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Scale-Free Graphs

 Large Graphs (Networks) are often “scale-free”
 Power-law degree distribution

 Very sparse (low average degree)

 Low diameter (small-world)

 Different from traditional physics-based simulations
 Does this change choice of algorithms?

 Do our current computational tools (software) work?

2



Our Focus: Graph Laplacians

 The combinatorial Laplacian of a graph G is the sparse matrix 
L(G) = D-A, where
 A is the adjacency matrix of G

 D= diag(d) contains the degrees of the vertices in G

 We wish to compute the extreme eigenpairs of L
 Used in network analysis

 Also used in spectral partitioning and ordering
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Eigensolvers

 We use the Anasazi package from Trilinos, which has a wide 
variety of methods:
 Block Krylov Schur (BKS)

 LOBPCG

 Block Davidson (BD)

 Implicit Riemannian Trust-Region (IRTR)
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Preconditioners

 Some eigensolvers can be accelerated using a preconditioner: 
LOBPCG, IRTR

 Any preconditioner designed for linear systems can be used

 We compare “black-box” algebraic preconditioners from 
Ifpack:
 Jacobi (diagonal)

 Symmetric Gauss-Seidel (SGS)

 Incomplete Cholesky (IC)
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Support-Graph Preconditioners

Main Idea: Construct a sparser subgraph that is a good spectral 
approximation, use this as preconditioner.

 First proposed by Vaidya (‘90) but not published

 First described publicly in [Bern et al.] and implemented by 
[Chen and Toledo]

 Important recent progress in theoretical CS community; near 
optimal solvers by Spielman et al. and also by Miller et al.
 However, no software available

 We have implemented some simple versions (Deweese’12):
 MSF: Maximum-weight spanning forest

 MSF(k): Union of k spanning forests (higher quality, but expensive)
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Test Graphs

 Real-world graphs/matrices from  UF and SNAP collections

 Symmetrized (if needed), largest component
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Matrix/graph Rows #nonzeros

Enron 68 K 507 K

P2p-Gnutella 63 K 296 K

Dblp-2010 226 K 1433 K



 Test graph: enron

 Nev = blocksize = 5 (BKS: blocksize=1)

 Tol = 1e-5  (absolute)

Method Lapl. Prec. Iter. Matvec. Total time

BKS Comb. >50000 -- --

BD Comb. Jac. >50000 -- --

LOBPCG Comb. Jac. 466 2335 46.7

IRTR Comb. Jac. 14 492 27.1

BD Norm. 4397 43980 200.6

BKS Norm. 865 865 22.6

LOBPCG Norm. 250 1255 20.4

IRTR Norm. 12 380 13.6

t

Comparison of Eigensolvers



 Test graph: p2p_Gnutella

 Nev = blocksize = 5 (BKS: blocksize=1)

 Tol = 1e-5  (absolute)

Method Lapl. Prec. Iter. Matvec. Total time

BKS Comb. 13615 13615 144.7

BD Comb. Jac. 1510 15125 81.4

LOBPCG Comb. Jac. 147 770 12.5

IRTR Comb. Jac. 14 1035 9.7

BD Norm. 1309 13120 62.8

IRTR Norm. 14 1515 9.9

LOBPCG Norm. 121 650 9.4

BKS Norm. 705 705 7.5

t

Comparison of Eigensolvers



 Test graph: Dblp-2010

 Nev = blocksize = 5 (BKS: blocksize=1)

 Tol = 1e-5  (absolute)

Method Lapl. Prec. Iter. Matvec. Total time

BKS Comb. >20000 >20000 --

BD Comb. Jac. >2000 >10000 --

LOBPCG Comb. Jac. 613 3110 202.6

IRTR Comb. Jac. 19 4550 185.7

BD Norm. >2000 >10000 --

BKS Norm. 5235 5235 232.7

IRTR Norm. 16 990 138.4

LOBPCG Norm. 422 2155 127.6

t

Comparison of Eigensolvers



 Test graph: enron_bsl (67K rows, 507K nonzeros, 1 connected component)

 Solver=LOBPCG

 Nev = blocksize = 5

 Tol = 1e-5  (absolute)

Precon
dition

Lapl. Iter. Matvec. Setup 
time

Iterate 
time

Total 
time

None Comb. 6896 34505 564.8 564.8

Jacobi Comb. 466 2335 0.0 46.9 46.9

IC(0) Comb. 476 2385 0.2 43.7 43.9

SGS Comb. 155 780 0.0 21.4 21.4

MSF(1) Comb. 125 630 1.9 13.2 15.1

MSF(4) Comb. 44 245 8.2 6.5 14.7

MSF(2) Comb. 53 270 3.3 6.2 9.5

t

Preconditioning Results: Combinatorial Laplacian



 Test graph: enron_bsl (67K rows, 507K nonzeros, 1 connected component)

 Solver=LOBPCG

 Nev = blocksize = 5

 Tol = 1e-5  (absolute)

Precond. Lapla
cian

Iter. Matvec. Setup 
time

Iterate 
time

Total 
time

MSF(4) Norm. 34 195 18.9 6.5 25.4

IC(0) Norm. 270 1355 0.2 22.8 23.0

None Norm. 250 1255 0 20.0 20.0

MSF(2) Norm. 42 215 7.9 6.2 14.1

MSF(1) Norm. 102 515 2.0 10.7 12.7

SGS Norm. 87 440 0.0 11.8 11.8

t

Preconditioning Results: Normalized Laplacian



Conclusions

 We can compute eigenvalues of graph Laplacians of order 
10^6 on a desktop using Trilinos/Anasazi

 No clear winner among {BKS, LOBPCG, IRTR}, but LOBPCG 
appears most consistent

 Normalized Laplacians are better computationally

 Preconditioning is essential for combinatorial Laplacian, also 
helps for normalized.

 MSF(k) is a simple but effective preconditioner

 Future work: Larger problems on parallel computers
 Need to revisit preconditioners (domain decomposition?)
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