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Abstract

A mathematical formulation is presented for describing the transport of air, water, NAPL,
and energy through porous media. The development follows a continuum mechanics ap-
proach. The theory assumes the existence of various average macroscopic variables which
describe the state of the system. Balance equations for mass and energy are formulated in
terms of these macroscopic variables. The system is supplemented with constitutive equa-
tions relating fluxes to the state variables, and with transport property specifications. Spec-
ification of phase equilibrium criteria, various mixing rules and thermodynamic relations
completes the system of equations. A numerical simulation scheme based on finite-differ-
ences is described.

3

DISTRIB

JTION OF THIS DOCIENT 13 (NUMTED o




Acknowledgment

The authors thank C. K. Ho for many helpful discussions. Reviews of the manuscript by
C. E. Hickox and J. R. Waggoner are also greatly appreciated.



Table of Contents - )

1. INrOAUCHON....c..ecrrieeeiecerccereceneeteneecetsceentisenrissesssasesasneossesnsssenasssasssessessanstesssassesnnen 7
2. Balance EQUALIONS.........ccoccieeeviiieeerieneecesreeneeneessssssenssssssssnssssesasssssssossansenns SO 8
2.1 KiNEMALICS ...vevveerreenerireerraceecnuintestssessensesnssessessesssonssssassessasnessesessssessessessessassessens 8

3. Constitutive and Thermodynamic Relations............ccceveccieeninrencnniiiinnsnneniennnneenscennee 9
3.1 Mass fIUX TEIALIONS .........covereeriiiinicecereerite st restnr et teeestes e e e e s vesesesesnenensaness 9
3.2 Heat fluxX TElations .........ccveeeeeveiverieenrieceereessesrscessessassssessrsssasseessesssaesssasscsssensanass 10
3.3 ThermOAYNAMICS.....ccccoerrirerirreeeriecreenrineestessseressrsessasesssasasssessessssrsssassessssnassnes 11
3.3.1 MIXEUIE TUIES.....covieeeriieerrc e ceertniesaessesenese e aser e e ssessessnesseneesansssensrosarens 11
3.3.2 Capillary pressure ...........coeveeeeeeneeeerereensensneans ettt s se e neasenans 11
3.3.3 EQUAtions Of StALe........cccoveeerieerenieenniriesieeetestetese e teeseseseeeneensesnsensosssenarasnos 12

3.4 TranSpOrt PATAIMELETS ........ccecvreerrirreesereereererssesuessecnessessesneestessesarenssnassnsnssassnmoses 12
3.4.1 Relative permeability funCtions..........ccceveeeeerenenrenreectinesscesesnesasseeseessnescens 12
3.4.2 Gas QiffUSION.....c..coviiceiecece et st sae et s e e saneaeas 12
3.4.3 Effective thermal conAUCHIVILY ....cccecrriieeercenrinrnreeseeerrreeee e reaaeseceseeesneeenes 13
3u4.4 VISCOSILY ..oocvveeereeierineeeeienireeneseaessensesesssrasencassnsssessessnsassasssesmstosnesseesnsessoneanes 13

4. Phase EQUILIDIIA ......ccccevemiieiiecetrecrcie s creeeseeesoeessne e e sssasaesnessssrsseeassansnssessrnnnenns 14
4.1 Water-gas eqUIlIDITUM .......cccooiiiiiieniiiiiecese ittt ctceseneeee e esaesaesaesensensesae 14
4.2 Oil-gas eqUILDIIUM .......c..covveeiiieceeeie e rtesvee st e st e s ssas e e eesesenesmeesassnsneane 15
4.3 Water-oil equilibritm ........ccocciiiiiiiiicceice et cs e e sae e e e e e 16
4.4 Three-phase eqUIlIDIIUM .......ccivuieiievieiiriiierceree et sesee s sanenes 16
4.5 Equilibrium COBICIENLS ...cceeeuirrueieeeienrriecrre e erresserce st et e e eraesstnsaeessnosseessnsane 17

5. Numerical TrEatmMENt ..........ccceeeieveerireenreceenieieeeereestessentessessensessesseessesttssessessessasesssses 17
5.1 Numerical diSCIetIZAtION .......ccccueeeueeercenrieriaeaneesrensseoescesssnesssesensessnnensessssnsaneness 18
5.2 Primary variables and Newton iteration.........coccceveeevenreereieeeseesnesecnrsseeeecceneenes 19
5.3 Boundary CONAILIONS ........ccccceierrerreriiearrteereeraeenienseeseeesseneeeeeesssraesssssssssnsseseons 21
5.3.1 Dirichlet CONAItIONS ......ccceveerieveermreirirecieee st seeecerteras e st assesanesessstecnenne 21
5.3 2 FIUX CONAItIONS .....cccviiieeriiieiiecrieenseritasssesesteessessneesstsssnessssesnstesssneeseessssenasns 21
5.3.3 Mixed CONAILIONS .....cccceemreuirreereerenrisneeseercetseessesssesscnsesnsessosstesseesassessesonesns 22

6. Concluding REMATKS.........cceceeveeiiriinereetectrcrere s e enesserse e eabesseesnesseessnaestsssasesonsans 23

R IEIEIICES . ... e ieieeeeeeeeeeeeeeeeeeeeereeeeetsseaeseassserasesseassessassetesssssnestetsssastetraetesssssesassssnsasons 24




This page intentionally left blank.




1. Introduction

Many new and established remediation techniques for subsurface contaminant spills or
leaks involve multiphase, multicomponent transport of fluids in geologic materials.
Emerging thermal techniques introduce even more complexity owing to heat-driven trans-
port processes and phase transitions. Evaluation and analysis of such technologies is great-
ly enhanced by numerical simulation. This report forms the basis for the development of
numerical simulation capability for this class of transport problem. Problems of this type
have been considered in the oil industry, especially in enhanced oil recovery processes
such as steam injection and chemical flooding techniques (see Lake, 1989). The emphasis
in the oil industry is different from remediation. In the former the emphasis is on recover-
ing as much free product as is economically feasible, whereas the latter is to recover resid-
ual (often measured in parts-per-million) quantities of contaminants (usually organics).
Chemical flooding techniques are concerned with recovering residuals. However, these
treatments typically involve isothermal transport of trace additives (surfactants for exam-
ple), for which interphase transport is not significant. Therefore, numerical simulators de-
veloped in the oil industry may not include physics relevant to groundwater quality
problems, such as multicomponent diffusion or interphase transport.

There are several approaches leading to the development of a mathematical description of
multiphase flow in porous media. This fact in itself is indicative of a state of flux in the de-
velopment and understanding of multiphase flow in porous media. The basic problem lies
in the fact that a pore scale description is impractical due to the complex geometries of the
interstitial passages through which the fluids must flow. A more practical approach is to
develop a description applicable to the macroscale, and herein lies the source of the prob-
lem. The equations governing multiphase flow on the microscale (Williams, 1985) are
fairly well-established, although by no means fully settled. However, the problem of tak-
ing the microscale continuum equations to the macroscale is a formidable task. The ap-
proaches taken to date involve averaging methods, use of mixture theory, and a
macroscale continuum approach (see Hassanizadeh and Gray, 1990). By the latter we refer
to an approach where certain macroscale quantities are assumed to exist at the outset.
These quantities are conceptualized as values averaged over a representative elementary
volume (REV). In the present work, we will follow a continuum mechanics approach
based on postulates regarding relations between microscale and macroscale quantities, al-
though we make use of findings from all the aforementioned approaches. Balance equa-
tions for mass and energy are supplemented with constitutive equations, transport property
specifications, and thermodynamic relations to complete the system of equations.

Because the resulting system of partial differential equations require numerical treatment,
a numerical scheme, based on finite difference techniques is described. The temporal inte-
gration is accomplished using implicit backward-difference formulae. The resulting non-
linear system of equations can be solved via Newton’s method, and this procedure is also
described in some detail.




2. Balance Equations
2.1 Kinematics

The system under consideration is composed of a porous matrix or skeleton whose inter-
stitial volume is occupied by fluid in motion under various forces. The porosity (intersti-
tial volume fraction) is denoted ¢ and is occupied by two liquid phases, water and &
nonaqueous-phase-liquid (NAPL), and a gas phase. The NAPL will be interchangeably re-
ferred to as an oil as well. For definiteness, we take the fluid components to be water, air,
and an oil. Each component can partition into each phase. A distinguishing feature of this
system is that the liquid phases are partially miscible. That is, the water phase is mostly
water, but can have small amounts of oil and air in solution. On the other hand, the gas
phase is a mixture of air, water and oil vapor, where each constituent may exist in any
fraction between zero and one. In the remainder of this work, subscript g refers to gas, w
to water, and o to oil. In order to avoid introducing interphase mass transfer terms, compo-
nent balances will be developed.

Component balance equations for water, air, and oil (NAPL), respectively, take the form:

ad,
=7 T YF, = Q. M
3d,
> +VeF, =0, )]
3d,
-a—t-+V.FO=QO. 3)

where d, is the bulk density of component o, and F  is the net mass flux vector of com-
ponent o, relative to stationary coordinates. The bulk densities are given by:

dw = ¢ (xwwprw + xwoposo + ‘xwgpgsg) ’ @)
da = ¢ ('xawpwsw + xaoposo +xagpgsg) ’ ®)
d, = ¢(xowprw+xoopoSO+xogpgSg), 6

where x B denotes the mass fraction of component a in phase 3, Pg are phase densities,
which in general are each a mixture of the components, and § p are the phase saturations,
the fraction of the interstitial volume occupied by phase 3. The pore space is assumed to
be fully occupied by fluid,

S, +8,+S, = 1. @

The multiphase system is assumed to be in thermal equilibrium. In particular, the thermal
energy state of the fluids and solid in a REV is described by a single average temperature,
T. An energy balance takes the form




de
E +Voq = Qe , | 8)

where the bulk internal energy is given by
e= (1-9) pses+¢(Swpwew+S0poeo+Sgpgeg) , ©)

where eg denotes the specific internal energy of phase 3, and e, is the internal energy of
the solid[5 phase. Each phase energy is, in general, dependent on pressure, temperature and
composition. Also, ¢ denotes the net heat flux vector, including diffusive and advective
transport of heat, and Q, is an extraneous heat source.

3. Constitutive and Thermodynamic Relations

In order to close the system of equations, one must now propose constitutive equations
which provide relations between the kinematic variables appearing in the balance equa-
tions and the state variables.

3.1 Mass flux relations

In describing flow through porous media, one must necessarily pose average quantities
(defined with respect to an REV) rather than pore-scale continuum values. For example,
even though the Darcy fluxes, v, , have units of velocity, they represent the local volume
flux per unit area of porous medium. As such, they cannot satisfy the no-slip condition on
boundaries. The flux relations to follow take the place of the momentum balance in con-
tinuum equations; they are the average momentum balances under conditions of “creeping
flow,” i.e., inertia-free, slow viscous flow.

The advective fluxes are assumed to be adequately described by the extended Darcy law,
in which relative permeabilities are introduced to account for the multiphase motion of
fluids. Thus the mass flux of water, oil, and gas phases are, respectively,

p..kk
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PPy =f; = --gu—grg(VPg+pgsz) , 12)

where P is pressure, g is the gravitational acceleration, and . is dynamic viscosity. Note
that we have assumed that each phase has its own phase pressure. The intrinsic permeabil-
ity of the medium is k and the relative permeabilities are denoted kg . The intrinsic perme-
ability is assumed to be a property of the material under consideration, and as such is a
spatially heterogeneous quantity.




Each component net mass flux is assumed to be a superposition of component fluxes in
each phase,

F, = Faw+Fao+Fag, 13
and each component phase-flux can be written as a sum of an advective (pressure-driven)
flux and a diffusive flux,

Fop = Xopfy+Jop - (19)

Because the gas is a mixture, each component will undergo interdiffusion whenever a gra-
dient in concentration exists (see, for example, Bird, Stewart and Lightfoot, 1960). The
diffusive fluxes in the gas are approximated by

Jag = —pgDangag . (15)

We note here that this form is only strictly valid for binary mixtures. In a multicomponent
system with more than two components, the diffusion fluxes appear in the so-called Ste-
fan-Maxwell form (see Appendix E of Williams, 1985) which is an implicit system of
equations for the diffusive fluxes in terms of the gradients of mass fraction. On average,
the gas mixture as a whole moves with the average mass flux given by,

fg = (ng+Fog+Fag). (16)
In view of the expression (14), the diffusive fluxes in the gas phase must satisfy,
Z"a ¢ = 0. a”n
o

In a similar manner, the diffusive fluxes of components dissolved in the liquid phases can
be described in the form

Jap = ~DapVPap B*g, @8)

where p ap is the concentration of component a in phase §. Because the dissolved com-
ponents in the liquid phases are presumed only slightly soluble, D g = 0 when a = B.
That is, air or oil dissolved in the water phase can diffuse relative to the bulk motion of the
water phase, but the diffusion of water in the water phase is supposed negligible.

3.2 Heat flux relations

The total heat flux vector includes conductive and convective contributions,

g=-AVT+ ;(Zhaﬁlfap) a9
a
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where A is an effective thermal conductivity. The second term on the right-hand-side is
the convective flux, and is the sum over all components and phases of the product of the
component enthalpy and net flux of component in a particular phase. The phase enthalpies
( hp) are also defined via superpositions of component enthalpies in each phase,

;haﬁFGﬂ = )m:hmfs (Xopfy +Top) = hpfp+;haﬁlap, @0

where h af is the enthalpy of component o as it would exist pure at the same temperature

and pressure of the phase B, and the phase enthalpy is hﬁ = Zhapxaﬁ‘ For example,
a

h, g is the enthalpy of oil vapor (TCE, say) at the prevailing temperature and gas pressure.
Thus, the convective part of the heat flux vector can be written in the (familiar) form

g, = ;( PgVphp + Zhapjap) : @1
o
3.3 Thermodynamics

3.3.1 Mixture rules

Ideal gas mixing rules are used to approximate the thermodynamics of the gaseous phase,

Py =) Po Pg = X Pag - @2
a o

where P ag and p,, are the partial pressure and density of each component in the gas
phase. The mass fractions in each phase must sum to unity,

Xyp ¥ Xgp+Xop = 1 B =wo,g. (23)
3.3.2 Capillary pressure

Because the transport problem under consideration involves multiple, partially miscible
phases, capillary forces must be considered. The Darcy flux laws given earlier were ex-
pressed with respect to phase pressure gradients. The various phase pressures are related
via the capillary pressure relations,

P,-P, =P, (5,5), 4
Po_Pw=Pc,ow(Sw’So)’ (25)

which, as indicated, are assumed to be empirically specified as functions of the phase sat-
urations of each phase pair. We note that the capillary pressures as defined are well moti-
vated on the microscale. Their interpretation on the macroscale is not so easily motivated,
and involves postulating the existence of the relations relative to REV-averaged pressures.

11




However, the capillary pressure-saturation relation is commonly assumed to hold for flow
in porous media. See Scheidegger (1974), Bear (1972), and Aziz & Settari (1979) for the
“traditional” viewpoint on the role of capillary pressure in porous media. Some more re-
cent discussions can be found in Hassanizadeh and Gray (1990), and references therein.

3.3.3 Equations of state

Equations of state must be specified to complete the P-V-T (pressure-volume-temperature}
description of the system. For the gas phase, the equations of state take the general form,

’ (26)
hg g = h, g (D)

for the concentration (partial density) and enthalpy of component a.. Notice that the gas

phase is approximated as a mixture of ideal gases and the enthalpy is independent of pres-

sure under this approximation. The energies are found from the definition of the enthalpy,

hg g = €opt P ag/ Pag- Because of the low solubility of oil in water and vice-versa, the

liquid phase density and enthalpy can be computed as though they were pure phases of oil
or water. This assumes that the liquid solubilities oil in water and vice versa are low
enough to safely neglect their contribution to the calculation of these properties; the dis-
solved quantities are conserved in the balance equations for each component.

3.4 Transport parameters
3.4.1 Relative permeability functions
The three-phase relative permeabilities are specified in the form,
kg = kg (Sp) - @

In view of the relation (7) among the phase saturations, the f§ -phase relative permeability
is presumed to depend on the two independent phase saturations.

The measurement of three-phase flow relative permeabilities is a demanding task. Conse-
quently, a variety of methods have been proposed for developing three-phase relative per-
meabilities from two-phase relative permeabilities, see Stone (1973), and Aziz and Settari
(1979). Each of these models requires a variety of experimentally determined data, such as
residual saturations. The particular model used will depend on the available data for the
materials being modeled.

3.4.2 Gas diffusion

It was stated in section 3.1 that the multicomponent diffusion model, equation (15), is an
approximation, even though an oft-used approximation. The reason for its appeal is that
the exact model, the so-called Stefan-Maxwell equation (see Williams, 1985, Appendix

12



E), is complicated and time-consuming computationally. Similarly, the diffusion coeffi-
cients appropriate for the model in equation (15) are often approximated according to,

0 _
D ag = (1 ‘Xa)/z (X/Day) ’ (28)
Y

Y*a

where Day are binary diffusion coefficients. Unfortunately, this approximation can only

be applied to N cmp ™ 1 components, where N, is the number of components (which is 3
for the present case), because the diffusion coefficients are not independent (see p. 637 of

Williams, 1985)!. The foregoing model applies to diffusion in free-space. To account for
the fact that diffusion is taking place in a porous medium, and to account for the tempera-
ture and pressure dependence, the diffusion coefficients applied in (15) can be modeled
according to,

¢S 0 P T 1V
= gl _reff L
Dag = 7" Dog P, (T,e) ’ @)

where 7 is tortuosity and Dgg is the diffusivity in free space at temperature T,,r and pres-

sure P,,, which is given in (28). The term ¢S g/ T modifies the expression for free diffu-
sion to account for the porous skeleton.

3.4.3 Effective thermal conductivity

The saturation-dependent effective thermal conductivity can be specified as an ad hoc
generalization of the two-phase conductivity defined by Somerton, et al., (1974), taking
the form

A=Ay S, Ay er = Aary) +8, (A et = Agry) (30)

where A, is the conductivity under all-gas conditions, A, . is the conductivity under
water-saturated conditions, and A, ., is the conductivity under oil-saturated conditions.

3.4.4 Yiscosity

The gas phase viscosity can be computed as

H, = ;xaguag 31

1. For the 3-component model presented here, the full Stefan-Maxwell equation could be applied
without incurring an unmanageable computational expense. Bird, ef al., (1960), give the required
diffusion coefficients in terms of binary coefficients on p. 570.

13




where U g is the viscosity of component o in the gas phase, generally a strong function
of temperature. Because of the low mutual solubilities of water and oil, the liquid phase
viscosities can be computed as though they consisted of pure water and oil.

4. Phase Equilibria

Since each component can partition into all phases, relationships for determining compo-
sition must be developed from phase equilibrium considerations. The general principal in-
voked is the assumption that the system is in thermochemical equilibrium at all times. In
this case, equilibrium dictates that the chemical potential of each component must be the
same in all the phases in which it exists (Callen, 1985). In applications, the equilibrium
criteria are more conveniently restated as requiring the fugacity of each component be the
same in all phases (see van Ness, 1964, for a detailed derivation). Equilibrium relation-
ships to follow are derived in this way. The derivation is not elaborated upon here, but can
be found in Adenekan et al. (1994), or Ho (1995).

In the current model, the three phase system includes two partially miscible liquid phases
and a gas phase. The constituents making up this system include water, air, and an oil
(NAPL). The air is presumed a noncondensible component under conditions relevant to
the current model. The oil component is slightly miscible in the water and vice-versa. Be-
cause of the possibility of appearance and disappearance of phases, the equilibrium condi-
tions for all the possible states must be considered. In the following, we first discuss the
three two-phase states and finally the three-phase state.

4.1 Water-gas equilibrium

The following relations can be applied to compute equilibrium phase compositions when
water and gas phases are present, but the oil phase does not exist. There can be oil in the
- system, distributed in solution between the gas and water phases, but its concentration is
not sufficient to produce an oil phase. Under the assumption that vapor-liquid equilibria
can be described via Henry’s law (Reid, et al., 1987), the composition in the water phase
can be related to the partial pressure of the component in the gas phase (Falta, et al.,
1990),

Pa =Ha,gwxaw, aFW - (32)
where H o gw is the temperature- and composition-dependent Henry’s “constant” for the
distribution of component o in the gas-water phases, and %, is the mole fraction of
component o in the water phase. This equation gives the required relationship between
the mole fraction of component in solution in the liquid phase and its partial pressure in
the gas phase. For noncondensables, like air, the Henry’s constant is described as a tem-
perature-dependent function (or a constant). For condensable components (NAPL), the

parameter H aw is estimated by evaluating the formula in the limit of pure NAPL,

P = H sol

vap, o a, gwxaw

33
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where P vap, & is the saturated vapor pressure at the prevailing temperature, and x 1s the
solubility of component o in the water phase, expressed as a mole fraction. Imph<:1t in
this approximation is that the Henry’s constant is assumed independent of composition.
Thus, the compositions of air and oil in the water phase are given by

P ag = g gwkaw (34)
Xow
Pog = Pvap,om' (35)

ow

Raoult’s law (van Ness, 1964) can be applied to determine the water vapor pressure in the
gas phase,

= (1- Xaw ™~ xow) Pvap, w* (36)

Equations of state for the components in the gas phase can be used to compute the partial
densities and then the mass fractions in the gas phase, completing the calculation of equi-
librium compositions in the two phase system.

4.2 OQil-gas equilibrium

In situations where the oil and gas phases are in equilibrium, the use of Henry’s laws for
the air and water compositions dissolved in the oil phase result in,

Poe = Hy ooXao (37)
Awo
ng = Pvap,w?;_l’ (38)

wo

These relations would be used when only the oil and gas phases exist, but there is water
and air dissolved in each, although at concentrations less than the solubility of water in the
oil phase. If the concentration of water in the oil rises to or above its solubility, a (liquid)
water phase would form. The mole fraction of oil in the oil phase is given by the fact that
the mole fractions must sum to unity. Application of Raoult’s law, gives the partial pres-
sure of oil vapor,

= (1- Xao ~ xwo) Pvap, o’ 39)

which through the use of (22) completes the calculation of gas pressure. Equations of state
for the vapors results in completion of the calculation of gas composition in terms of mole
fractions. Mass fractions can be determined from the mole fractions of a particular phase
via

¥ap = Xap™a Zykep™y “o

15




where w, is the molecular weight of component «. Finally, capillary pressure functions
for oil and gas can be used to find the oil pressure, completing the calculations of the sec-
ondary thermodynamic variables.

4.3 Water-oil equilibrium

For the calculation of water-oil equilibrium, the primary variables will include the mole
fraction of air in the water phase, %, . Henry’s law gives the composition of air in the oil
phase,

H . _
xao = H_a’ﬂxaw‘ @n

a, go

Expressions relating the equilibrium mole fraction of oil in solution in the water phase and
the mole fraction of oil in the oil phase can be derived by combining (35) and (39). A sim-
ilar relation for water in solution in the oil phase is found by combining (36) and (38),
which together result in the equations,

XOW xWO
Xoo = ol Xww = ot “2
oW XWO

Using relation (23) and the foregoing equations, results in the 2x2 system,

1 xi?vl Xww 1- Xaw
= . “3)

xswool 1 | [Xoo 1 -%g0
Solving for x,,,, and ¥, the relations (42) can then be used to complete the composition
of the water and oil phases. If the primary variables include the oil pressure and water sat-

uration, the oil-water capillary pressure relations can be used to compute the water pres-
sure.

4.4 Three-phase equilibrium

In this case, all three phases are present, two are partially miscible liquid phases and a gas
phase. The Henry’s laws in equations (34) and (37) specify the molar concentration of air
in solution in the two liquid phases. The water and oil composition in the liquid phases can
be determined in the same way as discussed in the previous subsection, once again leading
to the system (43). The partial pressures of water and oil in the gas phase are also comput-
ed from Raoult’s law, using equations (36) and (39). The only additional calculation is to
determine the liquid phase pressures. The capillary equations (24) and (25) can be used, if
the primary variables include two of the phase saturations.

16



4.5 Equilibrium coefficients

The foregoing relationships can be summarized by defining the so-called K-factors, or dis-
tribution ratios (Peaceman, 1977), _

— Xap
Kaﬂ'Y - i:YI (44)

which relates the equilibrium composition of component a between phases  and y. The
K-factors are recorded here for reference and can be summarized as follows:

Water-gas:
H P 1 P
_ la,gw - _vapo 1 — _vap,w
Kagw - pg Kogw Pg xsol KWgW Pg “5)
ow
Oil-gas:
H P P, .1
- a, go - ap, o - vap, w
Kago - Tp Kogo = ;; ngo = T p  sol (46)
g g wo
Water-oil:
K
K,,, = Kago, o =aow. 47
agw .

5. Numerical Treatment

In this section we discuss a numerical method, based on finite difference techniques, for
obtaining approximate solutions to the mathematical model. The flow equations describ-
ing the transport of water, air oil, and energy are comprised of the component and energy
balances given in the foregoing, which together with equations of constitution and trans-
port parameters, form a closed system of equations. These governing equations constitute
a coupled set of highly nonlinear partial differential equations (PDEs). Numerical tech-
niques must be employed in order to obtain approximate solutions to this system of initial-
boundary value problems. This state of affairs motivates the present discussion, which is
not meant as a definitive exposition on the numerical solution of the system. However, it
seems appropriate to at least discuss how the system may be solved numerically.

The numerical method presented for solving the initial-boundary value problem formed
by the coupled system of PDE:s is a finite difference technique. The effective treatment of
the highly nonlinear system considered here is made possible by the use of Newton itera-
tion. In the present work, the spatial derivatives are approximated by a centered difference
approximation. The resulting system of ODEs can be integrated forward in time by a vari-
able-step backward-difference predictor-corrector scheme. The backward-difference for-
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mulae result in systems of nonlinear algebraic equations to be solved for nodal quantities.
These equations are solved via an inexact Newton algorithm, which is especially effective
for the structured grid scheme discussed here.

5.1 Numerical discretization

Approximating the spatial divergences by centered differences, the system of discrete
ODEs describing the temporal variation of primary variables at node points takes the form

dy erx, ik Fo ijk F il |Cw

dp| _ % |Farin O [Fapiitl B2 |Fasiit + |9 )
d, O%|F,, ik Oy, F oy, ijk OZ| Fo it |20

] | 9x, ijk | | 4y, ijk | | 20 2] ijik

on a structured grid of mesh points with coordinates (x;, YjpZ o » on which a grid function

is denoted f,-jk = f(xpy i Zpo 1) . Vector components in the three coordinate directions are

denoted by the x, y, and z subscripts; for example F (x) = (F w? Fwy, sz) T. The cen-
tral difference operator notation is defined such that foijk =fi. 172,k I 1/2,j,k° etc.,

and dx; = x;, /7 —X;_1,, - For example,

6yFwy, ifk _ Fwy, i,j+1/2,k_Fwy, Lj-1/2,k 49)

53’;' Yiv12=Yj-122

The net fluxes of a component appearing in Eqn. (48) are defined by Eqn. (13). Because of
the relation given in Eqn. (14), each component flux will be expressed in terms of the
phase fluxes defined in Eqns. (10)-(12). For the numerical approximation, each phase flux
is also expressed as a centered difference (on a staggered mesh), for example the water
phase mass flux is approximated by

- pwkkrw AXwa, ijk dh 50

Tumiv172,0 = Ry Jiviajl A% TPwiv1/2,,8 gy | G0)

where A denotes the forward difference operator, defined similarly to the central differ-

ence operator used above (Awax ik = wa’ i1,k wa, i), ¢)» and dh/dx is the direc-

tion cosine for the gravitational component acting along the x-coordinate direction. The

diffusive and conductive fluxes can be approximated by centered differences in a similar
fashion.

Time integration can be performed with a backward difference formula. Denoting the for-
going system in vector notation, the time-discretized equations are given by
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n+l

D}*! = D+ At F| D", )

where D, = (d,d,d ,u) IT is the mass and energy density vector at grid point /, the n

subscript or superscript denotes the time level, and F; denotes the right-hand-side of (48)
for grid point /. For a structured grid, the /-th grid point can be related to the ijk notation as
l=i+ (G-DN_ + (k- l)NxNy, where N and Ny are the number of grid points in the

x and y directions, respectively. This time discretization results in a nonlinear system of
equations, which can be solved by Newton iteration. The objective is to find the solution
vector that satisfies,

IR (D)l < tp, where R,(D) = D,-Dj-At F (D), 52)

I | denotes a vector norm, and 7, is the numerical tolerance to which the system is com-
puted.

5.2 Primary variables and Newton iteration

The system of nonlinear equations is to be solved for a set of primary variables, which by
definition are a set of variables which allow the remaining secondary variables to be calcu-
lated. The three-component system under consideration may exist in seven possible con-
figurations or states. Table 1 shows the seven configurations and a set of primary variables

Table 1: Primary Variables

E;:sting Solution Vector
ases

water (P Ty Xr Xaw)
oil (Pos T, Koo X g0
gas (Por Ts Xpygr Xag)
water-gas (Pagr T, S\ X
oil-gas (P g T,S o' Xwo)
water-oil (Py T, S, X )

water-oil-gas (P ag’ T,S,S8,)

for each state consistent with the equilibrium relations given in the previous section.
These sets of primary variables are not unique; other variables could also be used. These
sets were chosen for convenience in the numerical calculation of secondary variables from
these primary variables. These primary variable sets form the solution vector for each
state. For example, in the case of three-phase flow the solution vector is
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U= (S5,,P.08,7) T The discretized system of nonlinear equations can be solved for

these variables by Newton’s method. By Taylor series expansion of the system of nonlin-
ear equations about the desired solution (i.e. the value of U that minimizes the vector of
residual equations), the system to be solved is found to be

JL U")bU"“ = -R(U"J, 53)

where J is the Jacobian matrix,

oR;

J.. = —2, (54)

y o oU f
and R is the residual vector defined in (52), except here we acknowledge that the residual
equations depend on the solution vector U, since D=D(U). The solution vector is updated

at each iteration according to

vt = vt 5)

In the finite-difference form used for approximation of spatial and temporal derivatives,
the Jacobian can be computed efficiently via forward difference approximations. (This is
particularly efficient for the block-tridiagonal systems generated for a one-dimensional
system of equations. In this case, the Jacobian can be computed in IBAND evaluations of
the residual, and /IBAND = 3*NPDE, where NPDE is the number of degrees of freedom
per node.) This inexact Newton scheme is a convenient method of determining the Jacobi-
an because any new transport parameter function or equation of state can be implemented
without the need for the user to also program the gradient of the functions with respect to
the solution vector variables. This is particularly helpful in this problem where the prima-
ry variables, and hence the solution vector variables, change depending on the phases
present at a particular node point. However, special care must be taken in computing the
forward differences to minimize finite-precision errors (see for example, Gill et al. 1981,
or Press et al.,, 1992).

For the structured grid system, the Jacobian matrix will be block septa-diagonal. Further-
more, the bandwidth is N.xN, (in practice the numbering of nodes would be chosen to
minimize the bandwidth), making direct solution methods for the linear systems impracti-
cal for general use in three dimensions. Two methods can be employed to overcome this
problem; use of splitting methods or use of iterative solution methods coupled with sparse
matrix storage. By splitting methods we refer to ADI-like methods (Aziz and Settari,
1979) which result in block tri-diagonal linear equations, but require treating each of the
coordinate directions implicitly in succession. The use of iterative methods requires
schemes applicable to unsymmetric systems. The success of iterative methods often de-
pends heavily on an appropriate preconditioner, and remains a topic of current research.
However, success with these schemes is being reported (van der Vorst, 1990) and it ap-
pears to be an effective approach.
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The switching of variables must be considered during the Newton iteration. If the update
in Egn. (55) indicates a phase appearance or disappearance, the definition of the solution
vector is changed according to Table 1. This necessitates re-initializing the solution vector
at the affected grid point (or points). Depending on which phase appears or disappears, the
initialization may require a so-called flash calculation (Walas, 1985) in order to find accu-
rate values for the new solution vector at the considered node point. More accurate values
will reduce the number of Newton iterations required at a time step in which variable
switching is indicated. Changing the solution vector definition at a grid point also means
the corresponding block column of the Jacobian is the gradient of all the residual equa-
tions with respect to the new grid point solution vector.

5.3 Boundary conditions

Both Dirichlet and specified flux boundary conditions can be imposed on the discrete
equations. Several combinations of Dirichlet and flux conditions are also allowable. The
several types are discussed in the following.

5.3.1 Dirichlet conditions

Fixed values for all degrees-of-freedom at a particular boundary node (cell) can be speci-
fied directly into the residual equation for that cell. For the Newton iteration, the block di-
agonal entry in the Jacobian matrix corresponding to the boundary node is replaced by the
identity matrix. This procedure sets the correct Dirichlet values and forces the updates to
zero for the matrix solution. This technique can obviously be applied to the discretized
system for both constant and time-varying Dirichlet values. Several techniques can be em-
ployed in several variants of the implementation of this technique. A general implementa-
tion method is to simply specify the residual equation for the boundary node as

R, = u;- g (1) , where u; is the current value of the unknown, which for the first iteration

in a time step may be the value from the previous time step, and g(¢) is the Dirichlet value
to be set. Clearly, the corresponding Jacobian entry is unity on the diagonal and zero else-
where. Each matrix solution and update will force the desired Dirichlet value.

5.3.2 Flux conditions

Specified values of flux, normal to the computational boundary, for all degrees-of-freedom
at a particular boundary node can also be imposed. In general the fluxes are time depen-
dent, and can depend on the solution vector at the considered node. For example, wells are
often approximated by setting fluxes which are proportional to the difference between the
boundary pressure in the computation and a wellbore pressure. The coefficient for the flux
may also depend on the boundary pressures, temperature, and fluid saturations, see Aziz
and Settari (1979). By setting the coefficient to a sufficiently large value, the flux condi-
tion essentially becomes a Dirichlet condition for the wellbore pressure.

By performing a material or energy balance on the half-cell adjacent to the boundary on
the plane at x = 0, fluxes of the conserved quantities can be imposed,
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- - - — -

dy, Fon 1= Fux 372,k oy iit
do|  _ 2 |Faxvjk~Fax3jk| o0 |Fayiie
do 271 Fox, l,j,k—Fox, 3/2,j,k 6yj Fay, ijk
AN | 9,1,k 95,372,k | 9y, ijk
- - . 56
sz, ijk Qw
_2525 Faz,ijk +2 Qa
k Foz, ijk Qo
| 92, ijk | _Qe_ 1jk

where the 1-subscripted fluxes are specified (or set to zero for no-flux conditions). Note
that these fluxes can be general functions of time. Similar equations apply at other bound-
aries on which fluxes are specified.

Note that in specifying any of these fluxes, there are several physical fluxes which are su-
perposed in these definitions. For example, one may want to specify the injection of cold
water at a mass flux rate F;,, at temperature T, together with an additional heat flux im-

posed at the same boundary. The mass flow rate of water is specified as ¥, | k= F,

The net heat flux is specified by superposing the convected enthalpy of the injected fluid
with the conducted heat flux, q,,,.4, by specifying 9otk = 9eona t sz (Top1a-To) Fip-

n-

5.3.3 Mixed conditions

In many applications one may want to specify mixed boundary conditions, i.e., certain
combinations of fluxes and primary variables. This can be accomplished by a combination
of the procedures discussed in the preceding subsections on Dirichlet and flux boundaries.

As a particular example, one may want to specify a temperature and impervious flow con-
ditions on the fluids. Assuming the conditions are specified at x=0, the specified time-
varying temperature is imposed directly in the matrix as discussed in the section on Di-
richlet conditions. This condition is imposed on the heat equation, i.e., the balance equa-
tion which is associated with the temperature variable. This identity replaces the last
equation in the block matrix for that degree of freedom, for example the last equation in
the matrix shown in Eqn. (56). Setting values of F i Far1,jetnd Foq iy (equal
zero for impervious conditions) in the remaining equations for that block completes the
specification of boundary conditions. This procedure generalizes for any combination of
flux and Dirichlet DOFs to be applied.
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6. Concluding Remarks

We have presented a formulation describing nonisothermal three-phase transport of air,
water, oil, and energy through porous media. The formulation employs component mass
balances, and a heat balance encompassing all phases, assuming thermal equilibrium. This
formulation conveniently includes phase transitions, as well as phase appearances and dis-
appearances without the need to explicitly define mass transfer sources between phases.
The three components are allowed to partition into all three phases, and the discussion in-
cludes the required phase equilibrium relations necessary to determine composition for
each of seven possible phase configurations. The calculation of the required transport
properties is also discussed. A

A numerical method is required for solving the resulting system of highly nonlinear equa-
tions. For completeness such a numerical procedure is presented, including the treatment
of boundary conditions. The numerical procedure ultimately relies on Newton iteration for
solving the set of discretized nonlinear system of equations. Even though the numerical
method presented involved the use of finite differences for approximating spatial gradi-
ents, the general algorithmic approach can be applied to control volume or finite element
methods.
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