supported the results shown
here – the higher the probability of discussing cognition 1,
the higher the convergence time. Results are not shown here
due to space limitations.

We will discuss these results more in Section 3.5

3.4 Experiment 3: Time Dependent Agendas
Is it possible that time dependent agendas can do better?

To test this, we considered a pair of agendas. Up until some
boundary point b, one agenda would be used, and after b,
another would be used. Let agenda πkb be an agenda that
was used from timestep 0 to timestep b which sets cognition
k to p ∈ [0.3, 0.9] and the other two cognitions to (1− p)/2.
After timestep b, we set the agenda to π = [1/3, 1/3, 1/3].
Thus we have three parameters to vary: p, k and b.

Figure 6,7 show the mean convergence time for p = .3, .6, .89
on the regular graph (the results were the same for the Small

850

900

950

1000

1050

1100

1150

1200

1250

1300

1350

33 44 55 66 77 88 99
100π(i)

T
im

es
te

ps

Graph/Concept Id Small World−C1 Small World−C2 Small World−C3

Mean convergence time, Small world Network, Time Ind.

Figure 5: Convergence time on a SW network. The
x axis indicates the probability of choosing a partic-
ular cognition, and each line is a particular cogni-
tion (e.g., the red line is the mean convergence time
when choosing cognition 1). The bars indicate one
standard deviation.

World network and are omitted for brevity). Results were
averaged over 100 runs.

The results show similar patterns to the time independent
agendas. Figure 6 shows that a focus on the central cognition
results in higher convergence time. The time to convergence
is related to the probability and boundary value.

Figure 7 shows the mean convergence time for agendas in
which we change the probability of cognition 2. We see that
for low probabilities, the agenda does not seem to make a
difference. However, if we increase the probability to .89,
we see a dramatic change in the mean convergence time as a
function of the boundary value. We will discuss this in more
detail in Section 3.5.
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3.5 Discussion
The results from Experiment 2 & 3 suggest that time de-

pendent agendas can significantly change the convergence
time of the population. However the results prompt three
other questions:

1. Why does focusing on the ancillary concepts perform
better (quicker convergence) than a uniform agenda?

2. Why does focusing on cognition 1 cause an increase in
the convergence time?

3. Why is there an increase in the time to convergence af-
ter a certain boundary value (b∗) in the TDNU agenda?

To explore these questions it is useful to consider the
changes in state of an agent as a Markov Chain.

A Markov chain is a stochastic process that varies over
time. At each time point t, the process is said to be in a
state s ∈ s0, . . . , sm (we have intentionally used the notation
denoting states of the cognitive network as they will be the
same). The probability of being in state sj at time t is a
function only of the state the process was in at time t − 1
(this is the Markov assumption) [27]. The probability of
moving from state si to state sj is denoted by P (si|sj)pij
and is called the transition probability. A Markov chain is
absorbing if there are a set of states from which the process
cannot leave (pij = 0, ∀j) [11].

We can construct an absorbing Markov chain representa-
tion of an agent by setting the states of the chain to the
states of the cognitive network of the agent (s∗ is an absorb-
ing state). Figure 8 depicts the Markov chain. The edges
are labelled with Pchange(i) (for clarity, self edges are not
shown, but are equal to one minus the sum of the outgoing
edges), however the actual transition probability would be:

P (si|sj) = Pchange(k) · P (k = s∗(k)) · π(k) (7)

where k is the cognition that changes state between siandsj .
Intuitively, this equation says that the probability of tran-
sitioning is the probability of picking as a topic the cog-
nition that needs to change (π(k)), times the probability
of a neighbor’s cognition having the correct value (P (k =
s∗(k))), times the actual probability of changing that cogni-
tion within the agent (Pchange(k)).

Of these elements, Pchange(k) is fixed by the cognitive
network and the state; and P (k = s∗(k)) is a function of the
distribution of agents in the population. π(k) is the only
variable that can be changed.

Now we can begin to answer the questions above. First,
we want to understand why TDNU agenda’s perform better
than uniform. It helps to think of the states in the Markov
Chain as being in 4 groups, the start states (which is s1 =
s′); the states at 1 hamming distance from the start states,
s2, s3, and s4 which we call Level 2 ; the states at 2 hamming
distance from the start state s5, s6, and s7 which we call
Level 3 ; and the ending states s∗ = s8.

Note that the probability of leaving the start state is
higher when when changing cognitions 2 and 3. This is
because they are less resistant to change, being less embed-
ded. However, if one manages to change cognition 1, the
probability of going to the end state is relatively high.

With a TDNU strategy that focuses on cognition 2 or 3,
many agents will move from the start state to level 2 and
level 3. Once there, it will be relatively difficult to get to
the end state, since the probability to change is low. On the
other hand, in the uniform agenda, fewer agents will leave
the start state – all the extra probability mass on choosing
cognition 1 as a topic is to waste since few agents will be able
to change their cognition. Those who do will very quickly
reach the end state, however.

Figure 9 shows the distribution of agents across states
comparing the TDNU agenda π800,2 = [.89, .055, .055] and
π800,2 = [.3, .35, .35] which approximates the uniform agenda.
You can see that with π800,89, agents “pool” in levels 2 and
3, after rapidly leaving the start state. In the uniform case,
there are relatively few agents in levels 2 and 3, with most
of the agents in the start state or the end state.

The benefit of the TDNU shows when we reach the bound-
ary point at 800. Once we switch to a uniform strategy, all
the agents from level 2 and level 3 swiftly make their way to
the end state.

So to answer our question from above, the reason why the
TDNU agenda helps is that it brings many more agents out
of the start state, which allows them to influence others. In
contrast, the uniform agenda brings few agents out of the
start state, but does get them all the way to the end state.

The second question is why is there a convex pattern to
the expected convergence time as we increase the bound-
ary value for the TDNU strategy on C2, with probability
0.89? The reason for this is over saturation. As we move
the boundary from 0 to 800, we see more and more agents
leaving the start state. Around b = 800, under an agenda
of πb,2 = [.89, .055, .055], nearly all the agents have left the
start state (see the top graph of Figure 9 which shows only
100 agents remaining in s′). Once all the agents have moved
out of the start state, spending time on the non-uniform
agenda is a waste since most agents have already been con-
verted. Thus the increase in convergence time past b ≈ 800.
Because we are still using the strategy on cognition 2/3 af-
ter all the agents have moved out of the start state, it takes
longer to reach convergence.

The final phase, after b = 1200 is how long it takes for
πb,2 = [.89, .055, .055] to reach convergence without chang-
ing agenda. This is worse than the uniform strategy because
the agenda is unduly focused on just one cognition for too
long.

Finally the third question – why does focusing on cogni-
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Figure 8: Markov chain of state transitions, with
edges labeled by Pchange(i) Not accounted for: the
agenda π and the distribution of agents over states.
The bottom of each node are the values for the state.

tion 1 hinder efforts? The answer is relatively simple, be-
cause the initial transition out of the start state is difficult,
agents pool in the start state. This causes a decrease in
P (v(k) = s∗(k)), and thus generally reducing the probabil-
ity of transitioning to the end state.

4. RELATED WORK
The communication and interaction dynamics of our model

are closely related to the voter model a well explored model
from the physics domain [36]. In this model there are a set
of sites each of which is endowed with a variable that can
take either state 0 or state 1. At each timestep a random
site changes its state to a randomly chosen neighbors. The
voter model has been studied on lattices as well as small-
world and heterogenous degree networks [38, 36]. Multiple
extensions have been developed that incorporate a majority
rule (sites change to the state that is in the majority of their
neighborhood) [17, 23, 5]. The main issues with voter mod-
els are that they are limited to one concept with only two
states; this simplicity is, however, a boon for analysis.

Similar to the voter model, at each timestep we choose
one agent which communicates with one of its neighbors.
However, our agents are more complicated as they utilize a
PCS network.

The conformity-consistency model (CCM) is a model that
represents both social and cognitive factors [3, 22]. In the
CCM, there areN agents, each endowed with a binary vector

0
100
200
300
400
500
600
700
800
900

0

100

200

300

0

100

100
200
300
400
500
600
700
800
900

1000

S
tart

Level 2
Level 3

E
nd

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
Timestep

C
ou

nt

π(2) P30 P89

Distribution of agents by states

Figure 9: Distribution of agents across states. Level
2 = s2 + s3 + s4, Level 3= s5 + s6 + s7.

of size M that represents their cognitive state. At each time
step an agent is chosen and it will execute the standard
voter model process on of its variables with probability p;
with probability q = 1 − p the agent engages in a voter
model with itself, between the elements of its cognitive state.
The voter process within itself can be viewed as reducing
dissonance between the elements of its cognitive state – with
the extremes of all variables at 0 or all variables at 1 to be
the no dissonance situations.

The CCM is similar to our model, but differs in two im-
portant regards: (1) it does not incorporate modifying the
likelihood of changing an concept, and (2) it does not incor-
porate elements of agenda setting.

Chapter 10 of [39] describes the “consensus = coherence
+ communication” (CCC) model. In this model each agent
has a PCS network where concepts represent hypotheses and
evidence, and links represent explanatory relations. The
purpose of the model was to explain the diffusion of scientific
theories in a population, so pairs of agents could interact
(simulating a complete network) and agents could execute
“lectures” for many other agents.

The main difference between our model and the CCC
model is in the interaction. In the CCC model agents ex-
change concepts with others, thus changing the structure of
the network. We have focused on a different perspective,
given that individuals already know the links between con-
cepts, how do persuasive messages between agents lead to
attitude change.

The parallel constraint satisfaction model has been ex-
plored in a wide variety of contexts, such as impression for-
mation [16], legal inference [33, 31, 34], and as a model of
change in attitude to the persian gulf war [37].

Axelrod’s cultural diffusion model is a model that con-
tains multiple cultural traits that interact [2]. The model
uses a bounded confidence paradigm – so agents that only



match on some number of traits are allowed to communicate.
However, there is no interaction between traits.

Several extensions to Axelrod’s model have been proposed
that incorporate mass media. Often, this is incorporated
through a virtual agent that represents the media and which
has edges connecting it to all other agents in the population
[24]. This work also studies the influence effect of media,
and not the agenda setting effect.

5. CONCLUSIONS
The MAMA framework captures interactions between at-

titudes and the influence of agenda setting on diffusion time.
We incorporate aspects of the theory of cognitive consis-
tency, drawn from work in social psychology, to capture how
attitudes interact and influence each other within an individ-
uals. We show that the diffusion time in the MAMA model
is dramatically longer than with more standard models, such
as the voter model.

We also showed the impact of agenda setting on diffusion
time for agents with the ”3-Fan”cognitive network. Through
extensive empirical experimentation, we have shown that
choosing a non-uniform, time dependent strategy is bet-
ter than choosing a time-independent uniform strategy –
the benefit is a reduction in mean diffusion time by ≈ 100
timesteps, which for the 1000 node network we studies, would
be a reduction by 100, 000 agent interactions.

What does this model suggest for advertisers and others
wishing to have their product/idea diffuse? We highlight
some suggestions. First, it is imperative that one knows
the domain of the problem. Some attitudes may be rela-
tively independent, and thus can be considered as indepen-
dent variables. These may come to convergence through
standard convention emergence techniques, dominated by
interpersonal interaction.

On the other hand, decisions that are embedded with
other attitudes should be considered more carefully. For
these, influencers should understand how the set of attitudes
are interlinked and why – in order to ascertain the strength
of the relationships. Once that is complete, a multi-stage
marketing campaign would be a good option, where in each
stage one or more of the ancillary attitudes are being focused
on. Critically, though, the campaign must be committed to
a long term endeavor – since as we saw individuals may
pool in a state that is not the end state. However, if a
multi-stage campaign can be setup, after you switch to the
uniform strategy, there will be a strong swing toward the
end state.

If the campaign has a shorter term goal and measures suc-
cess by individuals in the end state, then perhaps a uniform
strategy is the best way to go – in the short term this would
outperform the other strategies.

6. FUTURE WORK
There are several paths for future work.
One interesting avenue of exploration is the relative ef-

fect of agenda setting as compared to choosing influential
agents. Several algorithms exist for identifying influential
agents in the influence maximization literature ([14]). We
could test the effect of influential agents, agenda setting and
the combined interaction.

We have focused our study on regular and small world
networks. Another major class of networks are the scale-

free graphs. Vertices in a scale free graph have a significantly
varied degree distribution, and it would be interesting to see
how that effects the effectiveness of agenda setting.

We have focused on the ”3-Fan” network, but it’s clear
there may be many other network structures. In general,
identifying these networks of attitudes in a general manner
may be difficult. Networks of different attitudes linking to-
gether have been created for specific domains, for instance
in the health decision making processes[30]. More complex
cognitive network topologies may dramatically increase dif-
fusion time, or preclude it (for instance, in the case where
there are no consistent states).

We could also consider using analysis techniques derived
from epidemic models. Considering the Markov Chain in
Figure 8, we can consider agents in state s′ as being suscep-
tible, agents in levels 2 and 3 to be ”exposed”, and agents in
state s∗ to be infected (and to forever remain so). The goal
would be to see how long before the population gets fully
infected.
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