SAND2013- 8544C
On the Development of a Scalable Fully-implicit Stabilized Unstructured FE

Capability for Resistive MHD with Integrated Adjoint Error-Estimation

John N. Shadid

Computational Science and Applied Mathematics Group,
Sandia National Laboratories

Collaborators:
Roger P. Pawlowski, Eric C. Cyr
Tom M. Smith, Tim M. Wildey

Paul T. Lin, R. S. Tuminaro

Sandia National Laboratories

Luis Chacon

Los Alamos National Laboratory

Don Estep and Jehanzeb Chaudhry

Colorado State University

,," Office of

—~d Science A S National

Llaboratories




Outline

» General Scientific and Mathematical/Computational Motivation

* Overview of 3D Resistive MHD Equations and VMS/Stabilized FE formulation

* Motivation for Fully Implicit Newton — Krylov Solution Methods
» General comments
» Solving a wide range of flow conditions (Boussinesq, Anelastic, Low-Mach)
* Facilitating adjoint methods for error-estimation and sensitivity analysis

» Scaling of Fully-coupled AMG preconditioner

* Results for Preliminary Simulations for Geodynamo Relevant Flow Mechanisms

* Rotating thermal convection in spherical geometry
* High Rayleigh number thermal convection (validation w/lab experiments)

* Results for Plasmoid Instability of this Current Sheets at High Lunquist numbers

* Conclusions
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Motivation

Scientific / Technology: Resistive and extended MHD equations are
used to model a variety of important plasma physics systems

- Astrophysics: Solar flares, sunspots, magnetic reconnection

* Geophysics: Earth’s magnetospheric sub-storms, geo-dynamo

* Fusion: Magnetic confinement (ITER - Tokamak), Inertial conf. (NIF, Z-
pinch)

» Technology/Engineering: Plasma Reactors, MHD Pumps, ..

Mathematical / Computational Motivation: Achieving Scalable
Predictive Simulations of Complex Highly Nonlinear Multiphysics
Systems to Enable Scientific Discovery and Engineering Design/
Optimization

Our goal is to develop:

 Stable and higher-order accurate fully-implicit formulations,
* Robust fully-coupled nonlinear/linear iterative solution methods,
» Scalable and efficient parallel preconditioners,

* Integrated sensitivity and error-estimation to enable UQ capabilities.
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One Fluid Resistive MHD Equations

Resistive MHD Model in Residual Notation
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Resistive MHD Equations

Resistive MHD Model in Residual Notation
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« Complex coupled multiphysics system
* Highly nonlinear
» multiple-time and -length scales

« Elliptic, parabolic and hyperbolic character in different parameter ranges
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Resistive MHD Equations

Resistive MHD Model in Residual Notation
dpu Lo 2 T
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* Divergence free involution enforced as elliptic constraint with a Lagrange multiplier.
(Dedner et. al. 2002; Codina et. al. 2006, 2011)
- Only weakly divergence free in FE implementation (stabilization of B -/ coupling )

» Can show relationship with projection (e.g. Brackbill and Barnes 1980) when 1st order-splitting is used.

* Issue for using CO FE for domains with re-entrant corners / soln singularities
(Costabel et. al. 2000, 2002, Codina, 2011 Sandia
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Summary of Initial Stabilized FE Weak form of Equations
for Low Mach Number MHD System;

Governing Stabilized FE Residual (following Hughes et. al., Shakib - Navier-Stokes;
Equation Salah et. al. 99 & 01, Codina et. al. 2006 -Magnetics )
Momentum | F =f(I)Rm dQ +Efp1:m(u . VCI))Rm dQ +Efvm V& + CVu, dQ
Q e ¢ e Q¢

TotalMass | F, = [0R,dQ+Y [ p7, VPR, dQ

Q e ¢

0
Z/ PTm VP - [ (gtv) +V-[pv®v]+VP—V-H—J><B] ds2

Thermal
Energy Fy = [OR,dQ+ [pC,t,(ue V)R, dQ+Y [v,VD*CVTdQ

Q e Q¢ e Q¢
Magnetics:
Induction Fg :/Q@RB dQJr;/QeTB(RB@u—u@RB) LV dQ+§/QeT¢(V-<I>)(V-B) o

Fy :/<I>R¢ dQ+Z/ 8V - Rp dQ

Divergence 2 e V8
Constraint
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Why Newton-Krylov Methods?

/ Newton-Krylov \

Direct-to-steady-state Fully-implicit transient

Stability, Accuracy and Efficiency

Robustness, Convergence and Flexibility

 Strongly coupled multi-physics often
requires a strongly coupled nonlinear

solver - Variable order techniques with error-
control

- Stable (stiff systems)
- High order methods

- Quadratic convergence near solutions
- Can be stable, accurate and efficient run
at the dynamical time-scale of interest in

multiple-time-scale systems (See e.g. Knoll et. al.,
Brown & Woodward., Chacon and Knoll, S. and Ober, S. and Ropp)

- Enables continuation, bifurcation,
stability analysis, etc.
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Why Newton-Krylov Methods?




Equations of State (& e.g. HydroMagnetic Thermal Cavity

Time = 5.0765 ?ﬁ“f‘

Constant Density - Strictly incompressible

p = po = constant

Boussinesq Approximation

Time = 5.0765

0
p R po+ 6—; ’0(T — Tp) in momentum body force term

p = po and everywhere else

Variable density Formulations

Low Flow Mach Number Approximation Time - 5.0765 g

Pin = f(p,T,Y;) where Py, is thermodynamic
not hydrodynamic pressure (P)

Anelastic Approximation

0
P = f(p,T,Y;) and 8—§ = 0 in continuity eq.

Compressible Fluid

P=f(p,T,Y;)




The path to predictive computational analysis and uncertainty
quantification (UQ) for multiphysics has many open challenges

Challenges Include:

* Uncertainties arise from: discretization errors, boundary and initial conditions, model
parameters, physical parameters,

« Analysis and design often focus on a set of quantities of interest (Qol) rather than the
entire state (e.g. partial differential equation (PDE) solution)

» The stability, error, uncertainty propagation and sensitivity characteristics for Qol can
be significantly different from the PDE solution itself

We are addressing these challenges for studies of a moderate number of Qols dependent
on a large-number of parameters using adjoint-based methods to accurately and
efficiently compute numerical error estimates and to conduct sensitivity analysis for Qol

Adjoint methods have been well studied and demonstrated for parabolic PDEs.
[e.g. Rannacher, Oden, C. Johnson, Estep, Bangerth, Barth, Suli, Braack, .....]

Forward problem: L{u;p) = f(p) Adjoint problem: (L'(u;p))*d = dg(u, p).
Adjoint Sensitivities: dyg(Usp) = (0,0,R(u;p));  Ervor Estimate: g(u;p) - g(Usp) % (0, R(u;p))




Comparison of Vector Boten g Analytic Profiles Comparison of Vector Potential and Analytic Profiles
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Initial Adjoint Sensitivity Analysis for Resistive MHD: MHD Duct Flows

E.g. Analytic Hartmann Flow

= Qol (1) Flow: Average

= Base State

u Ha =

Fluid velocity (Vx) V:/ Vedy

1

Potential a
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=

0
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E.g. Very Coarse Mesh Simulation: 5 elements in duct cross-section

Physical Parameter

Exact Sensitivity

Computed Adjoint Sensitivity

Relative Error

Pressure Gradient ((G)

-0.31304

-0.3148

0.6%

Dynamic Viscosity ( [/ )

-0.294485

-0.2858

2.9%




Initial Adjoint Sensitivity Analysis for Resistive MHD: MHD Duct Flows
E.g. 3D MHD Generator (Re = 2500, Re , = 10, Ha = 5)

m Parameters in simple numerical sensitivity study (+- 1%, 5%) : L, GO;

E.g. Coarse Mesh Simulation: N, x N, x N,: 140x20x20 mesh

pV L
=  Qol (1) Flow: Average ; Re=—=";
Fluid velocity (Vx) 1/ :/ V,dy
~1
. Reference state: — 1, n = 0.002, GO — 0.31, N = 1, Bo = 0.2236

Physical Parameter

Dynamic Viscosity ( /4 )

Qol computed from
Drekar

Qol Estimated from Adjoint
Sensitivity

Relative Error

0.00202 (Lt+1%) | 4.61750 4.61703 0.010%
0.00198 (-1%) | 4.69811 4.69784 0.006%
0.0021 (u+5%) | 4.46483 4.45541 0.211%
0.0019 (/4-5%) | 4.86876 4.85945 0.191%




Initial Scaling Studies for Cray XK7 AND BG/Q.
3D MHD Generator [Re = 500, Re, = 1, Ha = 2.5] \5

o 72
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0.000e+00
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Weak Scaling: Linear lterations (Ha=2.5)

Weak Scaling: Linear Solve Time (Ha=2.5)
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Siefert et. al.]
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[Preliminary strong scaling of
Krylov linear solver + preconditioner
[(ML: FC — AMG), Tuminaro, Hu,
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Initial Scaling Study for Cray XKZ7.
3D Hydromagnetic Kelvin-Helmholtz Instability
[Re =104 Re, =104 M, =3; CFL, __, ~5]

Weak Scaling: Linear Iterations (Re =10* ,Re,, =10* ,M, =3)
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Computational Physics Study: Understanding Time-scales in Magnetic Reconnection

Magnetic reconnection is a fundamental process whereby the sheared
magnetic field topology is altered via some mechanism (e.g dissipation),
resulting in a rapid conversion of magnetic field energy into plasma energy
and significant plasma transport.

Magnetic reconnection dominates the energetics and dynamics of most
space and laboratory plasmas.

Astrophysics
» Solar Flares, M‘ —

. . agnetosphere
* coronall == ?JeC’“O”S, , _ Credit: Steele HilUNASA
* plasmoid ejection from earth” s magnetotail.

Magnetic Confined Fusion Devices (e.q. ITER)

» Break of plasma confinement (e.g. Sawtooth crash),

* resulting huge energy loss,

« and discharge of very large electrical currents into walls of structure.

ITER can sustain a limited number of disruptions, O(10 — 100). [FSP Report]

However, plasmas in all the above-mentioned cases are known to have a
negligible resistivity that cannot be used to explain the reconnection time-
scales observed. This issue has drawn significant attention over the last 50
years. [See e.g. D. Biskamp, Magnetic Reconnection in Plasmas. 2000]



Multiple-time-scale systems: E.g. Driven Magnetic Reconnection with a
Magnetic Island Coalescence Problem (Incompressible)

3.E-02

2.E-02

Reconnection Rate

1.E-02

0.E+00

Reconnection Rate at X point

20

-
Approx. Computational Time Scales:

« lon Momentum Diffusion: 107 to 103  * lon Momentum Adyection: 104 to 10-2
« Magnetic Flux Diffusion: 107 to 103  * Alfven Wave (= "4") 1 10 to 102

« Whistler Wave (: e )

Vad;

« Magnetic Island Sloshing: 10°
« Magnetic Island Merging: 101

[Finn and Kaw, 1977; Chacon and Knoll, 2006]

: 1077 to 10"




Global system level view of reconnection rate in the IC problem

S =1e+4 S =1e+9

Recent insight into breakdown of thin current sheets:

Linear Theory - Asymptotic anal., Super-Alfvénic tearing instability: N. F. Loureiro et al., Phys. Plas. 2007
MHD Numerical Confirmation (idealized system, S <= 108): Samtaney et.al., Phys. Rev. L. 2009

MHD Numerical Investigations Quadra-pole system: Bhattacharjee ( 104 < S < 6 x 10%), Phys. Plas. 2009
Fully Kinetic Simulations: Daughton et. al. Phys. Rev. L. 2009

S =10° (no claim this is effective S yet)
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Results (Preliminary)— High Lundquist No. Reconn.: Secondary Plasmoid Instability

High Lundquist Number Magnetic Reconnection for the IC Problem

1.E-01 High Lundquist Number Magnetic Reconnection for the IC Problem
© Avg_Abs_Recconection_rate [1/2 domain 512x1536 mesh] 1.E+02
—Sweet-Parker Scaling: sqrt(1/S) _Th SA(3/8)
M Max_Abs_Reconnection_rate [1/2 domain 512x1536 mesh] eory -
A X-point max_Abs_Reconnection_rate [1/4 domain 512x256 mesh] A Simulaﬁon 1/2 Domain 512)(1536 mesh T
A A A
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g . =
P A ©
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o c
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Lundquist Number (S) Lundquist No. (S)

Recent insight into breakdown of thin current sheets:

Linear Theory - Asymptotic anal., Super-Alfvénic tearing instability: N. F. Loureiro et al., Phys. Plas. 2007
MHD Numerical Confirmation (idealized system, S <= 108): Samtaney et.al., Phys. Rev. L. 2009

MHD Numerical Investigations Quadra-pole system: Bhattacharjee ( 104 < S < 6 x 10%), Phys. Plas. 2009
Fully Kinetic Simulations: Daughton et. al. Phys. Rev. L. 2009




Geodynamo Mechanisms
Geodynamo Slides from J. Aurnou Talk (UCLA — Earth and Space Sciences Dept.)

Necessary Ingredients Where is the Field Generated?

. \ ( L
» A dynamo requires: (| | 'l = Crust has some

: magnetic materials
1.An electrically- G
. \ / = annot expilain o Ve
condgctlng ‘ temporal vgriability
material

3 B = Mantle is non-
2.A sufficiently large ; \ magnetic (too hot) &
body of material \ electrically insulating

3.An energy source
to drive motions of
the material

= Core dynamo

= Planetary dynamo
converts Earth’s
internal energy into
magnetic field energy

Image: Glatzmaier & Olson SciAm 05

4. (Some net
organization of the
motions)

Image: J. Aubert

» Rem~ 10A2 to 10/3

= Time averaged | = |n rapidly rotating
dipole field is closely ) \!] systems, flows tend
aligned along the I to align along the
rotation axis N rotation axis

= Geocentric axial dipole
(GAD) hypothesis : :
= | ong-lived idea:
= Rotationally-
controlled flows
explain planetary
observations

= Axial alignment
likely due to the
aligned flows that

generate it Y \

See e.g. Christensen. al., , Glatzmier et. al., Wicht et. al.

Image: J. Aubert




Table 1. Typical Nondimensional Parameters Used in Boussinesq Dynamo Models, With Comparative Estimates for Earth’s
Core®

Term Explanation Definition Earth’s Core  Dynamo Factory Models Dynamo Subset
Ra buoyancy/diffusion arge AT [uk ~2 x 107 3x10°<Ra<22x10° 2x10°<Ra<5 x 10°
E  Coriolis/viscosity v /2012 ~107" 5x107<E<5x10* 5x10°<E<10"*
Pr  viscous diffusion/thermal diffusion v/k ~107" 0.1 <Pr<30 1<Pr<2
Pm viscous diffusion/magnetic diffusion v/n ~10° 0.06 <Pm <20 1<Pm<2
x  radius ratio R/R, 0.35 0.35 0.40
Nu  total heat flux/conductive heat flux gL/kAT ~5 x 10° 1 <Nu<32 25<Nu<25
A Lorentz/Coriolis oB2 /2pQ ~107" 0.013 < A <150 0.14 <A <42
Ra, boundary layer crossing ET Ra/Ra,~2 x 1072 0.013 < Ra/Ra, < 40 0.042 < Ra/Ra, < 42
Re inertia/viscosity UL/v ~10® 1 <Re<3x10° 30<Re <3 x 10°

From: King, Soderlund, Christensen, Wicht, Auronu,
“Convective heat transfer in planetary dynamos”,
Geochemistry. Geophysics, and Geosystems (2010)
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Time =0.00000 Christensen et. al.

' Rotating Thermal Conv.
Benchmark

Ra =1e5, E = 1e-3;

(S
[T

[
2

Iy,

E_kin = 58.348 +- 0.050

[ -
i —

\|
N

-

ik
QORESS
N

Preliminary
Drekar 1.3M elem. Soln.

\
S

SR

40
<O
N,

E_kin = 58.846
This is within .85%

Time = 0.00000 Ra = 1.54e5, E = 1e-3;

uz

2.000e+00
1.000e+00

) o
H [o)]

TEMPERATURE
o
N

10Time

0.000e+00
-1.000e+00

TEMPERRTEEP

1.000e+00
7.500e-01
5.000e-01
2.500e-01
0.000e+00
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J. Aurnou - Spin Laboratory (UCLA — Earth and Space Sciences Dept.)
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Ra~ 3e10 Ra=1e10 Ra~ 6e10; E ~1e-7 Ra =1e11; E = 2e-7

Aurnou et. al. Aurnou et. al.
Lab Exp. Preliminary Drekar Lab Exp. Preliminary Drekar
Simulation Simulation

Sandia
@mm.
Llaboratories




Time = 0.0000

Ra =1e11;
E=0
_uY
5.000e+00
2.500e+00
0.000e+00
-2.500e+00 !
-5.000e+00
Time = 0.0000
Ra =1e11;
E = 2e-7

_uy
5.000e+00
2.500e+00 Sandia
0.000e+00 National
-2.500e+00 Laboratores
-5.000e+00



Time = 0.0000

0%

5.000e+00
2.500e+00
0.000e+00
-2.500e+00
-5.000e+00

Time = 0.0000
Ra =1e11;
E = 2e-7

Uy

5.000e+00
2.500e+00
0.000e+00

-2.500e+00
-5.000e+00




Time Series Data (Preliminary) Nusselt Number

Preliminary Comparison Non-rotating Thermal
Convection Experiments and Drekar :
(E =0, Pr=7.1)

Nusselt Number

Non-rotating Thermal Convection

1.6+03 A Funfschilling et. al. 2006

¥ King et. al. 2012 'L.

% Rossby 1969 ‘.l"

u
# Drekar SUPG; Ar=1/4 X ~
S
¢ Drekar SUPG; Ar = 1/2 A‘!“-
¢ Drekar SUPG; Ar=2 ‘“
i,

1.e+02 - Drekar SUPG; Ar = 10 ‘A‘

B Aurnou-Cheng 2012 “-

Drekar Ar = 1/4 LES - WALE M
S
- Vib
#
1.E+01 | N?'
%%&X% Experimental data obtained from
X
wx Aurnou, Cheng (UCLA)
1.E+00 Mwwwwww
1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11 1.E+12 1.E+13 Sandia
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MHD Turbulence Modeling
Taylor—-Green MHD Vortex Decay: Re = 5100 (Drekar FE VMS Resistive MHD Model)

Induction
1.56

With:
Prof. Assad Oberai (RPI),
David Sondak (DOE Office of Science Graduate Fellowshiand recent Ph. D. — RPI)




Following Variational Multiscale Method (Hughes et. al.) develop FE VMS MHD model

With Assad Oberai, David Sondak (RPI)

Find UM € V" st

A (W”, uh + u’) _ (wh,fv) + (vh,f')

R (U") =

o= TR (0]

' 7. NV (uh, BN + VPP — 2l — fV
V- u”

98" L v . N (uh, B + Vrh — AV2Bh — f
V- B

Nv(u,B):u®u—iB®B

ftop

N'(u,B)=-u®B+B®u

v W' ey

Sandia
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VMS induced cross term fluxes (sub-grid to resolved scales)

chz(uh®u'+u’®uh)—MLW(B”@QB’—I-B’@B”)

N'CI—(uh®B’+B'®uh>+(Bh®u'+u’®Bh>

VMS induced higher-order sub-grid term fluxes

1 @ Includes subgrid effects (U/)
/ /
L moew)

/ /
Ni=(veu)
Mo P o Allows for the possibility of local inverse energy cascade

Np=—-WU®B)+ (B au)

o Cross stresses (U" @ U') well-represented
(Wang and Oberai 2010)

o Reynolds stresses (U" @ U’) not adequately modeled
(Wang and Oberai 2010)

= Eddy viscosity model?
o Mix the VMS models with an eddy viscosity model

A(WH UM+ U') 4 (V! 20r Voub) + (Veh, 227 V°B") = (WP, F)

Eddy diffusivities

1
_ 1 _
VT = AT = Ch\/|u’|2+—|B’|2, C =0.0398
ftop

Oberai and Sondak, 2012 @ National
Laboratories



A VMS Survey (VMS, MHD, and Homogeneous, Isotropic Turbulence) VMS, MHD, and Wall-Bounded Turbulence

Homogeneous, Isotropic Turbulence
VMS Spectral Method

@ Momentum and induction
cross correlation terms

10-1

@ Periodic boundary
conditions

10‘25‘

= Only nonlinear terms

E" (k)

@=@ DNS 512°

@ Adds to stability of method 10-3
i =9 Spectral VMS 32°

W=l Spectral DSEV 32° |

Further Explorations

@ Detailed turbulence »
statistics 10 10!

@ Subgrid dynamo and VMS

@ Helical flows The VMS-based model performs very
well. The dynamic Smagorinsky model

@ Vary Prn is overly dissipative.

DNS: Pouquet et. al. (2010), National
Spectral VMS: Oberai and Sondak, 2012 Laboratories
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@ Detailed turbulence )
statistics 10 10!
k
@ Subgrid dynamo and VMS
@ Helical flows The FEM solution with linear elements
using the VMS model also performs

® Vary Prm very well.

DNS: Pouquet et. al. (2010), mll'l
Spectral VMS: Oberai and Sondak, 2012 Laboratories
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A new, VMS-based mixed model per-
forms exceptionally well for a high
Reynolds number flow.
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