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Preface

HYDRA is a finite element code which has been developed specifically to attack the
class of transient, incompressible, viscous, computational fluid dynamics problems which
are predominant in the world which surrounds us. The goal for HYDRA has been to
achieve high performance across a spectrum of supercomputer architectures without
sacrificing any of the aspects of the finite element method which make it so flexible and
permit application to a broad class of problems. As supercomputer algorithms evolve, the
continuing development of HYDRA will strive to achieve optimal mappings of the most
advanced flow solution algorithms onto supercomputer architectures.

The development of HYDRA has drawn, in part, upon over ten years of research in
computational fluid dynamics by Phil Gresho, Stevens Chan and their colleagues.
Certainly, the work by Helmut Daniels with the PASTIS code (a research version of the
Projection-II algorithm) has proven valuable, if in only identifying the obvious memory
and performance issues to consider. HYDRA has also drawn upon the many years of finite
element expertise constituted by DYNA3D! and NIKE3D? Certain key architectural ideas
from both DYNA3D and NIKE3D have been adopted and further improved to fit the
advanced dynamic memory management and data structures implemented in HYDRA.

HYDRA, in its implementation, reflects, to a certain degree, my training and experience
with supercomputers beginning with the CYBER 205 and progressing through the CRAY
UNICOS “friendly user” period at both the National Center for Supercomputing
Applications and at the Pittsburgh Supercomputer Center to the ongoing parallel efforts
with the Meiko CS-2 at LLNL. The philosophy for HYDRA is to focus on mapping flow
algorithms to computer architectures to try and achieve a high level of performance, rather
than just performing a port—a philosophy I adopted from Dan Pryor and Pat Burns during
my days as a graduate student at Colorado State University.

I wish to thank Jerry Goudreau and Phil Gresho for their help, encouragement and
periodic moral support during the initial development of HYDRA. I would also like to
express my appreciation for the help which Brad Maker provided through his discussions
with me regarding the Gibbs-Poole-Stockmeyer bandwidth minimization algorithm, the
construction of dual grids for the pressure poisson equation, and the many algorithmic
similarities and differences between solid and fluid mechanics.

I wish to give special thanks also to Lourdes Placeres and Cathe Forte for their time,
patience and expertise in typesetting the draft version of this document and for their advice
in defining the manual style. For the efforts of the early HYDRA collaborators, I wish to
thank Barb Kornblum, Rose McCallen and Stevens Chan for their input on this document.






Chapter 1

Introduction

The simulation of flow fields about vehicles and in turbomachinery remains one of the
computational grand challenges3 for the 1990’s. An example of this class of computational
fluid dynamics problem is the transient simulation of flow around a submarine or an
automobile. In order to simulate the flow around a vehicle, it is anticipated that more than
one million elements will be required to resolve important flow-field features such as shed
vortices from regions of separated flow. In addition to the high degree of spatial
discretization, the temporal resolution for this class of problem is also demanding,
ultimately requiring the optimal mapping of flow-solution algorithms to modern
supercomputer architectures.

HYDRA is a finite element code which solves the transient, incompressible, viscous,
Navier-Stokes equations, and is based, in part upon the work of Gresho, et al. 4.5-6.7,
HYDRA makes use of advanced solution algorithms for both implicit and explicit time
integration. The explicit solution algorithm*~ introduces lagging phase error, but decouples
the momentum equations and minimizes the memory requirements. While both the
diffusive and Courant-Freidrichs-Levy (CFL) stability limits must be respected in the
explicit algorithm, balancing tensor diffusivity somewhat ameliorates the restrictive
diffusive stability limit and raises the order of accuracy of the advective time integration
scheme. The explicit algorithm, In combination with single point integration and hourglass
stabilization, has proven to be both simple and efficient in a computational sense. Because
of this, the explicit algorithm has been the focus of early parallelization efforts with
HYDRA.

In the second-order projection algorithm (P-II)67, a consistent-mass predictor in
conjunction with a lumped mass corrector legitimately decouples the velocity and pressure
fields thereby reducing both memory and cpu requirements relative to more traditional fully
coupled solution strategies for the Navier-Stokes equations. The consistent mass predictor
retains high order phase speed accuracy, while the lumped mass corrector (a projection to a
divergence-free subspace) maintains a divergence free velocity field. Both the predictor and
the corrector steps are amenable to solution via direct or preconditioned iterative techniques
making it possible to tune the algorithm to the computing platform, i.e., parallel, vector or
super-scalar. The second-order projection algorithm can accurately track shed vortices, and
is amenable to the incorporation of either simple or complex (multi-equation) turbulence
submodels appropriate for a broad spectrum of applications. HYDRA provides several
turbulence models which vary in complexity from a simple algebraic form3:° to more
traditional multi-equation models!0. However, because there is no single turbulence model
which can solve all flow problems, HYDRA development efforts will continue to evaluate
new turbulence models which are appropriate for large scale, complex geometry problems.

1.1 History of HYDRA Development

The early HYDRA development was driven in part by my participation in the early
original efforts to parallelize DYNA3D!1.12, The original idea was to develop the next
generation CFD code using the most current algorithmic ideas for incompressible flow
coupled with aggressive algorithm mapping for parallelization. The HYDRA code
development effort started essentially from scratch to avoid problems with inherited
sequential code and antiquated memory management schemes present in many existing
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finite element codes. Over the past two years, HYDRA has been under continuous
development, and has acted as a test bed not only for investigating the issues involved in
mapping finite element codes to parallel architectures, but also for the study of optimal
solution methods for the pressure poisson equation, and for the study of advanced Navier-
Stokes solution algorithms.

HYDRA was developed using standard UNIX tools for source configuration, and
source code control. HYDRA was originally constructed to permit the source code to be
configured for compilation using either FORTRAN-77 or FORTRAN-90 compilers in an
attempt to span multiple supercomputer architectures, e.g., traditional CRAY vector
computers and machines like the Thinking Machines CM-5.-FORTRAN-77 was used for
the vectorized (CRAY) version of HYDRA, while FORTRAN-90 source configuration
permitted coexistence and concurrent development of a data parallel version of HYDRA for
the Thinking Machines CM-200 and CM-5.

While partially successful, the very long vector characteristics of the CM-200, and CM-
5, have pushed HYDRA development away from a data parallel implementation and
towards a more portable domain decomposition message passing model (DDMP) which
relies upon the FORTRAN-77 part of HYDRA. Current algorithm mapping efforts with
HYDRA are being directed towards the Meiko CS-2 because of its superior network
bandwidth, fast scalar speed, vector processing abilities, and local disk. However, the
general purpose nature of the DDMP approach will also permit future efforts to consider

machines such as the CRAY T3D, and the INTEL Paragon. -

1.2 HYDRA Capabilities

HYDRA provides multiple analysis options for both 2-D and 3-D transient, viscous,
incompressible flow problems. Of course, the analysis of problems with thermal
convection is a subset of the 2-D and 3-D analysis options. In addition to the implicit and
explicit algorithms for solving the transient Navier-Stokes equations, HYDRA also
provides both implicit and explicit algorithms for solving the time-dependent scalar
advection-diffusion equation.

1.2.1 Pre-Processor Interfaces

The primary mesh generator for HYDRA is currently INGRID!4, At this time, there is
no direct mesh generation support for HYDRA in INGRID. However, the input data for
HYDRA has been designed to enable the use of the dn3d INGRID output option. One
difficulty with this approach is that the user must do some manual editing of the HYDRA
input files which can be a bit unwieldy where large grids are concerned. The use of the
UNIX utility, awk, can simplify the conversion of DYNA3D boundary conditions to
HYDRA boundary conditions. It is advisable to generate all 2-D HYDRA meshes in the x-y

plane to simplify the task of converting the DYNA3D nodal coordinates and boundary
conditions for HYDRA.

While INGRID is currently the primary mesh generator being used with HYDRA, the
input data for HYDRA is quite straightforward, and nearly any finite element mesh
generator could be used in place of INGRID. Alternative mesh generation tools such as
those from the National Grid Project at Mississippi State University, the CUBIT project at




HYDRA:
A Finite Element
Computational Fluid Dynamics Code

Sandia National Laboratories, or from the PMESH project at LLNL will hopefully provide
an adequate interface for HYDRA in the near future.

1.2.2 Post-Processor Interfaces

HYDRA can output several forms of graphics files, but the primary file format is the
Methods Development Group's binary,graphics data files and time history files which are
compatible with GRIZ!5 and THUG!6. GRIZ is used for visualizing snapshots of the
entire flow-field (state data) or generating animations of the time varying flow-field data,
while THUG is used for interrogating time history data at a moderate number of mesh
points. Typically, the state data are written at relatively large time intervals while the time
history data is recorded at each time step.

GRIZ and THUG are general purpose scientific visualization tools for finite element
codes, and they support analysis codes for both computational fluid dynamics and
computational solid and structural mechanics. The use of these general purpose data
visualizers requires translation from the primitive variables which HYDRA writes to the
graphics data files to variables which can be displayed in GRIZ and THUG. Table 1.1
shows the mapping from HYDRA’s 2-D primitive variables to GRIZ and THUG variables.
Table 1.2 shows the mapping from 3-D HYDRA variables to GRIZ variables.

In GRIZ, the character strings associated with certain variables may have to be reset to
reflect the correct HYDRA variable, e.g., the x-acceleration variable in GRIZ is actually the
x-component of vorticity in a 3-D HYDRA database. For 2-D HYDRA state databases, the
z-velocity and x-acceleration are omitted, and the z-vorticity and stream function are
computed and output at the nodes instead.

THUG provides direct support for HYDRA and the variable mapping is handled
automatically. However, THUG currently requires the use of the default variable names for
the display of HYDRA variables. Table 1.3 shows the relationship between HYDRA
global time history variables and THUG global time history variables. THUG currently
provides the divu and ke global variable commands for the display of the rms divergence
and total kinetic energy for HYDRA time history data.

Future work on interfaces to alternative visualization tools will be based, in part, upon
user requirements and the functionality provided by alternative visualization tools for large
scale CFD problems using unstructured grids.
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HYDRA GRIZ HYDRA THUG
State State Time History Time History
Variables Variables Variables Variables
unused x-displacement unused x-displacement
unused y-displacement unused y-displacement ||
unused z-displacement unused z-displacement ||
x-velocity x-velocity x-velocity x-velocity {
y-velocity y-velocity y-velocity y-velocity "
Z-vorticity x-acceleration unused unused
stream function y-acceleration unused unused I
temperature temperature temperature temperature
pressure pressure pressure N/A
turbulent kinetic turbulent kinetic turbulent kinetic turbulent kinetic
energy (k) energy (k) energy (k) energy (k)
dissipation rate (¢) | dissipationrate (¢) | dissipationrate (¢) | dissipation rate (€)
stress invariant (A2) | stress invariant (A2) | stress invariant (A2) | stress invariant (A2) "

Table 1.1: 2-D HYDRA State and Time History Variables

HYDRA GRIZ HYDRA THUG
State State Time History Time History
Variables Variables Variables Variables
unused x-displacement unused x-displacement
unused y-displacement unused y-displacement
unused z-displacement unused z-displacement _ ||
x-velocity x=velocity x-velocity x-velocity
y-velocity y-velocity y-velocity y-velocity
z-velocity z-velocity z-velocity z-velocity
x-vorticity x-acceleration unused unused
y-vorticity y-acceleration unused unused
z-vorticity z-acceleration unused unused
temperature temperature temperature temperature
pressure pressure pressure unused
turbulent kinetic turbulent kinetic turbulent kinetic turbulent kinetic
energy (k) energy (k) energy (k) energy (k)
dissipation rate (€) dissipation rate (g) dissipation rate (g) dissipation rate (€)

stress invariant (A2)

stress invariant (A2)

stress invariant (A2)

Table 1.2: 3-D HYDRA State and Time History Variables

stress invariant (A2)
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<<<<<<<<<<

—
HYDRA THUG

Global Time Global Time

History Variables History Commands

(CT g)-(cf u) divu

RMS Divergence Error: \/ Nel

1., T
U My u ke

Total Kinetic Energy:

Table 1.3: HYDRA Global Time History Variables

1.2.3 Material Models

Material models in HYDRA may be broadly classified into two groups. The first
material model consists of the definition of a fluid density, kinematic viscosity, and thermal
diffusivity for a problem involving only fluid flow. For flow problems which require only
one material definition, HYDRA provides a simplified input format for specification of the
fluid properties.

Included in this class of material definition is the Smagorinsky® model which currently
is treated as just an added viscosity, albeit a turbulent viscosity based upon the local strain-
rate tensor. Because the input data for this model are minimal, the data format is presented
in a simplified form in the HYDRA control file (see Chapter 4).

The second class of material model involves the definition of a relation between material
properties and dependent variables such as velocity and temperature. The internal
architecture of HYDRA permits the use of this class of material models but, at this time
user access to this type of material model in HYDRA is restricted. In the future, user access

for alternative constitutive models will be provided.
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1.3 Guide to the HYDRA User’s Manual

The purpose for this document is to provide sufficient information for an experienced
analyst to use HYDRA in an effective way. The assumption is that the user is somewhat
familiar with modern supercomputers, large scale computing, common CFD practices, and
to a certain degree, the current CFD literature. This manual provides sufficient references to
the literature to permit the interested reader to pursue the technical details of HYDRA.

In this document, an attempt is made to adhere to the convention that all defaults for
input data appear in a boldface type, and sample computer input/output appears in a
typewriter font. All other keywords, parameters and variables are defined in the
context they are used.

In Chapter 2, an overview of the theoretical background for HYDRA is presented.
Chapters 3 and 4 present information on how to execute HYDRA in a UNIX environment
and the necessary input data for HYDRA. Several sample calculations are presented in
Chapter 5 which can be used as benchmark problems for the first time HYDRA user.




Chapter 2

Theoretical Overview

This chapter presents a brief overview of the theoretical foundation for HYDRA. As an
overview, this chapter is not intended to be a complete technical reference. Instead, it
simply presents the basic forms of the partial differential equations which HYDRA treats,
and a general description of the methodologies employed in their solution. The interested
reader may pursue the references included in this chapter for details on the algorithms used
in HYDRA and their implementation.

To begin, a brief introduction to the incompressible Navier-Stokes equations is presented.
This is followed by the advection-diffusion equation, the semi-discrete form of the
conservation equations, and a discussion of the pressure poisson equation. Finally, a brief
description of the currently implemented turbulence models is presented.

2.1 The Navier-Stokes Equations

The conservation equations for isothermal, time-dependent, laminar, incompressible,
viscous flow are:

du
3;-+L~t-Vlit=—VP+ szb_t+J~‘ 2.1)

V-u=0 2.2)

where u = (u, v, w) is the velocity, P = p/p,p is the pressure, p is the mass density, v is
the kinematic viscosity, and f is the body force.

The system of equations above are subject to boundary conditions which consist of
specified velocity as in Eq. (2.3), or pseudo-traction boundary conditions on I', as in
Egs. (2.4)-(2.5) and shown in Fig. (2.1).

u=ion I (2.3)
ou
—P+vZ2=F on T, (2.4)
du
v—=% = F_on T 2.5
oT 4 2 @.5)

Here, I,UT, =T is the boundary of the domain, n represents the outward normal
direction at the boundary, u, =w-n, u, =y 7, F, and F, are the normal and tangential
components of the boundary traction respectively. Homogeneous traction boundary
conditions correspond to the well known natural boundary conditions in the finite element
formulation which are typically applied at outflow boundaries.
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I r,

Figure 2.1: Flow domain for conservation equations.

The complete definition of a transient, incompressible flow problem requires the
specification of initial conditions which also satisfy the divergence free constraint as shown

in Eq. (2.7).

u(x,0) =4(x,0) (2.6)
V.-4=0 Q.7
n-u(x,0) = n-(x,0) (2.8)

Equations (2.7)—(2.8) pose a solvability constraint on the flow problem!7. That is, if either
Egq. (2.7) or Eq. (2.8) are violated, then the flow problem is ill-posed. If I, =0 (the null
set), (e.g., enclosure flows with u-n specified on all surfaces), then global mass
conservation enters as an additional solvability constraint as:

jrn-@dr =0 (2.9)

Remark

HYDRA always checks the initial conditions and boundary conditions and, if necessary,
performs a divergence-free projection on the initial velocity field before the first time step is
taken. This guarantees that the solvability constraints will always be met, even if the user
input initial conditions violate the solvability constraints. The allowable error in the
divergence (Vz_:j“ at start up may be specified using the divu analysis option (see
Chapter 4).
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2.2 The Advection-Diffusion Equation
The time-dependent, advection-diffusion equation is

aT k
VT =——V?T 2.10
> +u oC, +p (2.10)

Given the necessary initial and boundary conditions, HYDRA can solve the advection-
diffusion equation with a prescribed velocity field (&), or with a variable velocity field
during the solution of the Navier-Stokes equations. Unlike the solvers for the
incompressible Navier-Stokes equations, a divergence test on the prescribed velocity field
is not performed when the advection-diffusion equation is solved by itself. It is the
responsibility of the user to provide a divergence free velocity field. However, the icwrt
command can be used to generate a file containing initial conditions from a Navier-Stokes
computation which are suitable for HYDRA and may be used for advection-diffusion
calculations (see the analysis commands in Chapter 4).

2.3 Spatial Discretization

The semi-discrete form of the conservation equations is the starting point for any
discussion of time integration methods. The methods for obtaining the weak-form of the
conservation equations are well known18:19 and will not be repeated here. The semi-
discrete form of the conservation equations are:

Mu+ A(g)z_¢+ Ku+CP=f 2.11)
CTu=0 2.12)
MTT+A(4)T+ KT=0 (2.13)

Here, M is the unit mass matrix, A(x) is the advection operator, X the viscous diffusion,
and f the body force. C is the gradient operator, and CT is the divergence operator. In the
energy conservation equation, Eq. (2.13), M7 is the mass matrix corresponding to the
scalar valued advection-diffusion problem, with O representing the discrete volumetric heat
sources, and K, being the thermal diffusivity operator.

The advection operator at the element level is:
45(w)= [, Nw-vNd@ 2.14)

where u* => "N,y . Here, N, is the element shape function, and nnpe is the number

of nodes per eigméntf In the evaluation of Eq. (2.14), an integral of triple products is
required to generate the advection matrix. This very computationally intensive integral is
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approximated by using an ad hoc modification known as the centroid advection velocity.
This modification assumes that " in Eq. (2.14) may be approximated by:

nnpe
¥ =Y N;(0,0,0)z
i=1 ! (2.15)

This simplification results in an advection operator as shown in Eq. (2.16).

A(w)= J N0 (2.16)
W 9%

e

(
By following Gresho, et al.,47, a consistent, discrete pressure-poisson equation may
be constructed using the lumped mass matrix, M, .

Mzl =cmmay - Ku- A(q)y:I 2.17)

Equations (2.12)—(2.17) form the basis-for a description of the time integration
methods available in HYDRA. The following sections will discuss some of the
modifications made to the basic element formulation for the sake of computational

efficiency.

2.4 Element Technology

In HYDRA, the primary element for solving the Navier-Stokes equations is the so-
called Q1/P0 element which provides C° continuity for the velocity and.C-! continuity for
the pressure. Thus, the velocity support is trilinear in 3-D and bilinear in 2-D, while the
pressure support is piecewise constant. Figures 2.2 and 2.3 show the canonical local node
numbering in the natural coordinate systems for these elements.

1
A

>

Figure 2.2: 2-D bilinear element.
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Figure 2.3: 3-D trilinear element.

In HYDRA, both “full” and “reduced” numerical integration are used. Full integration
refers to the use of 22 quadrature points in the 2-D Gaussian quadrature, and 2X2X2
quadrature points in 3-D for all operators. In contrast, “reduced” or “one-point” integration
means that a single quadrature point is used for all numerical integration. Table 2.1
(reproduced from Gresho, et al.%) shows the required quadrature rules for the evaluation of
the element level operators in HYDRA.

Table 2.1 Number of Gauss points required in each coordinate direction to evaluate
various element matrices (and element size, Q°) exactly

Elements

Matrices Rectangle and General Brick and General
parallelogram quadrilateral parallelepiped hexahedron

Me 1 2 1 2

Ke 2 >3% 2 >3*

A 2 2 2 2
C*(and Q°) 1 1 1 2

_——___——————-————-——_—J
* Tt is not generally possible to evaluate K¢ exactly using Gauss quadrature.
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Reduced Integration

Several of the solution options in HYDRA make use of reduced numerical integration
for the sake of minimizing memory and floating point operations (FLOPs). Reduced
integration has typically been employed in explicit time integration algorithms where every
attempt is made to minimize the number of floating point operations per time step. The
benefits of one-point integration are tremendous in nonlinear computational fluid dynamics
problems because of the requisite sizes of meshes for interesting problems and the
associated operation counts for performing constitutive evaluations and the concomitant
operator formation and assembly.

The reduction from 8 quadrature points to 1 in three dimensions reduces the
computational load by a factor of about 6 to 7 and reduces memory requirements by over a
factor of 2 for the basic gradient operator, C. It has been demonstrated that the
convergence rate of reduced integration elements is comparable to the fully integrated
elements at a fraction of the computational cost. That is, second order convergence is
maintained with reduced integration.22

Although there are practical benefits to using one-point integration, there are also some
drawbacks. The primary difficulty with one-point integration is the possibility of a mesh
instability referred to as hourglassing (sometimes referred to as keystoning in the finite
difference community).

The reduced numerical quadrature of the diffusion term, K, in Eq. (2.11) leads to rank
deficiency of the element level operator. The presence of an improper singular mode in the
element level operator can also lead to singularity of the assembled global operators. In 2-
D, there is only one improper singular mode as shown in Fig. 2.4. In 3-D, there are
four improper singular modes which are shown in Fig. 2.5. When the hourglass modes
are excited in a numerical solution, they remain undamped and can pollute the entire field.
In 2-D, the presence of hourglass modes is most easily detected in surface or contour plots.
In 3-D, the presence of hourglass modes is much more difficult to detect because the four
modes rarely occur individually in a pure form.

In order to eliminate the singular modes, a stabilization operator is used as shown in
Eq. 2.18 . )

Ke =K€

1ot Ko (2.18)

The specifics of the stabilization operator in Eq. 2.18 may be found in references 20 -
24. In HYDRA, the default hourglass stabilization is based upon the work of Goudreau
and Hallquist?4 and Gresho et al4. This stabilization method is the so-called .
“h-stabilization” because the stabilization operator is formed from the outer-product of the
hourglass vectors at the element level. This form of stabilization is sometimes referred to as
trace stabilization.
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Figure 2.5: 3-D hourglass mode shapes.
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In the 2-D, explicit time integration of the Navier-Stokes, there is an optional hourglass
stabilization based upon the work of Belytschko and his colleagues20.21.22,23, This
stabilization method is often referred to as 7y-stabilization. y-stabilization is perhaps more
robust in structural mechanics applications, but also requires more operations and storage
than h-stabilization.

It is the author’s experience that it is relatively more difficult to excite the hourglass
modes in an Eulerian computation than in a corresponding Lagrangian computation, e.g., a
DYNA3D! computation. However, y-stabilization still requires fewer operations and less
storage than the fully integrated element in 2-D. In 3-D, this is not the case. Table 2.2
shows the memory requirements, and operations counts for a matrix-vector multiply ( K u)
for a variety of element formulations. In 2-D, 7y-stabilization requires nearly the same
storage as the fully integrated element, but takes 9 more operations to achieve the
matrix-vector multiply. In 3-D, y-stabilization is about 3 times more expensive to perform
than the corresponding row-compressed global matrix-vector multiply. Thus, in both 2-D
and in 3-D, h-stabilization is the default hourglass stabilization option.

Table 2.2: Memory requirements and operations counts for a matrix-vector multiply for
various element integration rules, stabilization operators, and storage
schemes.(Nel = number of elements, Nnp = number of nodes, Nbw = 1/2

bandwidth)

Dim. Options Storage + * Total
2-D 1-pt. EBE 4Nel 12Nel 16Nel 28Nel
2-D  1-pt. h-stab 4Nel 22Nel 18Nel 40Nel
2-D  1-pt. y-stab 9Nel 19Nel 25Nel 41Nel
2-D  2X2 quadrature 10Nel . 16Nel 16Nel 32Nel
2-D  sparse/TTPACK 10Nel 8Nnp 9Nnp 17Nnp
3-D 1-pt.EBE 12Nel 29Nel - 28Nel 57Nel
3-D  h-stab 12Nel 69Nel 46Nel 115Nel
3-D  y-stab 45Nel 61Nel 100Nel 161Nel
3-D  sparse/TTPACK 54Nel . 26Nel 23Npp 53Nnp
3-D  2X2X2 EBE 36Nel 64Nel 64Nel 128Nel

Global Band Vector NbwNnp (2Nbw)Nnp (2ZNbw)Nnp (4Nbw)Nnp
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2.5 Grid Parameters

HYDRA computes grid Reynolds and CFL (Courant-Freidrichs-Levy) numbers and
reports the minimum/maximum values at a user specified interval during time integration.
The interval for the calculation and reporting of the grid parameters is controlled with the
dtchk command which is described in Chapter 4. The grid parameters are computed
according to the method presented in Christon.*3

In an unstructured grid, with variable element size, the precise calculation of the grid Re
and CFL numbers requires the computation of both grid metrics and contravariant
velocities. This can be a relatively computationally intense calculation, and so HYDRA
relies upon the use of element-local coordinates and centroid velocities for the estimation of

the grid parameters.

The grid Re and CFL are defined in the canonical element-local coordinate system as
shown in Figures 2.2 and 2.3. This coordinate system corresponds approximately to the
element-local coordinates shown in Figures 2.6 and 2.7. In these figures, the location of
the element-local coordinates is based upon the intersection of the vectors connecting the
mid-sides of the elements (Fig. 2.6).

Figure 2.6: Element parameters for the grid Re and CFL estimation.
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n,

Figure 2.7: Element parameters for the grid Re and CFLestimation in 3-D.

The grid Reynolds numbers is defined as:

Re; = s : (2.19)
and the grid CFL number as:
' At
CFL, = 5 -(2.20)
[

where i=§&, 7, { for the element-local coordinates.

Thus Reand CFLrely upon the projection of the centroid velocity onto the element-
local coordinate directions. These quantities are used in the stability computations for the
explicit time integration algorithms described below. ’

Figure 2.8 shows sample HYDRA output for the 2-D grid parameter estimation. The
xi-grid, eta-grid, and psi-grid parameters correspond to the element-local £ and
7],coordinate directions based upon the canonical local node number system shown in
Figures 2.2 and 2.3. Thus, interpretation of the element-local grid parameters requires a
knowledge of element orientation which is normally available in a mesh plot.
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xi-grid Reynolds Numbers:

Minn. ElemMent NO v veteeeeeeeeeeeeaneeaanosens
Min. xi-element dimension .......c.c.cecceeeo..
Minimum xi-grid Reynolds Number .............
Max. Element NoO. ... eieeeeeeeeeeieaoocsnconas
Max. Xi-element dimensSion .......ececeeeoonnes
Maximum xi-grid Reynolds Number .............

eta-grid Reynolds Number:

Min. Blement INO. vvueiveeeeeceeeaeceacsoaossoas
Min. eta-element dimension ......ecececeeeses
Minimum eta-grid Reynolds Number ............
Max. Element NO. ..vvviereewoeeseoononaonsas

Max. eta-element dimension ..........ceeee...
Maximum eta-grid Reynolds Number ............

xi-grid CFL Numbers:

Min. Element NO. ...t eteeeeeencecacoaoanncans
Min. xi-element dimension ......ceeeeeeeos e
Minimum xi-grid CFL Number .........cceeeeeen
Max. Element INO. vcveeeeeeeeeceosooscaonsoeens
Max. xi-element dimension .......eeeceeeeeeas
Maximum xi-grid CFL Number .........ceeceeee.

eta-grid CFL Numbers:

Min. Element I10. .. veeeeeeeeeesooosossonssees
Min. eta-element dimension .......cececeeee-o-
Minimum eta-grid CFL Number ......cececeeeeeen
Max. Element INO. . vveeeeeeecanecasasanocenenas
Max. eta-element dimension ........ccececeee.
Maximum eta-grid CFL Number ................

" Figure 2.8: Sample HYDRA Output for Grid Parameters.

80
1.7517E-02
8.1128E-04

201
7.6475E-01
7.6897E+01

1080
4.4444E-01
6.7829E-07

212

80
1.7517E-02
1.3220E-02

424
6.7045E-02
1.3550E+01

1080

.4.4444E-01

1.7169E-~-08

442
4.6413E-02
1.3777E+01
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2.6 Explicit Time Integration

The explicit time integration algorithms for both the Navier-Stokes and the scalar
advection-diffusion equation make use of the one-point stabilized element technology
described in Section 2.4. The explicit algorithms provide very fast element cycle times,
i.e., the cpu time required to advance one element one time step. Further, the explicit
algorithms require minimal storage for the basic finite element operators.

The basic 2-D and 3-D explicit time integration follows the algorithm described in
Gresho et al.43. The ad-hoc modifications to the standard Galerkin finite element method
include the use of the reduced integration, stabilized elements, balancing tensor diffusivity,
and a row-sum lumped mass matrix. The effect of balancing tensor diffusivity (BTD) is to
provide second-order accuracy in time for the advection terms, and is a key ingredient in
the explicit algorithm.

The explicit algorithm implemented in HYDRA begins with a given divergence-free
velocity field, »°, which satisfies the essential boundary conditions, and an initial
pressure, Po. The algorithm proceeds by first computing a partial acceleration as in
Eq. 2.21. The pressure at level » is then computed using the partial acceleration to form
the right-hand-side in Eq. 2.22. Given P?, the velocity is updated according to Eq. 2.23
and the temperature according to Eq. 2.24. )

. I:-"n =M£l[.~Fn—Alfn— Kl:_ln] (2.21)
[CMpClP=C"ir (2.22)

W™ =y At[z_‘;" + M CP"] (2.23)
T =T"+AM;'[Q" - AT" - K, T"] (2.24)

The explicit algorithm must respect both the diffusive and the convective stability limits.
The use of BTD is recommended for all simulations despite some of its drawbacks?,
because of its beneficial effects upon stability. While the analytical stability limits for the
explicit time integration of the Navier-Stokes equations in multiple dimensions remains
intractable?, the stability computations in HYDRA rely upon the estimation of element grid
size and the grid parameters described in section 2.5.

In order to make use of Equations 2.19 and 2.20, a unit normal for each element-local
coordinate direction is defined as: :
L (2.25)

Using Eq. 2.25, the advective-diffusive stability limit becomes

Py

P

~

'
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(2.26)

where i =&, 7, {. A minimum is taken over all elements and all element-local coordinates
to establish a global mesh stability requirement.

The CFL condition is established in a similar manner using
crrly
i

Az, <

]

2.27)

where CFLis the user specified acceptable CFL number which must be always be less
than 1.0 for the explicit algorithm.

By default, the minimum constraining time step is used in the time integration scheme.
However, the user may request that the grid parameters and stable time step be re-evaluated
at a fixed interval using the dtchk command described in Chapter 4. In a rapidly changing
flow field, this may avoid over-estimating or under-estimating the stable time step based
upon the initial divergence-free velocity field.

2.7 The Semi-Implicit Projection Algorithm

The application of the explicit time integration scheme to the solution of the Navier-
Stokes equations can lead to extremely small time steps based upon the diffusional stability
limit. This is particularly true when an attempt is made to resolve very thin boundary
layers. The semi-implicit projection algorithm treats the diffusional terms implicitly which
removes the diffusional stability limit imposed in the explicit algorithm above. The
implementation of the semi-implicit projection algonthm follows the description of the
Projection-II (P-II) algorithm in Gresho and Chan.?

The P-1I algorithm is a second-order accurate fractional step method57 which uses a
consistent-mass predictor in conjunction with a lumped mass corrector. In the P-II
algorithm, the velocity and pressure fields are legitimately decoupled. This reduces both
memory and cpu requirements relative to traditional fully coupled solution strategies. The
consistent mass predictor retains phase speed accuracy, while the lumped mass corrector
(projection) maintains a divergence free velocity field. Both the predictor and the corrector
steps are amenable to solution via direct or preconditioned iterative techniques making it
possible to tune the algorithm to the computing platform, i.e., parallel, vector or super-
scalar. The P-II projection algorithm with consistent mass matrix delivers superconvergent
fourth-order phase accuracy when a uniform mesh is used.




22
HYDRA:
A Finite Element
Computational Fluid Dynamics Code

Given an initial divergence-free velocity field, #°, which satisfies the essential
boundary conditions, and the associated pressure field, P¢, the P-II algorithm proceeds as
follows. First, an intermediate velocity field is predicted by solving Eq. 2.28 for #"*'. The
divergence of the intermediate velocity field is then used as a right-hand-side for the
computation of a Lagrange multiplier as in Eq. 2.29. Finally, the predicted velocity field is
projected to a divergence-free velocity field using Eq. 2.30, and the pressure field is
updated using Eq. 2.31.

M+A(8,K +0,K, )i ™ =AH 6,1 +(1- 0, )" — Aw"~ MM;'CP" | +
f f

[M - A (1-6,)K +(1- 6,)K, || (2.28)
[c™MCla=CTa™ (2.29)

u™ =" - M;'CA (2.30)
pi=p +-§t- (2.31)

In Eq. 2.28, 6, controls the time weighting of the viscous diffusion terms, 0, controls
the time weighting of the BTD terms, and 6, controls the time weighting of any applied
traction. For 6, =4, (i =K,B,F) the time integration is second-order accurate, but is only
conditionally stable. However, the implicit treatment of the BTD terms in Eq. 2.28 results
in arelaxed CFL stability limit. Numerical experiments have shown that the CFL number
" can be as high as 15-20 when the limiting elements are small and in a region where
advective transport does not influence the global flow field significantly. Typically, CFL
numbers in the range of 2-10 produces stable simulations.

For 6,=0, (i=K,B,F), the time integration is essentially an explicit algorithm
corresponding to the algorithm described in section 2.4. For 6, =1, the time integration
corresponds to backward Euler. For these two cases, the mass option described in
Chapter 4 can be used to select a lumped mass—a good choice when using backward
Euler time integration to time-march to a steady-state.

Solution of the Momentum Equations

Currently, the primary solution strategy for the P-II algorithm in HYDRA is a highly
optimized Jacobi. preconditioned conjugate gradient (JPCG) solver which is used to solve
the linear systems which derive from the decoupled momentum equations at each time step.
The JPCG solver makes use of the ITPACK row-compressed compact storage
scheme35.36, This storage scheme is independent of the bandwidth of the linear system,
and is very well suited to vector supercomputer architectures.

In the iterative solution of the momentum equations, two convergence criteria must be
met as outlined in Gresho#. Viewing the system to be solved as Ax=b, Equations 2.32
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and 2.33 define the stopping criteria. That is, both the normalized residual, and the change
in the solution vector during the last iteration must be less than the user specified tolerance. -

r
Llce (2.32)
Il

xn xn—l

—l<e (2.33)
X

For the momentum equations, the user may specify the maximum number of iterations
permitted, the interval to check the residual norms, and the allowable tolerance. Typically,
£=1.0e~-5, produces acceptable solutions in 20-50 iterations on most problems.
Exceptionally tough problems may require more iterations, but the number of iterations
should never exceed the number of nodal points in the mesh. For more detailed
information on the iterative methods used in HYDRA, see references 25, 32, 33, 34, 38,
39, 41.

2.8 Start-up Procedures

The solvability constraints on the initial conditions in Egs. 2.7-2.8 are tested during the
initialization phase for a new calculation. This start-up procedure follows the algorithm
given in Gresho* The rms divergence of the initial velocity field is computed and
compared to a user specified tolerance (see divie in Chapter 4).

If the divergence is greater than the specified tolerance, a mass consistent projection to a
divergence-free subspace is performed. For an initial velocity field, #°, Eq. 2.34 is solved
for A, and the orthogonal projection in Eq. 2.35 is performed.

[C'Mpcla=CTa (2.34)

u’ =it’~ M;'CA (2.35)
Given initial conditions which satisfy the solvability constraint, an initial partial
acceleration is computed according to Eq. 2.36. In the case of the explicit algorithm, a

lumped mass matrix (M, ) is used, while for P-II, a consistent mass matrix is employed.
A PPE is then solved for the pressure at t=0, using #° from Egq. 2.36.

M = f'-Ky'— Ay’ (2.36)
[c"Mc]P =C"w (2.37)

While the user is given control over the allowable divergence, it is not advisable to relax
the divergence of the initial velocity field. This is particularly so with the explicit algorithm
which relies heavily upon the initial velocity field being divergence-free.
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2.9 The Pressure Poisson Equation

The efficient solution of the time-dependent Navier-Stokes equations relies heavily on -
robust and computationally efficient methods for solving the pressure Poisson equation
(PPE). In HYDRA, the use of the Q1/P0 element implies that there is an underlying dual
grid for the piece wise constant pressure elements as shown in Fig. 2.9.

Many codes rely upon a pre-processor in addition to a mesh generator for the
construction of the PPE dual grid. HYDRA follows the algorithm in Christon43 to
construct the dual grid during the initialization phase. The simplest algorithms for
constructing the dual grid are N, algorithms, while the dual grid construction algorithm in
HYDRA only requires O(Ne,) operations which permits the dual grid computation to be
performed in HYDRA during the initialization phase.

2 A A B>

Primary Grid | I | . Dual Grid

N

Figure 2.9: Mesh and PPE Dual Grid

The efficient solution of the PPE has been an ongoing research issue during the
development of HYDRA, and is not a closed issue today. HYDRA provides a wide variety
of solution strategies for the PPE, and the overall performance of the code is sensitive to
the solution option chosen. In fact, the performance of the solution algorithms vary across
computer architectures, and not all of the algorithms require the explicit construction of the

dual grid.

For the iterative techniques, the convergence criteria applied to stop the iteration is
identical to that used for the momentum equations (Egs. 2.32-2.33). In general, all of the
conjugate gradient based PPE solvers typically require (0.01—0.1)Nel iterations to
converge with a tolerance of £=1.0e~35. However, the iterative solvers require less
memory than the direct solvers.
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Of the direct solvers, the PVS28, 29 solver is highly recommended when memory is not

_an issue. However, as is the case with all direct solvers, the PVS solver does not scale to

very large problems because of round-off and memory limitations. Direct solvers are also
very dependent on having minimum bandwidth (profile). All of the direct solvers in
HYDRA automatically invoke the Gibbs-Poole-Stockmeyer*> bandwidth minimization
routines.

‘While there are no hard and fast rules for picking an optimal PPE solver, in general, the
direct methods are robust and fast, requiring only a resolve of the pre-factored PPE at each
time step. Table 2.3 shows the relative costs in memory and cpu time of a conjugate
gradient solver, the PVS solver, and a fixed bandwidth Gaussian elimination solver.

The band Gaussian solver was used to normalize the memory requirements and cpu
usage for a three dimensional problem with approximately 30,000 elements. The PVS
solver is the clear winner with regards to the element cycle time of the explicit algorithm,
but the EBE/JPCG solver requires no additional storage over the basic operators for the
momentum equations. The algebraic multigrid solver (AMG) performed only marginally
better than the conjugate gradient solver and required a good deal of memory to hold the

coarse grids. While these findings are not absolute, hopefully they can guide the user in the

selection of an appropriate solver for each problem. The following paragraphs provide a
brief description of each PPE solver. ‘

Table 2.3  PPE solver Comparison (All timings on a CRAY Y-MP single processor)

Cycle Time Relative Cycle  Relative Memory

PPE Solver _ [us/El.—=AtL__ Time Usage
Band Gaussian 22.0 1.00 1.00
PVS Cholesky 8.8 0.40 0.75
EBE/JPCG 34.5 1.57 0.00
AMG V-Cycle 31.90 1.45 1.30‘
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EBE/IPCG

The element-by-element Jacobi preconditioned conjugate gradient (EBE/JPCG) solver
was designed to make use of the C and M;' operators without requiring any additional
storage for the PPE matrix. Thus, this is a “matrix-free” method, because it performs the
necessary matrix-vector multiplies for conjugate gradient in an element-by-eclement right-to-
left order rather than using the traditional left-to-right ordering.

EBE/JPCG is highly vectorized, and is also a very parallel algorithm. The primary
drawback in its current implementation is the relatively slow convergence rates. Future
research will focus on better preconditioners for this solver because it has so much potential

in parallel scalability.

UDU Band Gaussian

The UDU solver was written by Erik Thompson at Colorado State University, and is
included as a reference solver for benchmarking purposes. The storage format is based
upon storing the upper symmetric bands of the coefficient matrix in the columns of the PPE
array. This solver requires bandwidth minimization, but still is relatively costly because of
wasted storage and unnecessary operations associated with zero entries in the PPE .

PVS solver

The PVS46 solver also requires bandwidth minimization, but uses a cornpact row storage
scheme to avoid storing entries which are zero. The PVS solver is highly vectorized, and
makes extensive use of loop unrolling to achieve a high level of performance on vector and
cache based architectures.

AMG solver

The algebraic multigrid solver (AMG)?7 is a black-box multigrid solver which is capable of
treating the linear systems generated for unstructured grids. This is an experimental solver
in HYDRA, and will not be supported. For the brave users who wish to experiment with
AMG, additional information on the multigrid method may be found in Briggs26:40.

JPCG

The Jacobi preconditioned conjugate gradient solver is also used for the momentum
equations in the P-II algorithm, and may also be invoked for the PPE. Details of the data
struct113r6es used may be found in the ITPACK User’s guide3> and the NSPCG User’s
Guide>®.




HYDRA: 21
A Finite Element
Computational Fluid Dynamics Code

SSOR-PCG

The symmetric successive over-relaxation preconditioned conjugate gradient algorithm
requires no additional storage with respect to the JPCG solver for the PPE. Currently, this
solver may only be invoked for the solution of the PPE. HYDRA's SSOR-PCG solver is

based in part upon the work in references 30, 31, 42.
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2.10 Turbulence Models

Turbulence modeling is currently the pacing issue in computational fluid dynamics. The
ability to treat turbulent flow with complex geometry where the flow is time-dependent and
possibly separated remains an unanswered challenge to date. Indeed, there is no universal
turbulence model which can be applied to a given flow problem with an arbitrary level of
geometrical complexity. Wilcox® sums it up best with his statement about the ideal
turbulence model.

“... an ideal model should introduce the minimum of complexity while
capturing the essence of the relevant physics.”

Wilcox also suggests that the complexity of a turbulence model is dictated by the level
of detail required in a simulation. There is a plethora of turbulence models available in the
literature which range in complexity from algebraic models which employ the Boussinesq
eddy-viscosity approximation to full second-moment models which require seven
additional transport equations. Turbulence research using HYDRA as a vehicle is an
ongoing effort with two major concentrations. The first involves the use of a simple
Smagorinsky model8-9 for performing Large Eddy Simulations (LES). The second effort is
focused on implementing multi-equation models which can capture the effects of the
anisotropic Reynolds stress induced corner vortices.

Large Eddy Simulation

The basic idea behind LES is to resolve the larger eddies in a turbulent flow while
employing a model for the smallest eddies which cannot be resolved by the grid.

The LES model implemented in HYDRA follows the development in Wilcox?, and
makes use of a simple Smagorinsky sub-grid scale (SGS) model. Currently, this model is
available only in the 3-D, explicit, time-integration option of HYDRA. The Smagorinsky
eddy viscosity is based upon the element level strain-rate tensor as defined in Egs. 2.38—
2.39.

v, =(CA)\/S,S; (2.38)

1{ Ju, O, '

In Eq. 2.38, A is based upon the local element diameter corresponding to the element
volume. The Smagorinsky constant, C,, varies from flow-to-flow, but its typical values
are:

01 £ C <024 ' (2.40)
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The Smagorinsky model presented here represents the simplest type of turbulence model
which can be employed. While the implementation in HYDRA will permit the use of a
dynamic sub-grid scale model, however, it does not employ any type of explicit wall
model. It should be noted that the one of the primary reasons for the relative success of the
Smagorinsky model is that is provides enough additional diffusion to stabilize most
simulations. Further, the large eddies (grid resolvable) yield statistics which are not
influenced by the SGS model.

The scalability of this turbulence model is an issue. For a duect numerical simulation,
the number of grid points for a simple cha.nnel flow scales as Re’*. The application of an
LES model scales approximately as Re? which is still extremely demanding.

2.11 Derived Variables

The simulation of a flow problem is essentially meaningless without suitable
visualization of the results. This requires that derived variables be provided for the
visualization tool so that the user may interrogate all aspects of the flow field.

In HYDRA, the one-point elements are essentially constant gradient elements,
e.g., velocity and temperature gradients are constant across an element. While this is true
for all of the primitive variables with the one-point elements in HYDRA, certain derived
variables, such as vorticity are projected to the nodes of the elements for output in the
graphics database. For the computation of the vorticity, an inverse-area weighted
projection is used. In 2-D, the computation of the stream function on unstructured grid is
based upon the algorithm detailed in Christon43.

It is important to note that the derived variable computations are performed only when a
state dump to the graphics database is required. Therefore, derived variables such as the
vorticity are not available in the time-history graphics database.

2.12 Vectorization, Parallelization, and Performance

The goal for HYDRA is to provide nearly optimal performance as possible over a wide
variety of computer architectures as possible. The philosophy for HYDRA has been to map
the most advanced incompressible flow algorithms which are available to existing high
performance computer architectures. This is quite a different idea than performing a port
(which often consists of just a re-compile) of an existing implementation to various
computers. The primary difference being that the optimal implementation of an algorithm
for a register-to-register vector supercomputer can be considerably different from the best
implementation for a RISC machine.

Ultimately, for HYDRA to achieve its performance goals, it was necessary to design a
code which is reconfigurable. That is, given a target architecture, it is necessary to select
the machine specific parameters and routines which are most optimal for the computer.

HYDRA was developed using standard UNIX tools and employs a memory package
which provides true dynamic memory management (unlike DYNA3D and NIKE3D which
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rely upon the dated strategy of an expandable blank common). This means that HYDRA
can both allocate and free memory as it needs during the execution cycle of a problem. This

is a must for providing a scalable computational tool, i.., one that can accommodate very
large meshes.

Element Groups

One of the key vectorization ideas in DYNA3D and NIKE3D is the element group.
HYDRA has enhanced this basic concept making it a flexible, hierarchical mechanism
which is used in configuring the code for a target architecture. The basic idea behind the
element groups is to group elements according to a certain criteria. For register-to-register
vector supercomputers, the criteria is that all elements in a group and their associated data
structures should be completely independent to permit full vectorization. Thus, the goal is
to avoid any vectorization inhibiting data dependencies.

In HYDRA, the size of the element groups is a configurable parameter, and is set based
upon the size and number of vector registers on a vector computer, or according to the size
of cache on a RISC machine. The topological domain decomposition used to group
elements for vectorization is a well known algorithm and is described in Hughes18.

In the case of most parallel machines, the element groups form a second level in a
hierarchical topological domain decomposition scheme. The coarse grained decomposition
is achieved via a technique such as recursive spectral bisection (RSB), and then the
elements are grouped in data independent clusters. This is the technique applied to
machines such as the Meiko CS-2-—a parallel vector architecture.

The element grouping idea has been an essential tool for mapping HYDRA to very-
long-vector SIMD architectures such as the CM-2 and CM-5 where the element groups
need not be data independent. The element groups need not be data independent because of
the capability of these machines to perform data routing with data reduction to gracefully
handle data dependencies. Given the size of machine (number of physical processors), the
element groups may be quite large. For the CM-5 with vector units, the typical group size
is 8192.

Vectorization

All of the algorithms in HYDRA have been vectorized. This is a common starting
" point even for parallel architectures because the process of vectorization is well understood,
can be easily tested, and usually reveals the key aspects of finite element based algorithms.
Some of the concepts used in DYNA3D for achieving its high level of vector performance
have been studied and enhanced for HYDRA. Where it has been possible, standard
techniques such as loop-unrolling, scalar promotion, and vector reuse have been taken into
account in the implementation of HYDRA. However, there is always room for
improvement. -
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Parallelization

The early development of HYDRA began on the CM-200 at the Advanced Computing
Laboratory at Los Alamos National Laboratory. The work on the CM-200 then moved to

the CM-5 at the Army High Performance Computing Research Center at the University of
Minnesota. The early versions of HYDRA could be configured as FORTRAN-90 or
FORTRAN-77 to permit the rapid transition from a CRAY environment to the Connection

Machine.

While this was successful, the delivered performance of the CM-5 on unstructured
grids was quite disappointing. The best performance was approximately eight times slower
than the best timings on the CRAY Y-MP. The ideas of Tezduyar, et al. seem to lead to
very good performance on the CM-5, but require a code architecture which is inflexible.
This fact in conjunction with the shortcomings of FORTRAN-90 have led the author away
from this architecture and away from FORTRAN-90 for the time being.

The movement back to FORTRAN-77 was also driven by the availability of machines
such as the Meiko CS-2, and workstations clusters as well as symmetric multiprocessors.
The flexibility afforded by FORTRAN-77 in combination with the DDMP model has led to
a more portable version of HYDRA than FORTRAN-90 could provide.

The current parallelization efforts are focused upon the DDMP model not only for the
Meiko, but for workstation clusters and the CRAY T3D. It is anticipated that future
versions of HYDRA will even be available for heterogeneous clusters of workstations.







Chapter 3

Running HYDRA

HYDRA has been exercised on computers ranging from UNIX workstations to
traditional CRAY supercomputers, Thinking Machines CM-200 and CM-5 computers, and
the vector-parallel Meiko CS-2. The common thread for all of these machines is a UNIX
(or UNIX like) environment. HYDRA provides a single command line interface which
functions in the fashion which most common UNIX commands operate, i.e., a single
command followed by a list of command line arguments.

3.1 Execution
HYDRA may be executed with the following command line options:

hydra -i inf -c cntl -0 out -p plot -h hist -g glob -d dump

HYDRA Command Line Arguments
Keyword Meaning
-i inf HYDRA mesh file (default: mesh)
-c cntl HYDRA control file (default: cntl)
-0 out Human readable output file (default: out)
-p plot binary state database for graphics (default: plot)
-h hist A time history database (default: hist)
-g glob ASCII global time history data (default: glob)
-d dump Check-point file for restarts (default: dump)

All of the file names may include a path name as well. For example, the following
command line makes use of the automatic expansion of the user’s login directory and both
absolute and relative paths for files.

hydra -i \~/plate/flowl.msh -c../cntll -o/home/joe/plate.out

As the graphics files are generated during a simulation, the root file name and
subsequent family members will be written to disk with the family member file names
being the root file name concatenated with a two digit family number which changes to a

three digit family number after 100 files have been generated.
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3.2 Restarts

HYDRA will automatically write a binary check-point file which contains all of the data
necessary to restart a computation. If the dump file exists when HYDRA starts execution,
then HYDRA will allow the user to choose between a restart and starting a new calculation.
HYDRA re-writes the check-point file in place each time a simulation is terminated
normally. Therefore, the user must first save a copy of the check-point file before restarting
if the original check-point file is to be preserved. This mode of operation derives from the
fact that most supercomputer installations provide archival storage which may be used to
preserve the check-point file during a restart run and subsequent check-point operations.

The state and time history plot files are preserved when a restart is performed. Upon

restart, HYDRA will begin writing new state and time history data in the next family
member of the plot files. Similarly, the global output data is simply concatenated to the
existing glob file when a restart is performed. However, the human output file is re-
written when a restart is performed.

HYDRA will permit the user to change only a limited number of analysis parameters
when a check-point file is used to restart a computation. For example, changing mesh
parameters such as the number of nodes and elements is not possible at this time.
However, changing material properties, the number of time steps, plot intervals, etc. is

acceptable.




Chapter 4

HYDRA Input Data

The necessary input data for a HYDRA simulation is split into two files. The first file
contains all of the control information for the problem, e.g., mesh parameters, analysis
type, equation solver options, etc. The second file contains the nodal spatial coordinates,
element connectivity, boundary conditions, etc. The following sections describe the
necessary input data in the control and mesh files.

4.1 HYDRA Control File

The HYDRA control file uses a keyword-parameter syntax to define the mesh
parameters, solver control variables, and analysis parameters. It is assumed that the first
line of the control file is an 80 character description of the analysis. With the exception of
the first line, the data contained in the control file is order independent and delimited by
keywords for the mesh definition, solver controls, and analysis options. Comments in the
control file must be preceded by a “C” and a blank space, or may be enclosed in a pair of
braces “{ }”. All input in the control file is case insensitive. Figure 4.1 shows the typical
format of a HYDRA control file. In this section, default and allowable values for
parameters are denoted by a boldface type.

4.1.1 Mesh Parameters
The mesh parameters are used to define the number of nodes and elements in the mesh,

as well as, the number of materials, and problem dimension. Currently, only single
material analyses are active in HYDRA. :

Mesh Parameters

" Keyword Variable & Meaning II
I mesh Mesh parameter starting delimiter. |
nnp Number of nodes (no defaulf).
nel Number of elements (no default).
nmat Number of materials (default: nmat=1).
ndim Number of dimensions (default: ndim=3).
end Terminate mesh parameters.
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Analysis Title {80 characters or less}
C A “C" followed by a blank space starts a comment line
{Comments may be enclosed in braces as well}

C The mesh-end block describes- the mesh parameters

mesh

end

C The analyze-end block describes the analysis

parameters

analyze

end
C The momsol-end block defines the momentum equation
solver

momsol

end

C The ppesol-end block defines the: PPE equation solver
ppesol

end
C The ndhist-end block defines the time-history nodes

ndhist

end

end

%

Figure 4.1: A Sample HYDRA Control File
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4.1.2 Analysis Parameters

The analysis parameters define the method of solution, i.e., the type of analysis to be
performed and the solution algorithm to be used. These parameters also define the number
and type of boundary conditions, algorithm specific options such as hourglass stabilization,
the number of times steps to take, termination time, output intervals, etc.

Analysis Parameters

Keyword Variable & Meaning "
analyze Analysis parameter definition starting delimiter.
solve 1: Transient, incompressible, Navier-Stokes using 1-point

quadrature, lumped mass, and Forward Euler time integration
(default. 1)

3: Transient, incompressible, Navier-Stokes using full
quadrature and P-II.

101: Transient advection-diffusion using Forward Euler with a
prescribed velocity field (#). This option makes use of 1-
point integration.

102: Transient advection diffusion using semi-implicit implicit
time integration with a prescribed velocity field (). This
option makes use of fully integrated elements.

temp 0/1: Solve scalar advection-diffusion with momentum equations
(default: 0)

term Simulation termination time (defauit: 1.0).

nstep Number of time steps (default: 10).

deltat time step size (default: 0.01).

dtscal time step scale factor (default: 1.0).

dtchk Interval to check the stable time step size and report grid

parameters. A negative value for the interval causes the time
step to be checked but not changed, i.e., forces the grid
parameters to be reported (default: 10).

mass 1: Lumped Mass (default: mass=1 for solve=1,101)
2: Consistent Mass (default: mass=2 for solve=2,3,102)

37



38

. HYDRA:
A Finite Element Code for
Computational Fluid Dynamics

Analysis Parameters (cont.)

Keyword Variable & Meaning

I nubc

nvbe
nwbc
npbc
ntbe

nxbc

nybc
nzbc
nkbc
nknb

nebc

nenb

nabc

nper

u_sym
v_sym

hglass

epshg
btd
divu

w_sym

Number of prescribed x-velocity boundary conditions.
Number of prescribed y-velocity boundary conditions.
Number of prescribed z-velocity boundary conditions.
Number of prescribed pressure boundary conditions.
Number of prescribed temperature boundary conditions.
Number of prescribed x-traction boundary conditions.
Number of prescribed y-traction boundary conditions.
Number of prescribed z-traction boundary conditions.
Number of prescribed k essential boundary conditions.
Number of prescribed k natural boundary conditions

Number of prescribed € essential boundary conditions. f

Number of prescribed € natural boundary conditions
Number of prescribed A2 essential boundary conditions.
Number of prescribed A2 natural boundary conditions

Number of master/slave nodes for periodic boundary conditions.
The periodic boundary conditions permit the anti-symmetry
using the following optional parameters.

+/-1: set anti-symmetry in the x or normal velocity
+/-1: set anti-symmetry in the y or tangential velocity
+/-1: set anti-symmetry in the w or tangential velocity

Required to terminate the nper command

1: h-stabilization hourglass control (default: 1)

2: y-stabilization hourglass control (2-D only).
Hourglass coefficient (default: 1.0)

0/1: Balancing tensor diffusivity (BTD) (default: 1).
RMS divergence tolerance (default: 1.0e-10).

——e eeee—————— - _————————l |
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Analysis Parameters (cont.)

Keyword Variable & Meaning
nu Fluid kinematic viscosity (defaulz: 1.0).
alpha Fluid thermal diffusivity (default: 1.0).
thetak Time weight for viscous terms (default: 0.5).
thetab Time weight for BTD (default:: 0.5).
thetaa Time weight for advection (default: 0.0).
thetaf Time weight for BC’s (default: 0.5).
icset XXXXXXX: icset requires a 7-digit parameter and a ";" to terminate
the command. The individual values of the 7-digit icset
parameter are:
0: Asumes initial conditions are 0.0 (default: 0).
1: Assumes initial conditions are 1.0 unless otherwise specified.
2: Read in prescribed intitial conditions from mesh file.
In the icset-; sequence, the following commands may be used to
| specify the values of initial conditions which all nodal points
will inherit.
set_u U : Sets the x-velocity initial condition to U.
set_v V : Sets the y-velocity initial condition to V. "
set_w U : Sets the w-velocity initial condition to W.
set_t T : Sets the t-velocity initial condition to T.
set_k k : Sets the k-velocity initial condition to k.
set_e E : Sets the e-velocity initial condition to E.
set_a2 A2 : Sets the Ap-velocity initial condition to A2.
; Required to terminate the icset command
icwrt 1: Write the final velocity field to a file which may later be used

to specify initial conditions for HYDRA. The name of the
initial conditions file is just the name of the output file with
".ics" appended.

0: Don't write an initial condition file (default: 0).
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Analysis Parameters (cont.)

Keyword Variable & Meaning "
prti Hard copy print interval (default: prti=10).
prtlev 0: Print only analysis parameters to the output file (default: 0):
1: Print only the analysis parameters and result quantities to the
output file.
2: Print the analysis parameters, mesh coordinates, boundary
conditions, etc., and the result quantities to the output file.
plti Plot state output interval (default: plti=10).
ttyi Interval to write min/max values to the screen (default: ttyi=10)
end Terminate analysis parameters.
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4.1.3 Momentum Equation—Solver Parameters

The solution of the Navier-Stokes equations using the P-II algorithm, or the solution of
advection-diffusion equation with the semi-implicit algorithm requires the selection of an
equation solver and the necessary associated solver parameters. For example, selection of
an iterative solver requires the specification of a convergence criteria, the maximum number
of iterations, and the interval to check the error norms. See Chapter 3 for definitions of the
error norms used in HYDRA's iterative solvers.

Momentum Equation—Solver Parameters

Keyword Variable Meaning

momsol fype Momentum equation solver parameter starting delimiter where
type may be one of the following;:

1: Jacobi pre-conditioned conjugate gradient.

momsol=1 solver options:

itmax Iteration limit (default: itmax=10).

itchk Interval to check convergence (default: itchk=5).

eps Convergence tolerance (default: eps=10-10).

wrt 0: Suppress diagnostic information from solver (defaulr).

1: Write diagnostic information from solver.

hist 0: Suppress writing an ASCII convergence history file (default).
1: Write an ASCII convergence history file.

end Terminate momentum equation solver parameters.

In the selection of an analysis option, the selection of a momentum equation solver is
implied. For example, solve 1 selects the explicit time integration scheme which requires no
momentum solver. Similarly, solve 101 selects the explicit solver for the transient
advection-diffusion equation and does not require any solver options to be set.

By selecting an analysis option which can perform a variety of time integration
schemes, it is implied that the user select appropriate convergence criteria and limits. The
selection of solve 3 or solve 102 implicitly requires the user to set the iteration limit and
convergence criteria. If the iteration limit and convergence criteria are not specified, the
default values will be used.

41
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4.1.4 Pressure Poisson Equation—Solver Parameters

In the solution of the Navier-Stokes equations using either the explicit, implicit (P-II)
algorithms, a pressure equation (PPE) must be solved. The selection of either a direct or an
iterative solver requires the specification of parameters such as the convergence criteria, the

maximum number of iterations, and the interval to check the residual norms.

Pressure Poisson Equation (PPE)—Selver Parameters

Keyword

Variable Meaning

ppesol type

ppesol=1 EBE/JICG

itmax
itchk
eps
wrt
hist

EY

PPE solver parameter starting delimiter where fype may be one of
the following (default: type=1):

1: Element-by-element, Jacobi-preconditioned conjugate gradient
(EBE/IPCG).

11: UDU storage format Gaussian elimination.

12: UDU storage format ITLIB solver options (UDU/JPCG).
41: Parallel-vector (PVS) row solver.

51: Algebraic multigrid solver (AMG).

61: compact storage ITPACK Jacobi-preconditioned conjugate
gradient (JPCG).

62: compact storage ITPACK Jacobi-preconditioned conjugate
gradient (JPCG) for the stabilized pressure element.

64: compact storage ITPACK symmetric successive over-
relaxation preconditioned conjugate gradient (SSOR-PCG).

solver options:
Iteration limit (default. itmax=10).

Interval to check convergence (default: itchk=5).
Convergence tolerance (default: eps=1.0e-10).

0: Suppress diagnostic information from solver (default).
1: Write diagnostic information from solver.

0: Suppress writing an ASCII convergence history file (default).
1: Write an ASCII convergence history file.

ppesol=12 UDU/ICG solver options:

itmax
itchk
eps
wrt

hist

Iteration limit (defauls: itmax=10).
Interval to check convergence (default: itchk=5).
Convergence tolerance (default: eps=1.0e-10).

0: Suppress diagnostic information from solver (default).
1: Write diagnostic information from solver.

0: Suppress writing an ASCII convergence history file (defaulz).
1: Write an ASCII convergence history file.
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Pressure Poisson Equation (PPE)—Solver Parameters (cont.)

’ Keyword Variable & Meaning I

ppesol=51 AMG solver options:

iout AMG output options (default: iout=10).
1st digit of iout: not used; has to be non-zero.
2nd digit of iout:

0: no output (except for messages).

1: residual before and after solution process.

2: statistics on cp-times and storage requirements.
3: residual after each amg-cycle.

levelx AMG grid level control must be greater than 1
(default. levelx=5).

ifirst AMG initial guess control (default: ifirst=13).
1st digit of ifirst: not used; has to be non-zero.
2nd digit of ifirst—itypu:
0: no setting of first approximation,
1: first approximation constant to zero,

2. first approximation constant to one,

3: first approximation is random function with the concrete
random sequence being determined by the following digits.
rest of ifirst—ndu: determines the concrete random sequence
used in the case itypu=3. (ifirst=13 is equivalent to

ifirst=1372815)

ncyc AMG cycle (default: ncye=10110). ncyc is an integer parameter
describing the type of cycle to be used and the number of
cycles to be performed.
" 1st digit of ncyc defines cycle:
1: v -cycle,
2: v¥-cycle,
3: f -cycle,
4: w -cycle. ' I
if ncyc is negative, then the approximation of the problem on the
second finest grid is computed by igam v-cycles on that
particular grid.
2nd digit of ncyc:
0: no conjugate gradient,
1: conjugate gradient (only first step of cg),
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Pressure Poisson Equation (PPE)—Solver Parameters (cont.)

" Keyword Variable & Meaning "

[ o - -
l 3rd digit of ncyc—iconv: convergence criterion for the user- l'

-defined & problem (finest grid):

1: perform a fixed number of cycles as given by ncycle
(see below)

2: stop, if <&

rn

< ¢l

4: stop, if "r"" < 8|

i with
parameter €) |f| = supremum norm of right hand side,

|| = supremum norm of solution |diag| = maximal diagonal

entry in matrix . Note that in any case the solution process

stops after at most ncycle cycles.

Rest of ncyc—ncycle: maximal number of cycles
to be performed (> 0) or ncycle=0: no cycling.

| mad AMG adaptivity options (default: mad=27). mad is an integer
value specifying the choice of coarsest grid in cycling:

rn

3: stop, if

x"|||diagonal

rn

L, norm of residual, & (see input

{ 1st digit of mad:

1: in cycling, all grids constructed in the setup phase are used

I without check.

2: the number of grids is automatically reduced if the convergence
factor on the coarser grids is found to be larger than a given
value fac (see below).
rest of mad—fac; the rest of mad defines the fractional part of a
real number fac between 0.1 and 0.99, e.g. mad=258 means
msel=2 and fac=0.58. If mad consists of only one digit, fac is
set to 0.7 by default.

nrd AMG downward relaxation option (default: nrd=1131).

Parameter describing relaxation (downwards):

1st digit of nrd: not used; has to be non-zero.

2nd digit of nrd—nrdx: actual number of smoothing steps to be
performed the type of which is given by the following digits
following digits— array nrdtyp: il

1: relaxation over the f-points only

2: full GS sweep

3: relaxation over the c-points only

4: full more color sweep, highest color first
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Pressure Poisson Equation (PPE)—Solver Parameters (cont.)

Keyword

Variable & Meaning "

nsolco

eps

itmax

itchk
eps
wrt

J hist

AMG coarsest grid solver option (defauit*. nsolco=110).

Parameter controlling the solution on coarsest grid:
1st digit—nsc:

1: gauss-seidel method

2: direct solver (yale smp)

rest of nsolco—nrcx: (only if nsc=1) number of GS sweeps on
coarsest grid (= 0). If nrcx=0, then as many GS sweeps are
performed as are needed to reduce the residual by two orders
of magnitude. (maximal 100 relaxation sweeps)

AMG upward relaxation option (default: nru=1131).

Parameter describing relaxation (downwards):

1st digit of nrd: not used; has to be non-zero.

2nd digit of nrd—nrdx: actual number of smoothing steps to be
performed the type of which is given by the following digits
following digits—array nrdtyp:

1: relaxation over the f-points only

2: full GS sweep

3: relaxation over the c-points only

4: full more color sweep, highest color first

AMG convergence tolerance (default: eps=1.0e-10).

ppesol=61 JPCG solver options:

Iteration limit (default: itmax=10).

Interval to check convergence (default: itchk=S5).

Convergence tolerance (default: epsél.Oe-lﬂ).

0: Suppress diagnostic information from solver (default).

1: Write diagnostic information from solver.

0: Suppress writing an ASCII convergence history file (default).

1: Write an ASCII convergence history file.

ppesol=62 JPCG solver options - stabilized element:

. Same as for solver 61 above
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Pressure Poisson Equation (PPE)—Solver Parameters (cmit.)

Keyword Variable & Meaning
ppesol=64 SSOR-PCG solver options:
itmax Iteration limit (default: itmax=10).
itchk Interval to check convergence (default: itchk=S).
eps Convergence tolerance (default: eps=1.0e-10).
omega Relaxation parameter (default: omega=1.0).
wrt 0: Suppress diagnostic information from solver (default).

1: Write diagnostic information from solver.
hist 0: Suppress writing an ASCII convergence history file (default).
1: Write an ASCII convergence history file.

Terminate PPE solver parameters.
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4.1.5 Time History Blocks

Time history nodes may be defined to track primitive nodal variables at a small number
of nodes where the interval that the data is recorded at is much smaller than for state data.
This type of data is useful for detecting steady-state conditions, and for the evaluation of

periodic behavior.

Time History Blocks

Keyword Variable & Meaning
ndhist Specify n time history nodes (default. n=0).
st Starting node number in block.
en Ending node number in block.
nstep Time history output interval (default: nstep=1).
end Terminate time history block I
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4.1.6 Turbulence Models

Turbulence models and their associated parameters are specified in the HYDRA control

file. For all two equation models and second-order closure models, the default for ndof is
automatically set when the user activates the turbulence model.

Turbulence Models

Keyword

Variable & Meaning

turb n

n=1 Smagorinsky Model:

end

smagc

Activate turbulence model # n (default: n=0).

1: Smagorinsky subgrid scale model without dynamic subgrid
scale.

102: Lein and Leschziner!3 k-€ model - cartesian grids only.
103: Shuga, Craft, Launder!0 k-e~A2 model (not available yet).

Set the value of the Smagorinsky constant (default: smage=0.1).

Terminate turbulence model block
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4.2 HYDRA Mesh File

The HYDRA mesh file contains an 80 character comment line, the spatial coordinates of
the nodes, nodal connectivity, all specified initial conditions, and boundary conditions. The
80 character comment line must be the first line in the input file and is echoed in the human
readable output file. Lines may be commented out by using a “C” followed by a blank
space, or by using #, *, $, or enclosing a region of the input file in braces, { }. Because
the data in the mesh file is usually generated by an automatic mesh generator, the data in
this file can’t be input in a format-free style as in the case of the HYDRA control file.
However, all input in the mesh file is case insensitive.

For many problems, load curves for essential boundary conditions are not necessary,
e.g., no-slip boundaries or boundaries with prescribed velocity are the most common.
Therefore, a blank field for the load curve number associated with a boundary condition
indicates that the amplitude of the boundary condition should be used as the boundary

condition. That is, the boundary condition does not vary with time. This applies to all
prescribed boundary conditions in HYDRA.

4.2.1 Nodal Coordinates

nnp nodal coordinates are required in this section of the mesh file. In the case of 2 2-D
analysis, the z-coordinate may be left blank.

Nodal Coordinates

Columns Format Description “

14-33 " E20.0 x-coordinate.
34-53 E20.0 y-coordinate.
54-73 E20.0

z-coordinate. (Ignored for 2-D)

4.2.2 Connectivity—Q1/PO0 elements

The node numbers and material numbers associated with nel elements are required. For
2-D simulations, HYDRA ignores the last 4 nodal numbers in the connectivity.

Connectivity—Q1/P0 Elements

P — 7

Columns Format Description
0-13 I5 material number.
14-21 I8 local node #1.
22-29 8 local node #2.
30-37 18 local node #3.
38-45 18 local node #4.
70-77 I8 local node #8.
(Nodes 5-8 are ignored for 2-D)
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4.2.3 Velocity Initial Conditions

This section may be skipped if the first three digits of the icser parameter has been set
to O or 1. If any of the first three digits has a value of 2, then HYDRA will read Nnp
velocity initial conditions and discard those velocity components which have been set
through the icset parameter. The z-velocity field is ignored for 2-D analyses.

Velocity Initial Conditions

‘Columns Format Description "
1-10 110 Node number.
11-30 E20.0 Specified initial x-velocity.

31-50 E20.0 Specified initial y-velocity.
I 51-70 E20.0 Specified initial z-velocity. (Ignored for 2-D)

4.2.4 Thermal Initial Conditions

If temp=1 and the icset paramter has been specified to be xxx2xxx in the control file,
then Nnp temperature values must be input for the thermal initial conditions. For any other
values of the icset parameter, this section of input may be skipped.

Thermal Initial Conditions

Columns

Format I—Description

1-10
11-30

110
E20.0

Node number.

Specified initial temperature.

4.2.5 Prescribed Turbulence Model Initial Conditions

This section may be skipped if the last three digits of the icset parameter has been set to
0 or 1. If any of the last three digits has a value of 2, then HYDRA will read Nnp
turbulence initial conditions and discard those values which have been set through the icset
parameter. The A2 field is ignored for analyses with turb=102.

Turbulence Model Initial Conditions

e  ————————————

Columns Format Description "
1-10 110 Node number.
11-30 E20.0 Specified initial turbulent kinetic energy (k).
31-50 E20.0 Specified initial dissipation rate (g).
51-70 E20.0 Specified initial Reynolds Stress 2nd Invariant.
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4.2.6 Periodic Boundary Conditions

nper pairs of master/slave node numbers must be input for the specification of
periodic boundary conditions. It is up to the user (or the user's mesh generator) to verify
that master nodes and slave nodes and their associated element align spatially. If the spatial

alignment of nodes is not respected, HYDRA may produce unexpected results. Note that

multiple levels of indirection may not be used to define periodic boundary conditions. That
is, a master node may not also be a slave node and vice versa.

Periodic Boundary Conditions

" Columns Format Description II
1-10 110 Master node number.
11-20 110 Slave node number.

4.2.7 Prescribed Boundary Conditions

The format used for the input of all specified essential and natural boundary conditions
is shown in the table below. For non-time dependent boundary conditions, the load curve
may be left blank (effectively zero), and the amplitude of the prescribed prescribed
boundary condition will be taken as the value of the boundary condition.

Prescribed Boundary Conditions

Columns Format Description
1-8 18 Node number.
10-19 E10.0 Amplitude of prescribed boundary condition.
20-24 - I5 Load curve number.

51



52

HYDRA:

A Finite Element Code for
Computational Fluid Dynamics

The order of the required essential and natural boundary conditions in the mesh file is
shown in the table below with the corresponding analysis parameter from the control file
and its associated mesh input requirements. In the table which follows, EBC refers to an
essential boundary condition, e.g., specified value of velocity. In contrast, NBC refers to
a natural boundary condition, e.g., specified tractions.

Analysis Parameters & Boundary Conditions

Variable Parameter| Description of Input I
X-Velocity (u) nubc nubc values of specified x-velocity.
Y-Velocity (v) nvbc nvbc values of specified y-velocity.
Z-Velocity (w) nwbc nwbc values of specified z-velocity
Pressure (P) npbc npbc values of the element level pressure*.
Temperature (T) ntbe ntbc values of the specified temperature.
Turbulent ke (k) nkbc nkbc values of the turbulent kinetic energy.
Dissipation rate (€) nebe nebc values of the specified dissipation rate.
Reynolds Invariant nabc nabc values of the Reynolds stress 2nd invariant.
X-Traction (fx) nxbc nxbc values of the x-traction component.
Y-Traction (fy) nybc nybc values of the y-traction component.
Z-Traction (fz) nzbc nzbc values of the z-traction component.
k - NBC's nknb nknb NBC's for the turbulent kinetic energy.
e - NBC's nenb nenb NBC's for the dissipation rate.
Ap - NBC's nanb nanb NBC's of the Reynolds stress 2nd invariant.

*Note that the element level pressures are not boundary conditions in the strict sense of the
term. Rather, this input to HYDRA simply fixes element level pressures according to the
input value. This feature is typically used to remove spurious modes from the pressure-
poisson equation when they are present, e.g., in a lid-driven cavity calculation.
Specification of element level pressures in this sense is drastically different from the
specification of a pressure boundary condition via a non-zero boundary traction.
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4.3 The Advection-Diffusion Equation

The following initial condition and boundary condition specifications apply only to the
solution of the scalar advection-diffusion equation. In this case, it is assumed that the
prescribed initial velocity distribution is fixed in time.

4.3.1 Prescribed Velocity Field

nnp values of nodal velocity must be provided if any one of the first three digits of the
icset parameters is 2 in the control file. Otherwise, icset controls the value of the prescribed
velocity field. For 2-D problems, the z-velocity component is ignored.

- Prescribed Velocity Field

Columns Format Description |
1-10 I10 Node number.
11-30 E20.0 Prescribed initial x-velocity.
31-50 E20.0 Prescribed initial y-velocity.
51-70 E20.0 Prescribed initial z-velocity.
(Ignored for 2-D.)

4.3.2 Temperature Initial Conditions

nnp values of nodal temperature must be provided if the icset parameter has been
specified as xxx2xxx in the control file. Otherwise, icset controls the value of the
prescribed initial temperature-field using the sez_t command.

Temperature Initial Conditions

Columns Format Description
1-10 I10 Node number.
11-30 E20.0 Prescribed initial temperature.
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4.3.3 Temperature Boundary Conditions

ntbc values of specified temperature must be input for the advection diffusion equation.
See the table in section 4.2.7 for additional information.

Temperature Boundary Conditions

Columns Format Description
1-8 18 Node number.
10-19 E10.0 Prescribed temperature. |
20-24 15 Load curve number.




Chapter 5

Example Problems

This chapter presents several 2-D and 3-D HYDRA calculations. These computation are
provided for the first time user who wishes to perform several benchmark computations for
comparison before embarking on a detailed analysis. For this reason, the control files are
replicated here with representative results which can be compared to for a rough validation
of the local HYDRA installation. These problems are not intended to be a comprehensive
benchmark suite. Instead, the calculations presented here are simply intended to provide the
first time user with a set of test cases which can be used for code familiarization.

For this reason, most of the sample problems use relatively coarse meshes to minimize
run times and provide a starting point for the user who wishes to experiment with code
options before attempting any significant calculations. All of the sample calculations are
isothermal, but they would require minimal changes to activate the scalar advection-
diffusion equation.

5.1 Entrance Region in a 2-D Duct

. The entrance region sample problem consists of a 2-D duct with a 5:1 aspect ratio, and

a plug inlet velocity profile at x=0. Natural boundary conditions are applied at the outflow
boundary, and no-slip boundary conditions are prescribed on the top and bottom surfaces.
The vertical velocity is prescribed to be zero on the inlet plane. Fig. 5.1 shows the mesh for
the entrance region.

The HYDRA control file is shown in Fig. 5.2 for the case when the Reynolds number
based on the channel height is 100. In this example, a time-accurate, P-II computation is
performed for the 200 element inlet duct mesh.

A segment of the screen output for this calculation is shown in Fig. 5.3. The
divergence for the specified initial conditions failed the divergence test, so a mass-
consistent projection to a divergence-free subspace was performed on the initial velocity
data. The resulting velocity field yielded an rms divergence of 1.0474E-17. The maximum
grid CFL number was 0.53391 at t=0 for this problem.

The HYDRA simulation for this problem was performed in two parts. Initially, the
computation was carried out to only 5 time units. At this point in the simulation, the
velocities were not changing noticeably, however, the kinetic energy still had a positive
slope. Thus, a restart was performed, and the simulation was extended another 5 time
units.
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Figure 5.1: Mesh for 2-D Entrance Region.
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2-D Duct Entrance Region, Re = 100

{Define mesh parameters}
mesh
nnp 231 nel 200 nnpe 4
nmat 1 ndim 2
end

{ Define analysis parameters }

analyze

solve 3

nubc 53

nvbe 53

nstep 100

plti 10

prti 50

pltype 1

divu 1.0e-10
icset 2220000 ;

term 10.00
deltat 0.05
dtchk -1
dtscal 1.0
rho
nu
thetak
thetab
end

e-2

OO R
o o

{ pvs direct solver for the PPE }
ppesol 41 end

{ Momentum eqg. solver parameters }
momsol 1

itmax 20

itchk 5

eps 1.0e-5

wrt 0
end

{ Select time history blocks }
ndhist 3

nstep 1

st 12 en 22

st 144 en 154

st 221 en 231

end

end

Figure 5.2: 2-D Entrance Region Control File.
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DivergenceError

Allowable Divergence .........ceeeeectveeeaass 1.0000E~10
Initial DIVergence .........ceeeeeeeencenans 1.1379E-08
Projected DiVErgence ........ieeeeeeccensncenns 1.0474E-17

GridReynolds&CFLNumberxrs

xi-grid Reynolds Numbers:

Min. Element IMO. ...ttt eteienenneeessnnnsooonns 1
Min. xXi-element Aimension ......co0vevvecccnns 8.7298E-02
Minimum xi-grid Reynolds Number .......c.cov.. 4.3649E+00
Max. EleMent INO. .vvcecvvcevecocncrasasansnnes 140
Max. xi-element dimension ..........cccvuunnn. 5.3391E-01
Maximum xi-grid Reynolds Number .............. 5.3391E+01

eta-grid Reynolds Number:

Min., Element NO. .v.cecrecvsccenesasososscnnnsns 158
Min. eta-element dimension .........cciceveenen. 1.0000E-01
Minimum eta-grid Reynolds Number ............. 2.1019E-09
Max. Element IO. .v.iiveeecncarscnancanansonns 79
Max. eta-element dimension ..........c.ceeeve.. 1.0000E-01
Maximum eta-grid Reynolds Number ............. 1.1933E-04

xi-grid CFL Numbers:

Min. Element NO. ...ietrenceenecnanccasnonsanss 200
Min. xXi-element Aimension .....cccceveceseanns 5.3391E-01
Minimum xi-grid CFL Number ..........cceeeeun. 4.6825E-02
Max. Element NO. ..ivecrcrorosnossscsesasesnns 161
Max. Xi-element dimension ......ceeceeevcesacs 8.7298E-02
Maximum xi-grid CFL Number ........cccvve- eees 5.7275E-01

eta-grid CFL Numbers:

Min. Element NO. ..iteececnseesasssssoncnonsos 158
Min. eta-element dimension .......ccceceeeeenn 1.0000E-01
Minimum eta-grid CFL Number ........s.esceesuee 1.0510E-10
Max. Element NO. ...eveeeeervacroacscscncansons 79
Max. eta-element dimension ........cceeceoeens 1.0000E~01
Maximum eta-grid CFL Number ........c.eeceeeee 5.9665E-06
Step # Time U-Min. U-Max. V-Min. V-Max.
0 0.0000E+00 0.0000E+00 0.1000E+01 -.4104E-06 0.3512E-06
10 0.5000E+00 -.5100E-25 0.1114E+01 -.7581E-01 0.7581E-01

.5099E-25 0.1362E+01 -.7912E-01 0.7912E-01
.5099E-25 0.1365E+01 -.7912E-01 0.7912E-01

90 0.4500E+01
100 0.5000E+01

... Restart performed ...

1

Step # Time U-Min. U-Max. V-Min. V-Max.
0 0.5000E+01 -.5099E-25 0.1365E+01 -.7912E-01 0.7912E-01
10 0.5500E+01 -.5099E-25 0.1366E+01 ~.7912E-01 0.7912E-01

.5099E-25 0.1367E+01 -.7912E-01 0.7912E-01
.5099E-25 0.1367E+01 -.7912E-01 0.7912E-01

90. 0.9500E+01
100 0.1000E+02

Figure 5.3: Grid Parameters and Velocity Min/Max Values.
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The stream function contours for the velocity field are shown in Fig. 5.4 at 100 time
units. The corresponding pressure field contours are shown in Fig. 5.5. Velocity time
history plots are shown in Fig. 5.6 for the x and y-velocity components along the duct
centerline (nodes 17, 149 and 226). The outlet x-velocity profile in Fig. 5.7 shows the
expected parabolic velocity distribution for hydrodynamically fully developed flow. The
kinetic energy for this calculation is also shown in Fig. 5.8.

Figure 5.4: Stream function contours after 10 time units.

Pressure
1.06e+00

M.

Figure 5.5: Pressure contours after 10 time units.
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b) y-velocity time history.

Figure 5.6: Velocity time history plot for 2-D duct.
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Figure 5.7: x-velocity profile at outlet plane.
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Figure 5.8: Kinetic energy time history.
5.2 Lid Driven Cavity

A standard benchmark problem is the computation of the flow in a lid driven cavity.
The lid driven cavity problem consists of a square, unit domain discretized with a 20 x 20
element mesh as shown in Fig. 5.9. All boundaries are no-slip boundaries with a unit
x-velocity specified at the top of the cavity. The computations for this problem were
performed with a non-leaky lid. That is, the corner nodes at the lid had u=v=0, and while
the first node in from each corner of the lid had u=0.5, v=0.

The HYDRA control file for the mesh with 441 nodes is shown in Fig. 5.10. The
Reynolds based upon the cavity dimension is 100, and based upon this discretization, the
maximum grid Reynolds and CFL numbers were 2.5. A time accurate P-II computation
was performed for a duration of 25 time units at which a steady-state velocity field was

achieved.

The non-leaky lid driven cavity problem results in both a hydrostatic and a
checkerboard mode in the pressure field. Thus, npbc 2 is specified in the control file, and
the two pressures at the bottom, center of the cavity are pegged at 0.0.

The pressure, stream function, and vorticity contours at t=25 units are shown in
Figures 5.11-5.13. In comparison to the results of Hughes, et al., the results for these
quantities are qualitatively similar. Figure 5.14 shows the velocity vectors for the problem
after 25 time units. Examination of the Kinetic energy time history in Fig. 5.15 shows that
problem is essentially steady-state after only 10 time units.
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Figure 5.9: 20 x 20 lid driven cavity mesh.
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Lid driven cavity Re = 100

mesh
nnp 441
nel 400
nnpe 4
nmat 1
ndim 2
end
analyze
solve 3
nubc 84
nvbc 84
npbc 2
nstep 100
plti 20
prti 100
pltype 1 h

icset 2220000 ;
diva 1.0e-10
deltat 0.25

dtchk -1
term 1000.00
rho 1.0
nu 1.0e-2
end
ndhist 4
nstep 1

st 25 en 25

st 149 en 149

st 419 en 419

st 311 en 311
end

ppesol 41 end

momsol 1
itmax 400
itchk 10
eps 1.0e-5
wrt 0O

end

Figure 5.10: Lid driven cavity control file.
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N

Figure 5.11: Lid driven cavity pressure contours.

Figure 5.12: Lid driven cavity stream function countours.
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Figure 5.13: Lid driven cavity vorticity contours.
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Figure 5.14: Lid driven cavity velocity vectors.
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Figure 5.15: Lid driven cavity kinetic energy time history.
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5.3 Vortex Shedding

The flow past a circular cylinder is also a common benchmark problem used to test
CFD codes. This sample problem is essentially a duplicate of the vortex shedding problem
discussed in Gresho, et al.>.

The mesh in Fig. 5.16 consists of 1760 elements and 1852 nodes and is a close
approximation to that of Gresho’. Boundary conditions consist of no-slip at the cylinder
wall, and tow-tank conditions (#=1, v=0) on the inlet and edges of the domain. Natural
boundary conditions are applied at the outflow boundary of the domain.

For this grid, CFL=6.8884 and Re=76.897 after the initial divergence-free projection.
After a quasi-steady flow development of approximately 125 time units, the flow
transitions to a steady, periodic vortex shedding cycle. Fig. 5.18 shows a snapshot of the
stream function countours after 250 time units. The vorticity is also shown in Fig. 5.19 at

this time in the simulation. Both the stream function contours and the vorticity plot clearly
reveal the presence of the well-known Karman vortex street downstream of the cylinder.

Nodal time history plots of the x and y-velocity are shown in Fig. 5.20. The nodal time
history points are located at the edge of the boundary layer around the cylinder, and just
downstream of the cylinder. These plots clearly reveal the relatively long quasi-steady
portion of the flow simulation in which two standing, symmetric eddies exist downstream
of the cylinder. From these plots, the Strouhal number can be estimated for the periodic
portion of the flow. Based upon the y-velocity, St=0.175 which compares favorable with
the results in Gresho, et al.5. The kinetic energy time history is presented in Fig. 5.21.
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Figure 5.16: Coarse mesh for cylinder vortex shedding.
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Coarse mesh vortex shedding - Re=100

mesh
nnp 1852
nel 1760
nnpe 4
nmat 1
ndim 2
end

{ Max. deltat 0.025 for explicit time integration }
analvze

solve 3

nubc 175

nvbc 175

nstep 1000

plti 50

prti 500

pltype 1

icset 2220000 ;
btd 1

divu 1.0e-10
deltat 0.250
dtchk -1

dtscal 1

term 500.00

rho 1.0

nu 1.0e-2
end

ndhist 5
nstep 1
st 441 en 441
st 447 en 447
st 653 en 673
st 844 en 844
st 899 en 899
end

momsol 1
itmax 100
itchk 10
eps 1.0e-5
wrt O

end

ppesol 41 end

end

Figure 5.17: Control file for vortex shedding.
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Figure 5.18:  Stream function contours. ¥ = +/- 0.05, 0.1, 0.15, 0.2, 0.4, 0.6, 1.0,

2.0, 3.0 at 7=250 time units.

Figure 5.19: Vorticity snapshot at 7 =250 time units.
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Figure 5.20: Velocity time history plots at nodes 441, 447, 653, 844, and 899.
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Figure 5.21: Vortex shedding kinetic energy time history.
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5.4. Backward Facing Step

The inclusion of at least one backward facing step example seems appropriate given the
attention which this problem has received as a CFD benchmark in the past few years. Once
again, this problem is not included to provide a validation test for HYDRA. Instead, it is
intended to be a sample problem for code familiarization.

The backward facing step consists of a domain with a 15:1 aspect ratio (channel length
to height). The mesh consists of 2000 elements and is graded as shown in Fig. 5.22. The
inlet x-velocity above the step is a fully developed parabolic profile, while the y-velocity is
specified as zero. No-slip boundary conditions are applied at all walls, and natural
boundary conditions are prescribed at the outflow boundary.

For Re=800, a steady-state solution results. The stream function and vorticity contours
at =250 time units are shown in Fig. 5.24-5.25 respectively. The reattachment point on
the lower boundary is approximately 5.40 units downstream from the step. In comparison
to the results of Gartling, this is a 11.48 percent error, but with comparably few elements.

The velocity time history plots in Fig. 5.26 show that the velocity field is still changing,
although the kinetic energy time history in Fig. 5.27 appears to be steady. (The time history
nodes were selected at x=5.866, y=0.1, 0.5, 0.9 according.)

Entrance
Region

Figure 5.22: Mesh for Re=800 backward facing step.
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BFS #4 - Re=800, parabolic inflow

mesh
nnp 2121
nel 2000
nnpe 4
nmat 1
ndim 2

end

analyze
solve 3
nubc 222
nvbc 224
nstep 2500
plti 50
prti 250
pltype 1
btd 1 |

icset 0000000 ;

divu 1.0e-10

deltat 0.100

dtchk -1

dtscal 1

term 500.00

rho 1.0

nu 1.25e-3
end

ndhist 8
nstep 1
st 902 en 902
st 896 en 896
st 1927 en 1927
st 1050 en 1050
st 1056 en 1056
st 2067 en 2067
st 528 en 528
st 672 en 672
end

momsol 1
itmax 250
itchk 20
eps 1.0e-6
wrt O

end

ppesol 41 end

end

e —————— et

Figure 5.23: Control file for backward facing step.
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Figure 5.24: Stream function contours. psi = 0.0, +/- 0.1,+/-0.2, 0.225,-0275,  vorticity
-0.285, -0.295 at 7=250 time units. S 00e+00
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Figure 5.25: Vorticity contours at 7= 250 time unites.
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Figure 5.26: Velocity time history plots at nodes 896, 902, 1927.
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Figure 5.27: Kinetic energy time history.
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5.5 Circular Duct Entrance Region

This example is the 3-D counterpart to the example presented in section 5.1. The
circular duct example makes use of symmetry, but relies on a 3-D computation for the axis-
symmetric flow solution. The 3300 element mesh for this problem is shown in Fig. 5.28.

At the wall, no-slip boundary conditions are prescribed. A plug-flow inlet velocity
profile is prescribed, and natural boundary conditions are applied at the outflow boundary.
Two planes of symmetry are uses, i.e., the x-z plane requires w=0 and the y-z plane
requires #=0. The Reynolds number is 100 based upon the inlet velocity and duct diameter.

A steady-state solution is achieved after approximately 4 time units. The pressure
contours for y=100 are shown for the inlet region in Fig. 5.30, and the z-velocity contours
are shown in Fig. 5.31. Time history plots for the y-velocity, z-velocity (axial velocity),
and kinetic energy are shown in Figures 5.32 and 5.33.
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Figure 5.28: Circular duct entrance region mesh.
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Duct entrance region Re=100
mesh
nnp 3978
nel 3300
nnpe 8
nmat 1
ndim 3
end
analyze
solve 3
nubc 915
nvbc 915
nwbc 525
nstep 100
plti 10
prti 100
pltype 1

icset 2220000 ;
divu 1.0e-10
btd 1 |
dtchk -1
dtscal 1.0
deltat 1.0e-1
term 10.00
rho 1.0
nu 1.0e-2
end

ndhist 11
nstep 1
st 36 en 36
st 72 en 72
st 108 en 108 1l
st 144 en 144
st 180 en 180
st 936 en 936
st 972 en 972
st 1008 en 1008
st 1044 en 1044
st 1080 en 1080

st 1116 en 1116
f end

momsol 1
itmax 50
itchk 5
eps l1l.0e-5
wrt O

end

ppesol 41 end end

—_— |

Figure 5.29: Circular duct entrance region control file.
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Pressure
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Figure 5.32: Velocity time history plots.




82
HYDRA—94:
A Finite Element
Computational Fluid Dynamics Code

0.56 1

/

0.54

e
U
)

Kinetic Energy

0.48

0.46 1

0 ) 4 6
Time
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5.6 Vortex Shedding

. This example is the 3-D analogue to the 2-D cylinder vortex shedding calculation in
section 5.3. All of the problem parameters are identical to the 2-D calculation. However, a
3-D calculation is performed by extruding the mesh out 1-element thick in the cross-flow
direction as shown in Fig. 5.34. The control file for this problem is shown in Fig. 5.35.

Symmetry conditions are applied on the x-z planes of the domain. That is, v=0 on the
symmetry planes, but # and w are allowed to vary. These boundary conditions result in a
flow field identical to the that computed in section 5.3, but it is prismatic.

Snapshots for pressure isosurfaces are shown in Fig. 5.36, and the y-vorticity is
shown in Fig. 5.37. The vorticity plot is essentially identical to the plot shown in

Fig. 5.19, although it is only a single vorticity component in 3-D.

. The time history nodes in the 3-D mesh were selected to correspond spatially to the time
history points used in the 2-D vortex shedding example. As shown in Fig. 5.38, the
velocity field goes through approximately 125 time units of a quasi-steady state in which
there are two symmetric, standing eddies downstream of the cylinder. As expected, the

velocity time histories and the kinetic energy time history (Fig. 5.39) are essentially
identical to those for the 2-D vortex shedding calculation.
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Figure 5.34: Mesh for 3-D vortex shedding.
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Coarse mesh vortex shedding - Re=100
mesh
nnp 3704
nel 1760
nnpe 8
nmat 1
ndim 3
end
analyze
solve 3
nubc 350
nvbc 3704
nwbc 350
nstep 1000
plti 50
prti 500
pltype 1

icset 2220000 ;

diva 1.0e-10

pltype 1

term 500.0

deltat 0.25

dtscal 1.0

dtchk -1

rho 1.000000E+00

nu 1.000000E-02
end

ppesol 41 end

momsol 1
itmax 100
itchk 10
eps 1.0e-5
wrt O

end

ndhist 5
nstep 1
st 671 en 671
st 678 en 678
st 1135 en 1135 i
st 1327 en 1327
st 1760 en 1760
end

end

Figure 5.35: Control file for vortex shedding.
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5.7 Post & Plate

The final example problem consists of the flow past a flat plate with an attached
cylindrical post. The mesh for this problem is shown in Fig. 5.40. The upstream
conditions are a uniform velocity field (z=1,v=0,w=0), with no-slip boundary conditions
applied at the plate and cylinder wall. The Reynolds number is 100 based upon the cylinder
diameter. A symmetry plane is used at 2 diameters above the plate surface. Figure 5.41

shows the control file for this problem

In effect, this computation demonstrates several phenomena shown in earlier examples.
As the simulation progresses, two symmetric, standing eddies appear just downstream of
the post at the symmetry plane. After about 200 time units, vortex shedding begins which

is very similar in character to the 2-D shedding problem.

The interaction of the plate boundary layer and the post results in longitudinal vortices
being shed from the root of the post in the downstream direction. Figure 5.42 shows a
snapshot of pressure isosurfaces during a vortex shedding cycle. Figure 5.43 shows
isosurfaces of the z-vorticity also at 380 time units. The helicity (u @) is shown in

Fig. 5.44.

Several velocity time history plots are shown in Fig. 5.45. The time history node was
placed n the symmetry plane, and are directly downstream of the post. Figure 5.46 shows
the kinetic energy time history for the calculation.
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Figure 5.40: Post & Plate Mesh. _ Y \l/x
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Post w. Re=100

mesh
nnp 16096
nel 13800
nnpe 8
nmat 1
ndim 3

end

analyze
solve 3
npbc 0
nubc 2747

| nvbc 3643

nwbc 3814
nstep 1
plti 1
prti 10
pltype 1

icset 2220000 ; |
divu 1.0e-10 )
term 1.000000E+03
deltat 0.500000E+00
dtscal 1.0

dtchk -1

rho 1.000000E+00
nu 1.000000E-02

{ end

ppesol 41 end

ndhist 1
st 1 en 10 |
nstep 1

end

momsol 1
itmax 100
itchk 10
eps 1.0e-5 "
wrt 1

end

end

Figure 5.41: Post & plate control file.
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Figure 5.43: Z-vorticity isosurfaces at 7= 380 time units.
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Figure 5.44: Helicity isosurfaces at 7= 380 time units.




92

HYDRA—9%4:
A Finite Element
Computational Fluid Dynamics Code

jom—y

e
)

<
N

o ©
N B

X Velocity

TR PTECE TR ACE TR AN ETREA I KNS NETE SN N UE

o
[\

S
~

0 50 100 150 200 250 300
Time

a) x-velocity time history plot.

TTT T

o ©
H N

o
(&

o
N

Y Velocity

&
~

o
=N

b) y-velocity time history plot

Figure 5.45: Velocity time history plots.

. i
S B S I I B 20w Bt 2t B e B 1 B A B B E L N A N L B SN BN AL AL LA R R LA T

0 50 100 150 200 250 300

----------------

350 400




90
HYDRA—94:
A Finite Element
Computational Fluid Dynamics Code

Pressure
1.14e+00

A i . T A r_.l

92
HYDRA—94:
A Finite Element
Computational Fluid Dynamics Code

3 |

13 '

0.8 3 i

g |
2 0.6
S 0.4
© E
> 0.2
SINE

024 ‘

-04 ‘

SEAAAREARE RERRLLAARS RULARMLLES IMULIUMALLAN MM | EAAEEARAE REAREAAREE REAARARN |

0 50 100 150 200 250 300 350 400

Time

a) x-velocity time history plot.

0.6
0.4
é’ 0.2 3
(&) .
o ;
o 07 3
> ]
= -0.2 w
04
-0.6 H l

------------------------------------------------------ (AR ML AR R]



HYDRA—94:
A Finite Element
Computational Fluid Dynamics Code

344 :
y) [
e
50 ]
$t
O ]
o]
m ]
847
=R
Q) R
G J
* y— L
N
38
36
0 100 200 300 400
Time

Figure 5.46: Post & plate kinetic energy time history.







95

Bibliography

1.

10.

11.

R.G. Whirley, B.E. Engelmann, “DYNA3D: A Nonlinear, Explicit, Three
Dimensional Finite Element Code for Solid and Structural Mechanics—User
Manual,” Lawrence Livermore National Laboratory, UCRL-MA-107254, Rev. 1,
1993. .

B.N. Maker, R.M. Ferencz, J.O. Hallquist, “NIKE3D, A Nonlinear, Implicit,
Three-Dimensional Finite element Code for Solid and Structural mechanics—User’s
Manual,” Lawrence Livermore National Laboratory, UCRL-MA-105268, 1991.

The Federal High Performance Computing Program, Executive Office of the
President, Office of Science and Technology, pp. 49-50, September 8, 1989.

P.M. Gresho, S.T. Chan, R.L. Lee, and C.D. Upson, “A Modified Finite Element
Method for Solving the Time-Dependent, Incompres31ble Navier-Stokes Equations.
Part 1: Theory,” Journal for Numerical Methods in Fluids , Vol. 4, pp. 557-598,
1984.

P.M. Gresho, S.T. Chan, R.L. Lee, and C.D. Upson, “A Modified Finite Element
Method for Solving the Time-Dependent, Incompressible Navier-Stokes Equations.
Part 2: Applications,” Int. Journal for Numerical Methods in Fluids, Vol. 4, pp.
619-640, 1984.

P.M. Gresho, “On the Theory of Semi-implicit Projection Methods for Viscous
Incompressible Flow and Its Implementation via a Finite Element Method that also
Introduces a Nearly Consistent Mass Matrix. Part 1: Theory,” Int. Journal for
Numerical Methods in Fluids, Vol. 11, pp. 587-620, 1990.

P.M. Gresho, and S.T. Chan, “On the Theory of Semi-implicit Projection Methods
for Viscous Incompressible Flow and Its Implementation via a Finite Element
Method that also Introduces a Nearly Consistent Mass Matrix. Part 2: Applications,”
Int. Journal for Numerical Methods in Fluids, Vol. 11, pp. 587-620, 1990.

Smagorinsky, J., “General Circulation Experiments with the Primitive Equations,”
Mon. Weather Rev., Vol. 91, pp. 99-164, 1963.

Wilcox, D.W., Turbulence Modeling for CFD, DCW Industries, Inc., La Cafiada,
California, pp. 1-9, pp. 316327, 1993.

K. Suga, T. J. Craft, and B. E. Launder, "Development of a k-e-A2 three equation
model, notes from UMIST, January, 1995.

M. Christon, R. Whirley, “Explicit Structural Analysis in a Concurrent Computing
Environment,” The 1991 MPCI Yearly Report, Lawrence Livermore National
Laboratory, UCRL-ID-10722-91, pp. 50-54, 1991.



96

HYDRA—9%4:
A Finite Element
Computational Fluid Dynamics Code

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

C. Hoover, M. Christon, R. Whirley, J. DeGroot, “Explicit Nonlinear Structural
Dynamics Models for Massively Parallel Computers,” The 1992 MPCI Yearly
Report, Lawrence Livermore National Laboratory, UCRL-ID-10722-92, pp. 8388,
1992. :

F. S. Lien and M. A. Leschziner, "Modelling the Flow in a Transition Duct with a
Non-orthogonal FV Procedure and Low-Re Turbulence-Transport Models,"
Advances in COmputational Methods in Fluid Dynamics, ASME, Fed-vol. 196,

1994.

M.A. Christon, D. Dovey, and J.O. Hallquist, “INGRID A 3-D Mesh Generator for
Modeling Nonlinear Systems,” UCRL-MA-10970, September, 1992.

D.J. Dovey, and T.E. Spelce, “GRIZ Finite Element Analysis Results Visualization
for Unstructured Grids,” Draft manual—version 2, February, 1993.

D.E. Speck, “THUG: Time Histories from Unstructured Grids—User Manual,”
Lawrence Livermore National Laboratory, June, 1994.

P.M. Gresho and R. Sani, “On Pressure Boundary Conditions for the
Incompressible Navier-Stokes Equations,” Int. J. Numer. Methods Fluids, Vol. 7,
pg. 1111, 1987.

T.J.R. Hughes, The Finite Element Method, Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, pp. 423-429, pp. 490-512, 1987.

0.C. Zienkiewicz, and R.L. Taylor, The Finite Element Method, Volume 2, Fourth
edition, McGraw-Hill Book Company Limited, Berkshire, England, pp. 404437,
1991.

T. Belytschko, J.S. Ong, W.K. Liu and J.M. Kennedy, “Hourglass Control in
Linear and Nonlinear Problems,” Computational Methods in Applied Mechanics and
Engineering, Vol. 43, pp. 251-276, 1984.

W .K. Liu and T. Belytschko, “Efficient Linear and Nonlinear Heat Conduction with
a Quadrilateral Element,” International Journal for Numerical Methods in
Engineering, Vol. 20, pp. 931-948, 1984.

W.K. Liu, J.S. Ong, and R.A. Uras, “Finite Element Stabilization Matrices,”
Computer Methods in Applied Mechanics and Engineering, Vol. 53, pp. 13-46,
1985.

T. Belytschko and W.K. Liu, “On Reduced Matrix Inversion for Operator Spliiting
Methods,” International Journal for Numerical Methods in Engineering, Vol. 20,
pp- 385-390, 1984.



HYDRA—94: N

A Finite Element
Computational Fluid Dynamics Code

24.

25.

26.
217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

G.L. Goudreau, and J.O. Hallquist, “Recent Developments in Large-Scale Finite
Element Lagrangian Hydrocode Technology,” Computatzonal Methods in Applied
Mechanics and Engineering, Vol. 33, pp. 725, 1982. e

F.S. Beckman, “The Solution of Linear Equations by the Conjugate Gradient
Method,” Mathematical Methods for Digital Computers, Vol. 1, pp. 62-72,1965.

W.L. Briggs, Multigrid Tutorial, Lancaster Press, Lancaster, PA, 1987.

J. W. Ruge and K. Stuben, "Algebraic Multigrid," Multigrid Methods, S. F.
McCormick (Ed.), SIAM Series: Frontiers in Applied Mathematics, Philadelphia,
Pennsylvania, 1987.

0.0. Storaasli, D.T. Nguyen, and T.K. Agarwal, “A Parallel-Vector Algorithm for

Rapid Structural Analysis on High-Performance Computers,” NASA Technical
Memorandum 102614, April, 1990.

T.K. Agarwal, O.0. Storaasli, D.T. Nguyen, “A Parallel-Vector Algorithm for
Rapid Structural Analysis on High-Performance Computers,” ATAA 90-1149, April,
1990.

S. C. Eisenstat, "Efficient Implementation of a Class of Preconditioned Conjugate
Gradient Methods," SIAM J. Sci Stat. Comput., Vol. 2, No. 1, pp. 1-4. March,
1981.

S. C. Eisenstat, J. M. Ortega. and C. T. Vaughan, "Efficieint Polynomial
Preconditioning for the Conjugate Gradient Method, "SIAM J. Sci. Stat. Comput,
VOL 11, No. 5, pp. 859-872, Sept. 1990.

I. Fried, “A Gradient Computational Procedure for the Solution of Large Problems
Arising from the Finite Element Discretization Method,” International Journal for
Numerical Methods in Engineering, Vol. 2, pp. 477-494, 1970.

L.J. Hayes and P. Devloo, “A Vectorized Version of a Sparse Matrix-Vector

Multiply,” International Journal for Numerical Methods in Engineering, Vol. 23,
pp. 1043-1056, 1986.

R.M. Firencz, “Element-by-element Preconditioning Techniques for Large-Scale,
Vectorized Finite Element Analysis in Nonlinear Solid and Structural Mechanics,”
Ph.D. Thesis, Stanford University, 1989.

D.R. Kincaid, T.C. Oppe, D.M. Young, ITPACKV 2D User’s Guide, Center for
Numerical Analysis, The University of Texas at Austin, May, 1989.

T.C. Oppe, W.D. Joubert, D.R. Kincaid, NSPCG User's Guide, Version 1.0,
Center for Numerical Analysis, The University of Texas at Austin, April, 1988.

D.J. Tritton, Physical Fluid Dynamics, Second Edition, Oxford University Press,
New York, 1988.



98

HYDRA—94:
A Finite Element
- Computational Fluid Dynamics Code

38.

39.

40.

41.

42,
43,

44.

45.

46.

J.J. Dongarra, LS. Duff, D.C. Sorensen, H.A. van der Vorst, Solving Linear
Systems on Vector and Shared Memory Computers, SIAM, Philadelphia,

Pennsylvania, 1991.

O. Axelsson, Iterative Solution Methods, Cambridge University Press, New York,
1994.

S.F. McCormick, Multilevel Projection Methods for Partial Differential Equations,
SIAM, Philadelphia, Pennsylvania, 1992.

R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, H. van der Vorst, Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, Pennsylvania,
1994.

O. Axelsson, "A Generalized SSOR Method," BIT, Vol 13, pp. 443-467, 1972.

Christon, M., Some Useful Algorithms for Treating Unstructured Grids, in
preparation for I/NME, 1994.

Gresho, P.M., Time Integration and Conjugate Gradient Methods for the
Incompressible Navier-Stokes Equations, LLNL, UCRL-9400, January 1986.

N.E. Gibbs, W.G. Poole, Jr., P.K. Stockmeyer, An Algorithm for Reducing the
Bandwidth and Profile of a Spruce Matrix, SIAM J. Numer. Anul., Vol. 13,

No. 2, pp. 236-250, 1976.

Storaasli, 0.0., D.T. Nguyen, T.K. Agaruwal, “A Parallel-Vector Algorithm for
Rapid Structural Analysis on High-Performance Computers,” NASA Technical
Memorandum 102614, April, 1990.



