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Atomic Force Microscopy (AFM)

Ultra fine tip (10 - 35nm radius) attached to a
cantilever

Tip physically interacts with sample surface

Laser beams focused on backside of cantilever
tracks cantilever movement

Contact Mode
Tapping Mode




Background

Develop a method to physically measure degree
of change in a thermally aged polymer
* Needs:

* High Resolution/Sensitivity
AFM has been used to measure:
* Thin Films
* Nanocomposite/Fiber materials

Goal: Use AFM Nanoindenting to measure degree
of change in a thermally aged epoxy material
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AFM vs. Conventional
Nanoindentation

Conventional Nanoindentation

 Depth-Sensing Indentation (DSI)
* Tipsize “200nm
* Indentation depth ~
* System compliance is low for soft materials (< 1GPa — polymers)
* Analysis based on elasticity (polymers are viscoelastic)
e Calibration uncertain for polymers
* Interfacial Force Microscope (IFM)
* Tipsizes 45 -500nm
* |Indentation depth few nanometers
* No compliance at fast rates — eliminates elasticity problem
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AFM Limitations

Surface measurement

Spring constant is poorly calibrated
Difficulty measuring tip shape

Tip shape changes

Polymer constraints

AFM indentation yields relative measurements



AFM Advantage

* Ability to image topography easily
* Surface Measurement nm range
* High resolution — tip size

Two phase epoxy system
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QNM/Nanoindenting

* Each interaction between tip and sample
generates force-distance curves

* Nanomechanical properties at each

Interaction
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Thermally Aged Epoxy
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Bruker Dimension Icon7
probe used

Force (more than 10% adhesive forsas— -

Speed

Parameter Optimization

Compliance calibration on diamon 20x20 indent array (3um full scale)

Image area

Curve fit
X rotation
cleaning

20nm indent
100nm/s




Procedure

Diamond nanoindenting probe used

e 35nm radius

e 145k spring constant

Force
-
Speed 20x20 indent array (3um full scale)
Compliance calibration on diamon 20nm indent
Image area 100nm/s

Mounting & Polish




Results

Young's Modulus (Pa)
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Results
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DSI Results

Nanaoindentation Nanoindentation
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Comparison Results

Young's Modulus (Pa)

AFM Nanoindentation
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Conclusions

Optimized sample preparation
Found appropriate probe
Optimized nanoindentation parameters

Established relative modulus measurements for a thermally aged epoxy
gradient using nanoindentation on AFM

Comparable with DSI values
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