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Motivation 
ITER"

Sandia"
Z-Machine"

Scientific / Technology: Resistive and extended MHD equations are 
used to model a variety of important plasma physics systems 

•  Astrophysics: Solar flares, sunspots, magnetic reconnection 
•  Geophysics: Earth’s magnetospheric sub-storms, geo-dynamo!

•  Fusion: Magnetic confinement (ITER - Tokamak), Inertial conf. (NIF, Z-
pinch) 

•  Technology/Engineering: Plasma Reactors, MHD Pumps, .. 

Mathematical / Computational Motivation: Achieving Scalable 
Predictive Simulations of Complex Highly Nonlinear Multiphysics 
Systems to Enable Scientific Discovery and Engineering Design/
Optimization !

Our goal is to develop: 
 
•  Stable and higher-order accurate fully-implicit formulations,  
•  Robust fully-coupled nonlinear/linear iterative solution methods,  
•  Scalable and efficient parallel preconditioners, 
•  Integrated sensitivity and error-estimation to enable UQ capabilities. 



One Fluid Resistive MHD Equations 
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Resistive MHD Equations 
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"

•  Complex coupled multiphysics system"

•  Highly nonlinear"

•  multiple-time and -length scales"

•  Elliptic, parabolic and hyperbolic character in different parameter ranges"
"



Resistive MHD Equations 

  

Resistive MHD Model in Residual Notation 

"

•  Divergence free involution enforced as elliptic constraint with a Lagrange multiplier.                                   
(Dedner et. al. 2002; Codina et. al. 2006, 2011)"

•  Only weakly divergence free in FE implementation (stabilization of B -    coupling )"

•  Can show relationship with projection (e.g. Brackbill and Barnes 1980) when 1st order-splitting is used."
"

•  Issue for using C0 FE for domains with re-entrant corners / soln singularities "
  (Costabel et. al. 2000, 2002, Codina, 2011"
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Summary of Initial Stabilized FE Weak form of Equations 
 for Low Mach Number MHD System;                                                                                                            

Governing 
Equation 

Stabilized FE Residual  (following Hughes et. al., Shakib - Navier-Stokes; 
Salah et. al. 99 & 01, Codina et. al. 2006 -Magnetics ) 

Momentum 

Total Mass 

Thermal 
Energy 

Magnetics: 
Induction  
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Why Newton-Krylov Methods? 
"

Newton-Krylov"

Fully-implicit transient"

Stability, Accuracy and Efficiency!
•  Stable (stiff systems)!

•  High order methods!

•  Variable order techniques with error-
control!

•  Can be stable, accurate and efficient run 
at the dynamical time-scale of interest in 
multiple-time-scale systems (See e.g. Knoll et. al., 
Brown & Woodward., Chacon and Knoll, S. and Ober, S. and Ropp)"

Robustness, Convergence and Flexibility!

•  Strongly coupled multi-physics often 
requires a strongly coupled nonlinear 
solver!

•  Quadratic convergence near solutions!

•  Enables continuation, bifurcation, 
stability analysis, etc.!

Direct-to-steady-state"



Why Newton-Krylov Methods? 
"

Newton-Krylov"

Fully-implicit transient"
"

Stability, Accuracy and Efficiency!

Direct-to-steady-state"
"

Robustness, Rapid Convergence,  !
"

Optimization, Inverse Problems, !

Integrated Adjoint Error-estimation, !

Sensitivity Analysis, and UQ tools!



Equations of State (& e.g. HydroMagnetic Thermal Cavity) 

Constant Density - Strictly incompressible 

Variable density Formulations  

� = �0 = constant

Boussinesq Approximation 

� ⇥ �0 +
⇥�

⇥T

��
0
(T � T0) in momentum body force term

� = �0 and everywhere else

Low Flow Mach Number Approximation 

Pth = f(�, T, Yi) where Pth is thermodynamic
not hydrodynamic pressure (P)

Anelastic Approximation 

P = f(�, T, Yi) and
⇥�

⇥t
= 0 in continuity eq.

Compressible Fluid 

P = f(�, T, Yi)



The path to predictive computational analysis and uncertainty 
quantification (UQ) for multiphysics has many open challenges 

Challenges Include: 
 
•  Uncertainties arise from: discretization errors, boundary and initial conditions, model 

parameters, physical parameters,  

•  Analysis and design often focus on a set of quantities of interest (QoI) rather than the 
entire state (e.g. partial differential equation (PDE) solution) 

 
•  The stability, error, uncertainty propagation and sensitivity characteristics for QoI can 

be significantly different from the PDE solution itself 

We are addressing these challenges for studies of a moderate number of QoIs dependent 
on a large-number of parameters using adjoint-based methods to accurately and 
efficiently compute numerical error estimates and to conduct  sensitivity analysis for QoI 
 

Adjoint methods have been well studied and demonstrated for parabolic PDEs. 
[e.g. Rannacher, Oden, C. Johnson, Estep, Bangerth, Barth, Suli, Braack, …..]   

Forward problem: L(u;p) = f(p)

Adjoint Sensitivities: @pg(U ; p) = ( , @pR(u; p)); Error Estimate: g(u; p)� g(U ; p) ⇡ ( ,R(u; p))

Adjoint problem: (L0
(u;p))⇤ = @ug(u,p).
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Physical Parameter Exact Sensitivity Computed Adjoint Sensitivity  Relative Error  

Pressure Gradient (      ) -0.31304 -0.3148 0.6% 

Dynamic Viscosity (      ) -0.294485 -0.2858 2.9% 

G0

µ

E.g. Very Coarse Mesh Simulation: 5 elements in duct cross-section  
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§  Reference	
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§  Parameters	
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  sensi=vity	
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  (+-­‐	
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Ini=al	
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E.g.	
  3D	
  MHD	
  Generator	
  (Re	
  =	
  2500,	
  Rem	
  =	
  10,	
  Ha	
  =	
  5)	
  

Ha =
B0Lp
µ⌘

Rem =
V L

⌘
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µ
;

Physical Parameter 
Dynamic Viscosity (      ) 

QoI computed from 
Drekar  

QoI Estimated from Adjoint 
Sensitivity 

 Relative Error  

0.00202 (   +1%) 4.61750 4.61703 0.010% 

0.00198  (   -1%) 4.69811 4.69784 0.006% 

0.0021 (   +5%)   4.46483 4.45541 0.211% 

0.0019  (   -5%)   4.86876 4.85945 0.191% 

E.g. Coarse Mesh Simulation: Nx x Ny x Nz: 140x20x20 mesh 
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V
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dy

⇢ = 1, µ = 0.002, G0 = 0.31, ⌘ = 1, B0 = 0.2236

µ,G0;

µ
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Initial Scaling Studies for Cray XK7 AND BG/Q.   
3D MHD Generator [Re = 500, Rem = 1, Ha = 2.5] 

~20x 

Recently run on  
500,000 cores of BG/Q 
 
[Preliminary strong scaling of 
Krylov linear solver + preconditioner 
[(ML: FC – AMG), Tuminaro, Hu, 
Siefert et. al.] 

Titan: 128K 

BG/Q: 256K 

1.8 Billion max unknowns 
4096x increase in prb. size 

1.8 Billion max unknowns 

1.8 Billion unknowns 



Initial Scaling Study for Cray XK7.   
3D Hydromagnetic Kelvin-Helmholtz Instability 

[Re = 104, Rem = 104, MA = 3; CFLmax ~5 ] 

170 Million max unknowns 170 Million max unknowns 



Magnetic reconnection dominates the energetics and dynamics of most 
space and laboratory plasmas. 
 
Astrophysics 
•  Solar Flares, 
•  coronal mass ejections, 
•  plasmoid ejection from earth’s magnetotail. 

Magnetic Confined Fusion Devices (e.g. ITER)  
•  Break of plasma confinement (e.g. Sawtooth crash),  
•  resulting huge energy loss,  
•  and discharge of very large electrical currents into walls of structure.  

 
ITER can sustain a limited number of disruptions, O(10 – 100). [FSP Report] 

 
However, plasmas in all the above-mentioned cases are known to have a 
negligible resistivity that cannot be used to explain the reconnection time-
scales observed. This issue has drawn significant attention over the last 50 
years. [See e.g. D. Biskamp, Magnetic Reconnection in Plasmas. 2000] 

 
 
 
  
 

Computational Physics Study: Understanding Time-scales in Magnetic Reconnection 

ITER  

Magnetic reconnection is a fundamental process whereby the sheared 
magnetic field topology is altered via some mechanism (e.g dissipation), 
resulting in a rapid conversion of magnetic field energy into plasma energy 
and significant plasma transport. 

Magnetosphere !
Credit: Steele Hill/NASA!



Multiple-time-scale systems: E.g. Driven Magnetic Reconnection with a "
Magnetic Island Coalescence Problem (Incompressible)   "

Approx. Computational Time Scales:  
•  Ion Momentum Diffusion: 10-7 to 10-3 
•  Magnetic Flux Diffusion:  10-7 to 10-3   

   

 

•  Ion Momentum Advection: 10-4 to 10-2 
•  Alfven Wave                    : 10-4 to 10-2 
•  Whistler Wave                 : 10-7 to 10-1 
•  Magnetic Island Sloshing: 100  
•  Magnetic Island Merging: 101 

 
[Finn and Kaw, 1977; Chacon and Knoll, 2006] 



S = 109 (no claim this is effective S yet) 

Global system level view of reconnection rate in the IC problem  

S = 1e+4 S = 1e+9 

Recent insight into breakdown of thin current sheets: 
Linear Theory - Asymptotic anal., Super-Alfvénic tearing instability: N. F. Loureiro et al., Phys. Plas. 2007 
MHD Numerical Confirmation (idealized system, S <= 108): Samtaney et.al., Phys. Rev. L. 2009   
MHD Numerical Investigations Quadra-pole system: Bhattacharjee ( 104 < S < 6 x 105), Phys. Plas. 2009 
Fully Kinetic Simulations: Daughton et. al. Phys. Rev. L. 2009 



S = 1e+4 S = 1e+6 

S = 1e+7 S = 1e+10 



Results (Preliminary)– High Lundquist No. Reconn.: Secondary Plasmoid Instability 

Recent insight into breakdown of thin current sheets: 
Linear Theory - Asymptotic anal., Super-Alfvénic tearing instability: N. F. Loureiro et al., Phys. Plas. 2007 
MHD Numerical Confirmation (idealized system, S <= 108): Samtaney et.al., Phys. Rev. L. 2009   
MHD Numerical Investigations Quadra-pole system: Bhattacharjee ( 104 < S < 6 x 105), Phys. Plas. 2009 
Fully Kinetic Simulations: Daughton et. al. Phys. Rev. L. 2009 



Geodynamo Mechanisms 
Geodynamo Slides from J. Aurnou Talk (UCLA – Earth and Space Sciences Dept.) 

See e.g.  Christensen. al., , Glatzmier et. al., Wicht et. al. 



From: King, Soderlund, Christensen, Wicht, Auronu,  
“Convective heat transfer in planetary dynamos”,  
Geochemistry. Geophysics, and Geosystems (2010) 
 



Christensen et. al.  
Rotating Thermal Conv. 
Benchmark 
Ra = 1e5, E = 1e-3; 
 
E_kin = 58.348 +- 0.050 
 
Preliminary 
Drekar 1.3M elem. Soln. 
 
E_kin = 58.846 
This is within .85% 

Ra = 1.54e5, E = 1e-3; 



J. Aurnou - Spin Laboratory (UCLA – Earth and Space Sciences Dept.) 



Ra = 1e10 

Aurnou et. al.  
Lab Exp. Preliminary Drekar 

Simulation  

Ra = 1e11; E = 2e-7 

Preliminary Drekar 
Simulation  

Aurnou et. al.  
Lab Exp. 



Ra = 1e11;  
E = 2e-7 

Ra = 1e11;  
E = 0 



Ra = 1e11;  
E = 2e-7 

Ra = 1e11;  
E = 0 



Preliminary Comparison Non-rotating Thermal 
Convection  Experiments and Drekar  
(E = 0, Pr = 7.1) 

Experimental data obtained from 
Aurnou, Cheng (UCLA) 



MHD Turbulence Modeling  
Taylor–Green MHD Vortex Decay: Re = 5100 (Drekar FE VMS Resistive MHD Model)   

With:    
Prof. Assad Oberai (RPI),  
David Sondak (DOE Office of Science Graduate Fellowshiand recent Ph. D. – RPI)   



Following Variational Multiscale Method (Hughes et. al.) develop FE VMS MHD model  
With  Assad Oberai, David Sondak  (RPI) 



VMS induced cross term fluxes (sub-grid to resolved scales)  

VMS induced higher-order sub-grid term fluxes 

Oberai and Sondak, 2012  



DNS: Pouquet et. al. (2010),  
Spectral VMS: Oberai and Sondak, 2012  



DNS: Pouquet et. al. (2010),  
Spectral VMS: Oberai and Sondak, 2012  



DNS: Pouquet et. al. (2010),  
Spectral VMS: Oberai and Sondak, 2012  



The End 


