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1 Executive Summary

As wind generation grows, its influence on power system performance will becoming increas-
ingly noticeable. Wind generation differs from traditional forms of generation in numerous
ways though, motivating the need to reconsider the usual approaches to power system as-
sessment and performance enhancement. The project has investigated the impact of wind
generation on transient stability and voltage control, identifying and addressing issues at
three distinct levels of the power system: 1) at the device level, the physical characteristics
of wind turbine generators (WTGs) are quite unlike those of synchronous machines, 2) at the
wind-farm level, the provision of reactive support is achieved through coordination of numer-
ous dissimilar devices, rather than straightforward generator control, and 3) from a systems
perspective, the location of wind-farms on the sub-transmission network, coupled with the
variability inherent in their power output, can cause complex voltage control issues.

The project has sought to develop a thorough understanding of the dynamic behaviour
of type-3 WTGs, and in particular the WECC generic model. The behaviour of such models
is governed by interactions between the continuous dynamics of state variables and discrete
events associated with limits. It was shown that these interactions can be quite complex, and
may lead to switching deadlock that prevents continuation of the trajectory. Switching hys-
teresis was proposed for eliminating deadlock situations. Various type-3 WTG models include
control blocks that duplicate integrators. It was shown that this leads to non-uniqueness in
the conditions governing steady-state, and may result in pre- and post-disturbance equilibria
not coinciding. It also gives rise to a zero eigenvalue in the linearized WTG model. In order
to eliminate the anomalous behaviour revealed through this investigation, WECC has now
released a new generic model for type-3 WTGs.

Wind-farms typically incorporate a variety of voltage control equipment including tap-
changing transformers, switched capacitors, SVCs, STATCOMs and the WTGs themselves.
The project has considered the coordinated control of this equipment, and has addressed a
range of issues that arise in wind-farm operation. The first concerns the ability of WTGs to
meet reactive power requirements when voltage saturation in the collector network restricts
the reactive power availability of individual generators. Secondly, dynamic interactions be-
tween voltage regulating devices have been investigated. It was found that under certain
realistic conditions, tap-changing transformers may exhibit instability. In order to meet cost,
maintenance, fault tolerance and other requirements, it is desirable for voltage control equip-
ment to be treated as an integrated system rather than as independent devices. The resulting
high-level scheduling of wind-farm reactive support has been investigated. In addressing this
control problem, several forms of future information were considered, including exact future
knowledge and stochastic predictions. Deterministic and Stochastic Dynamic Programming
techniques were used in the development of control algorithms. The results demonstrated that
while exact future knowledge is very useful, simple prediction methods yield little benefit.

The integration of inherently variable wind generation into weak grids, particularly sub-
transmission networks that are characterized by low X/R ratios, affects bus voltages, regu-
lating devices and line flows. The meshed structure of these networks adds to the complexity,
especially when wind generation is distributed across multiple nodes. A range of techniques
have been considered for analyzing the impact of wind variability on weak grids. Sensitiv-
ity analysis, based on the power-flow Jacobian, was used to highlight sections of a system
that are most severely affected by wind-power variations. A continuation power flow was
used to determine parameter changes that reduce the impact of wind-power variability. It
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was also used to explore interactions between multiple wind-farms. Furthermore, these tools
have been used to examine the impact of wind injection on transformer tap operation in sub-
transmission networks. The results of a tap operation simulation study show that voltage
regulation at wind injection nodes increases tap change operations. The tradeoff between
local voltage regulation and tap change frequency is fundamentally important in optimizing
the size of reactive compensation used for voltage regulation at wind injection nodes. Line
congestion arising as a consequence of variable patterns of wind-power production has also
been investigated. Two optimization problems have been formulated, based respectively on
the DC and AC power flow models, for identifying vulnerable line segments. The DC op-
timization is computationally more efficient, whereas the AC sensitivity-based optimization
provides greater accuracy.
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2 Dynamics of Type-3 Wind Turbine Generator Models

2.1 Introduction

The dynamic behaviour of wind turbine generators (WTGs) is quite different to that of
synchronous generators. It is to be expected, therefore, that the dynamic performance of
power systems may change as traditional generation is displaced by ever increasing numbers
of WTGs. Numerous studies have investigated this issue, and have drawn various conclusions
[1, 2, 3, 4, 5]. This chapter does not address the system-wide dynamic implications of large-
scale wind generation per se. Rather, it focuses on the dynamic modelling of WTGs. In
particular, the modelling of type-3 WTGs is considered, as they are currently the dominant
technology for new wind-farm developments. Such WTGs are also known as doubly fed
induction generators (DFIGs) or doubly fed asynchronous generators. A schematic is provided
in Figure 1.

The accuracy of system studies depends on the fidelity of the underlying models [6, 7].
Accordingly, the modelling of type-3 WTGs has received considerable attention, see [1, 8,
9, 10, 11, 12] and references therein. Turbine manufacturers routinely develop and maintain
accurate models for their products, though disclosure of those models is highly restricted. In
some cases they have released models that describe functionally similar behaviour [13], though
such practise is not common. Regional reliability organizations need to exchange models and
data that are relevant to their jurisdiction. This has motivated the development of generic
models that can be used to capture the functional characteristics of a wide variety of type-3
WTGs [14, 15, 16].

As indicated in Figure 1, the electrical characteristics of type-3 WTGs are governed by
interactions between the wound-rotor induction machine and the back-to-back inverter. The
inverter excites the rotor of the induction machine with a variable AC source. This provides
control of the rotor flux frequency, enabling the rotor shaft frequency to optimally track
wind speed [17]. The inverter response time is very fast relative to electromechanical time
constants. As a result, the natural dynamics of the induction machine are largely masked
from the power system. The dynamic behaviour of a type-3 WTG, as seen from the grid,
is therefore dominated by controller response rather than physical characteristics. This is in
marked contrast to traditional synchronous generators, where behaviour is governed by device
physics.

Controller limits play an integral role in the dynamic performance of type-3 WTGs, with
further details provided in Section 2.2. Intrinsic interactions between continuous dynamics
and limit-induced discrete events suggest that type-3 WTGs may be classified as hybrid
dynamical systems [18, 19, 20]. It will be shown in Section 2.3 that the resulting hybrid
dynamics may, in fact, lead to unusual forms of behaviour. The hybrid nature of dynamics
also has implications for small disturbance studies.

The studies presented in this chapter focus on the WECC generic type-3 model [15, 16].
This model has been chosen because it is widely used, and is indicative of type-3 models that
are generally available. All such generic models are an approximation of the actual dynamics
exhibited by a WTG. It is important, though, that this approximation reflects the physical
reality of the modelled device.

The chapter is organized as follows. Section 2.2 provides a thorough description of the
WECC type-3 WTG model. It is shown in Section 2.3 that non-windup limiter models may
cause switching deadlock, preventing trajectory continuation in the usual sense. Alternative
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Figure 1: Schematic diagram of a type-3 wind turbine generator.
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Figure 2: Type-3 WTG dynamic model connectivity, from [15, 16].

model formulations that circumvent such behaviour are discussed. Section 2.4 shows that the
model allows multiple equilibria, and discusses the implications. Small disturbance analysis
is considered in Section 2.5, and conclusions are presented in Section 2.6.

2.2 Type-3 WTG model

The WECC type-3 wind turbine generator model is defined in [15, 16]. The complete WTG
model is divided into four functional blocks, as indicated in Figure 2. This chapter is primarily
concerned with the dynamic interactions of the converter control model WT3E, the pitch
control model WT3P, and the wind turbine model WT3T. Accordingly, only those models
are described in detail in the following analysis.
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2.2.1 Converter control model WT3E

The converter control model is composed of separate active and reactive power control func-
tions. Reactive power control is very fast, due to the power electronic converter. This chapter
focuses on the slower dynamics associated with interactions between active power (torque)
control, pitch control, and the coupling through the shaft dynamics. Accordingly, only the
active power model, which is shown in Figure 3, will be discussed. Again, full details of the
reactive power controller are provided in [15, 16].

The non-windup (anti-windup) limits on the PI block in the centre of Figure 3 are driven
by the non-windup Pmax/Pmin limits associated with the Pord lag block. The model docu-
mentation stipulates that:

(i) If Pord is on its Pmax limit and ωerr (the input to the PI block) is positive, then the
Kitrq-integrator is blocked, i.e., the state Tω of that integrator is frozen.

(ii) If Pord is on the Pmin limit and ωerr is negative, then the Kitrq-integrator state is frozen.

This form of non-windup limit is unusual, though a precedence can be found in Annex E.5 of
IEEE Standard 421.5-2005 [21]. It will be shown in Section 2.3 that such non-windup logic
can result in switching deadlock [22].

The function f(Pgen) is typically modelled as a piece-wise affine function. WECC default
parameters, which are provided in Appendix C, produce the curve shown in Figure 4.
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Assembling all the equations for the model gives,

dωref
dt

=
1

Tsp

(
f(Pgen)− ωref

)
(1)

dTω
dt

= Kitrq(ω − ωref )× yfreeze (2)

dPord
dt

= Pord,rtlm × ymx,sw × ymn,sw (3)

Pord,rate =
1

Tpc

(
ω
(
Tω +Kptrq(ω − ωref )

)
− Pord

)
(4)

together with the switched equations (97)-(100) that are given in Appendix A.
The value of the model (1)-(4) and (97)-(100) is that it provides a precise, unambiguous

description of dynamic behaviour. This level of detail is vitally important for analyzing the
model idiosyncracies that are discussed in later sections.

2.2.2 Pitch control model WT3P

The pitch control model WT3P is shown in Figure 5. Of particular interest is the implemen-
tation of the non-windup limiter on the pitch angle θ. As stated in the model documentation,

“The Pitch Control and Pitch Compensation integrators are non-windup integrators as
a function of the pitch, i.e., the inputs of these integrators are set to zero when the
pitch is in limits (PImax or PImin) and the integrator input tends to force the pitch
command further against its limit.”

To illustrate, consider the case where θ is on its lower limit PImin. A negative input to
the pitch-control integrator would cause the corresponding state xp to reduce, which in turn
would force θ further against its PImin limit. To prevent that wind-up effect, the integrator
is blocked under such conditions. Similarly, the pitch-compensation integrator is blocked
when its input is negative. When θ is on its upper limit PImax, blocking of the up-stream
integrators occurs when their respective inputs are positive.

This blocking philosophy is the same as that employed in the converter control model
WT3E, as discussed in Section 2.2.1. It should again be mentioned that such blocking can
result in switching deadlock. This will be explored in Section 2.3.

The equations describing the WT3P model can be written,

dxp
dt

= Kip

(
ω − ωref

)
× yfr,1 (5)

dxc
dt

= Kic

(
Pord − Pset

)
× yfr,2 × ysw (6)

dθ

dt
= θrtlm × ymx,sw × ymn,sw (7)

θrate =
1

TPI

(
θcmd − θ

)
(8)

θcmd = xp + xc +Kpp

(
ω − ωref

)
+Kpc

(
Pord − Pset

)
(9)

along with the switched equations (101)-(106) that are provided in Appendix B.
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2.2.3 Wind turbine model WT3T

The single-mass wind turbine model WT3T from [15, 16] is shown in Figure 6. A two-mass
model is also provided in [15, 16], but the single-mass model suffices for the discussions in
this chapter. The model consists of two parts, 1) a simplified model of the aerodynamic
relationship between blade pitch θ and mechanical power Pmech, and 2) a model of the shaft
dynamics. The damping constant D is always zero, so the single-mass WT3T model can be
described by,

dω

dt
=

1

2Hω

(
Pmech − Pgen

)
(10)

Pmech = Pmo −Kaeroθ
(
θ − θo

)
. (11)
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2.2.4 Hybrid system model

It is clear from (1)-(11) and (97)-(106) that the WTG model is composed of:

i) Differential and algebraic equations that describe continuous behaviour of the associated
states, and

ii) Discrete events that introduce nonsmooth behaviour through switching actions.

Models that involve such interactions between continuous dynamics and discrete events have
become known as hybrid dynamical systems [18, 19, 20]. The discrete events introduce rich
forms of behaviour that are not exhibited by smooth systems described by differential (and
possibly coupled algebraic) equations. In fact, it will be shown in Section 2.3 that both the
WT3E and WT3P models are susceptible to switching deadlock, where a discrete state should
simultaneously take two different values. This situation is impossible, of course; the trajectory
is not defined (in the usual sense) beyond such an impasse.

The WTG model (1)-(11), (97)-(106) has been formulated according to the differential-
algebraic impulsive switched (DAIS) structure described in [20, 23]. A subtle (but technically
important) modification was required however. In the original DAIS definition, switched
algebraic equations had the form

0 =

{
g+(x, y), ys > 0

g−(x, y), ys < 0

where behaviour is undefined if the trigger variable ys remains at zero. In the case of a WTG
though, it is quite common for the pitch angle θ to be initialized on its lower limit PImin.
To cater for that (and similar) situations, the DAIS definition has been altered to allow the
trigger variable ys to remain at zero, giving the slightly modified switching description,

0 =

{
g+(x, y), ys ≥ 0

g−(x, y), ys < 0.

In the case of the non-windup limits within the WTG model, (98)-(99) and (102)-(104),
it has been arbitrarily decided that the integrator should remain active when its state lies on
the limit, i.e., when the trigger variable ys = 0. The integrator only becomes blocked when
the input seeks to force the state across the limit, resulting in ys < 0.

Technical issues arise when an equilibrium point coincides with a switching condition
ys = 0. If the equilibrium is asymptotically stable, then generically, as the trajectory ap-
proaches the equilibrium point, the time between subsequent switching events will progres-
sively diminish. In the limit, switching will (theoretically) become infinitely fast. Also,
linearization about the equilibrium point is not defined, as the vector field is not smooth.
Consequently, small disturbance analysis is not possible. This latter point is explored further
in Section 2.5.

2.3 Trajectory deadlock

2.3.1 Background

Conceptually, deadlock refers to the situation where a trajectory encounters a condition that
precludes further progress. Such behaviour is unusual for systems described by continuous
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dynamics1, though differential-algebraic systems can experience deadlock in the form of alge-
braic singularity2 [25, 26].

Hybrid dynamical systems, on the other hand, are more prone to deadlock, due to their
inherent interactions between continuous dynamics and discrete events. In this context, dead-
lock has been formally defined in [22]. The form of deadlock of particular relevance to WTG
modelling is known as chattering Zeno, which refers to situations where “the discrete compo-
nent infinitely jumps instantaneously between different domains, while the continuous com-
ponent remains unchanged” [22]. Subsequent sections describe this behaviour in the context
of the type-3 WTG model, and provide an alternative model formulation that alleviates the
deadlock phenomenon.

It should be noted that because deadlock precludes continuation of a trajectory, numerical
simulation techniques that accurately capture hybrid system dynamics cannot proceed beyond
the deadlock point. Conversely, simulators that continue through deadlock cannot be truly
implementing the hybrid system model. Special techniques have been developed for continuing
approximate solutions beyond deadlock, with Filippov solution concepts forming the basis for
those methods [27]. Such concepts are required, for example, in analyzing sliding mode
behaviour [28]. They are not pursued in this chapter.

2.3.2 Deadlock in WTG models

The switching logic that gives rise to trajectory deadlock in the type-3 WTG model can be
explained with the aid of the simplified model of Figure 7. Referring to Figure 5, it can be
seen that this reduced model is equivalent to the output lag block and one of the upstream
PI regulators of the WT3P model.

Consider the case where x1 is on its lower limit xmin, and the input u is negative. Ac-
cording to the non-windup logic of WT3P, the x2-integrator would be blocked. Assume that
u is increasing, though remains negative. This increase in u will translate directly into an
increase in y, as x2 is constant. With increasing y, conditions conducive to deadlock occur
when y reaches x1 = xmin. This may be explained by noting that ẋ1 = (y−x1)/T , and hence
ẋ1 = 0 at the point where y encounters x1 = xmin. The evolution of x1 from that point is
therefore governed by ẍ1, which can be written

ẍ1 =
1

T
(ẏ − ẋ1) =

1

T
ẏ =

1

T
(u̇+ ẋ2).

1Technically, deadlock cannot occur if the vector field is Lipschitz [24].
2In this case, the term impasse is often used rather than deadlock.
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If the x2-integrator is blocked, ẋ2 = 0, giving ẍ1 = 1
T u̇ > 0 because u is increasing. In this

case, x1 will tend to increase away from the xmin limit, and the x2-integrator will become
unblocked. On the other hand, if the x2-integrator is unblocked, the sign of ẍ1 is given by
u̇+ ẋ2 = u̇+Ku, which may be negative. If so, x1 will tend to decrease onto the xmin limit,
blocking the x2-integrator. A contradiction arises: if the x2-integrator is blocked it should
unblock, but if it’s unblocked it should block.

Returning to the type-3 WTG model, this deadlock phenomenon can be illustrated using
the WECC test system and default parameters that are provided in Appendix C. Resulting
trajectories are shown in Figure 8. For the sake of clarity, only the pitch-compensation
integrator will be discussed, though the pitch-control integrator exhibits similar behaviour.
It should be noted that in order to generate the trajectories shown in Figure 8, it was necessary
to introduce hysteresis into the switching process associated with the pitch angle non-windup
limit. The implementation of hysteresis is discussed in Section 2.3.3.

The pitch angle θ is initially in steady-state on the lower non-windup limit, where θ0 =
PImin = 0 deg. In response to the disturbance, θ undergoes a transient increase, before return-
ing to PImin at 5.6 sec. The error signal xc,err = Pord − Pset driving the pitch-compensation
integrator is negative at that time, so the corresponding state xc is frozen. Over the subse-
quent period, θ and xc remain frozen, but the signal θerr = θcmd − θ, which drives variations
in θ, steadily increases until reaching zero3 at around 7 sec. At that point, θ should transi-
tion from blocked to unblocked, so the pitch-compensation integrator driving xc should also

3The hysteresis implementation actually allows θerr to rise a little beyond zero before the xc-integrator is
unblocked. Further details are provided in Section 2.3.3.
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unblock. But notice that xc,err is negative, so as soon as the integrator unblocks, xc will
decrease, driving θerr negative. This forces θ back onto its PImin limit, blocking xc again.
But with xc blocked, θerr increases above zero, and xc is unblocked. Without hysteresis, this
process would repeat ad infinitum.

In summary, at the point where θerr encounters zero,

• If θ is blocked, then θ and xc should unblock.

• If θ is unblocked, then θ and xc should block.

In other words, at the instant when θerr = 0, the discrete state describing integrator block-
ing undergoes infinitely many switches, preventing the continuation of the trajectory. This
impasse can be circumvented by implementing hysteresis in the blocking/unblocking process,
as described in the following section.

It should be mentioned that this example was not concocted to highlight deadlock, but
is just the WECC test system with default parameters [15, 16]. Similar behaviour has been
observed in studies of numerous other systems, suggesting deadlock situations are not uncom-
mon. It should be kept in mind, though, that this is an artifact of the simplified modelling,
and is not observed in real WTGs.

2.3.3 Implementation of hysteresis

The explanation of hysteresis will refer to Figure 9. This is an expanded view of the relevant
time interval of Figure 8. In order to provide a clearer view of behaviour, however, the
hysteresis band has been widened from 0.002 in Figure 8 to 0.05 in Figure 9.

At 6.85 sec, the error signal θerr crosses through zero. Upon doing so, the integrator
driving the pitch angle θ is unblocked, so θ begins to increase. At 7.3 sec, θ encounters the
hysteresis threshold, whereupon the pitch-compensation integrator is unblocked. The error
signal xc,err driving that integrator is negative, as shown in Figure 8, so xc immediately begins
to reduce. This causes θerr to reduce. Eventually θerr goes negative, and θ begins to fall,
encountering the non-windup limit PImin = 0 at 7.6 sec. When that limit is encountered, θ
and xc are immediately blocked, so θerr again begins to increase. The process then repeats.
The actual implementation of the hysteresis logic is presented in [29].

The width of the hysteresis band ε influences behaviour during the deadlock period, but
has little effect on the subsequent trajectory. This influence was explored using trajectory
sensitivities [30]. Figure 10 shows the sensitivity of the θ and xc trajectories to a one percent
change in the nominal width ε = 0.002 of the hysteresis band. It can be seen that the effect
of the perturbation in ε accumulates over the deadlock period, but subsequently decays very
quickly. Choosing a suitable value for ε results in a tradeoff between the magnitude of the
chatter during the deadlock period versus the number of switching operations.

2.4 Equilibrium conditions

2.4.1 Initialization

For the initial point to be in equilibrium, the derivatives in (1)-(3), (5)-(7) and (10) must
be set to zero. Notice though that because (2) and (5) are effectively duplicate integrators,
they both contribute exactly the same equilibrium equation, ω − ωref = 0. The redundant
equation will be ignored when assembling the complete set of initialization equations.
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The status of the switched equations must also be consistent with equilibrium conditions.
It is safe to assume that none of the limits in the converter control model WT3E would be
active during normal steady-state operation. Under that assumption, Pord will equal the
electrical power Pgen delivered to the WTG terminal bus. This relationship will be used to
eliminate Pgen from the equilibrium equations.

In the case of the pitch control model WT3P, limits may be active at steady-state. For
wind conditions up to rated wind-speed, the pitch angle θ would normally sit at its minimum
limit PImin. Blocking the associated integrator would, however, leave the initial value of
θcmd undefined. The initialization process must therefore override integrator blocking, or
equivalently, assume θ lies infinitesimally above the PImin limit.

The pitch compensation non-windup limiter of WT3P has the equilibrium characteristic
shown in Figure 11. If the input Pord − Pset < 0 at steady-state, then xc will be forced to its
lower limit of zero. On the other hand, if Pord − Pset = 0 at steady-state, then xc may take
any non-negative value. Summarizing this relationship gives,

xc ≥ 0, Pset − Pord ≥ 0, xc(Pset − Pord) = 0,

which is a complementarity condition [31, 32] that can be expressed compactly using standard
notation,

0 ≤ xc ⊥ (Pset − Pord) ≥ 0. (12)

The resulting initialization equations can be written,

0 = f(Pord)− ωref (13)

0 = ω − ωref (14)

0 = ωTω − Pord (15)

0 = Pmo −Kaeroθ
(
θ − θo

)
− Pmech (16)

0 = Pmech − Pord (17)

0 = xp + xc +Kpc

(
Pord − Pset

)
− θcmd (18)

0 = θcmd − θ (19)

together with (12). The dependent state variables are ωref , Tω, Pord, xp, xc, θ, ω, θcmd and
Pmech, while Kaero, Kpc, Pmo and Pset are parameters. By definition, θo is the specified initial
value for the pitch angle θ, thereby providing a further initialization equation,

θ − θo = 0. (20)
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Because Pmo and Pset are independent parameters, it is important to consider initialization
for the three cases, Pmo < Pset, Pmo = Pset and Pmo > Pset. To do so, first notice that
(16)-(17) and (20) together infer Pmo = Pord at initialization. Therefore, for the case Pmo =
Pord < Pset, the complementarity condition (12), expressed visually in Figure 11, ensures that
xc = 0. In the second case, when Pmo = Pord = Pset, (12) only specifies that xc ≥ 0. It follows
that the initialization description consists of only eight independent equations describing nine
variables. The set of equations is under-determined. This can be confirmed by noting that
xc and xp appear only in (18), and therefore cannot be uniquely determined. To resolve this
situation, (12) should be replaced at initialization by an equation that assigns a specific initial
value to xc or xp. For consistency with the Pmo < Pset case, it is convenient to replace (12)
by

xc = 0. (21)

The third case Pmo = Pord > Pset implies the integrator would be driven by a sustained
positive input. The WT3P model does not define an upper limit though, so equilibrium could
not be achieved.

2.4.2 Post-disturbance steady-state

For well-posed dynamical models, the post-disturbance steady-state should match the pre-
disturbance (initial) equilibrium when pre- and post-disturbance parameter sets are identical.
This is generically not the case for the WECC type-3 WTG model. The following analysis
shows that this unusual behaviour is due to switching associated with the duplicate integrators
(2) and (5).

The initialization equations (12)-(19) govern post-disturbance steady-state conditions, as
they were obtained by setting derivatives to zero. Initialization also made use of the auxiliary
equation (20), but that equation plays no role as the system evolves towards steady-state. As a
consequence of discarding (20), the description of steady-state conditions is under-determined.

This indeterminacy is resolved when the duplicate integrators (2) and (5) remain un-
blocked for the entire time horizon. In that case, the integrator states can be written in
integral form,

Tω(t) = T oω +Kitrq

∫ t

0

(
ω(τ)− ωref (τ)

)
dτ (22)

xp(t) = xop +Kip

∫ t

0

(
ω(τ)− ωref (τ)

)
dτ (23)

where T oω and xop are the initial values for the respective states. Equating the integrals in (22)
and (23) gives the affine relationship,

xp(t) =
Kip

Kitrq
Tw(t) +

(
x0
p −

KipT
0
w

Kitrq

)
(24)

which implies that any variation in Tω(t) will be matched by a corresponding variation in
xp(t). This relationship provides the extra equation required to uniquely determine the post-
disturbance steady-state, and in fact implies that if all parameters remain unchanged, the
system will evolve to a steady-state that exactly matches the initialization point.

The assumption that the duplicate integrators remain unblocked for all time is seldom
true, however. Blocking of one or other of the integrators will alter the corresponding integral
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Figure 12: Large-disturbance response of pitch angle θ.

term in (22) or (23), invalidating the relationship (24). Under such conditions, it becomes
impossible for both Tω and xp to evolve back to their initial values. Consequently, the system
will settle to a post-disturbance steady-state that cannot equal the initial point, even though
the parameters of the system are unchanged.

The WECC test system and default parameters of Appendix C illustrate this phenomenon.
The pitch angle response of Figure 8 is repeated in Figure 12, where the time horizon has
been extended to 30 seconds. Notice that the pitch angle evolves to a steady-state value of
0.33 deg, even though it was initialized at 0 deg.

Figure 13 shows the relationship between Tω and xp. These two states initially follow a
straight line given by (24), with the states reaching the extreme point (Tω, xp) = (0.847, 0.56),
before returning along the line to (0.835, 0.08). At that instant, the pitch angle θ encounters
its limit, causing the integrator driving xp to block. The integrator remains blocked until θ
enters a period where hysteresis is active. During that period, the xp-integrator successively
blocks and unblocks, giving rise to the staircase phenomenon apparent in the figure. At
the end of that period, θ finally comes off its limit, the xp-integrator is restored to normal
operation, and the behaviour of Tω and xp reverts to a straight-line locus given by an affine
relationship like (24). The slope over that final section is the same as earlier, but the offset
has changed. Hence the system converges to a steady-state that differs from the starting
equilibrium point.

As was the case with deadlock, this situation is a consequence of simplified modelling, and
does not occur in actual WTGs.

19



0.82 0.825 0.83 0.835 0.84 0.845 0.85
−0.1

0

0.1

0.2

0.3

0.4

0.5

State Tω(t)

S
ta

te
 x

p(t
)

Initial equilibrium

Final steady−state

Figure 13: Relationship between Tω(t) and xp(t).

2.5 Small disturbance analysis

2.5.1 Singularity

Linearizing the WTG equations (1)-(11) about an equilibrium point, and eliminating the
algebraic equations, yields the seventh-order linear model,

d

dt



∆ωref

∆Tω
∆Pord

∆xp
∆xc
∆θ
∆ω


=



a11 . a13 . . . .
a21 . . . . . a27
a31 a32 a33 . . . a37
a41 . . . . . a47
. . a53 . . . .
a61 . a63 a64 a65 a66 a67
. . a73 . . a76 .





∆ωref

∆Tω
∆Pord

∆xp
∆xc
∆θ
∆ω


(25)

where the aij refer to elements of the system A-matrix that are potentially non-zero, while all
other elements are identically zero. The exact arrangement of the non-zero aij is dependent
upon the status of limits.

As in Section 2.4, it is assumed that none of the limits in the converter control model
WT3E are enforced at steady-state, and that pitch angle θ dynamics are active. In the case
of the pitch compensation xc-integrator, its dynamics may be active at steady-state or the
limiter may be enforced, as indicated in Figure 11. Both situations must be considered.

The initial value θo for the pitch angle also has an important influence on the linear model.
When (11) is linearized with θo = 0, the term associated with the simplified aerodynamic
model becomes zero. In that case, perturbations in the pitch angle θ have no influence
on Pmech, and as a consequence a76 = 0 in (25). On the other hand, when θo 6= 0, the
aerodynamic model contributes a non-zero term to (11), resulting in a76 6= 0.
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In considering the various cases identified above, it should be kept in mind that (2) and
(5) are duplicate integrators. Because these integrators differ only by a scaling factor, the
corresponding rows of the A-matrix, 2 and 4 respectively, are linearly dependent. Therefore
A must have at least one eigenvalue whose value is zero.

The two conditions for the xc-integrator, together with the two possibilities for θo, give
four separate cases:

Case 1: xc-integrator active, θo 6= 0. The condition θo 6= 0 implies a76 6= 0, so all the aij
shown in (25) are non-zero. The A-matrix has a single zero eigenvalue due to the
linear dependence of rows 2 and 4, which correspond to the duplicate integrators. By
inspection, columns 4 and 5 are linearly dependent, implying that the right eigenvector
associated with the zero eigenvalue involves only ∆xp and ∆xc. Substituting that zero-
eigenvector4 into (25) gives a matrix-vector product that is zero. Hence, the linear
system will be in steady-state at any point along the zero-eigenvector.

Case 2: xc-integrator active, θo = 0. In this case θo = 0 so a76 = 0. By inspection, rows 5
and 7 are linearly dependent, as well as rows 2 and 4, implying the system now has
two eigenvalues that are zero. This second zero-eigenvalue is a consequence of pitch
angle ∆θ being decoupled from mechanical power ∆Pmech when θo = 0 in the simplified
aerodynamic model. With a76 = 0, columns 4, 5 and 6 are clearly linearly dependent.
The two zero-eigenvectors in this case involve ∆xp, ∆xc and ∆θ. The linear system will
be in steady-state at any point on the plane spanned by the two zero-eigenvectors.

Case3: xc-integrator blocked, θo 6= 0. Blocking the xc-integrator implies ∆xc ≡ 0. Accord-
ingly, the fifth row and column of the A-matrix should be removed, reducing the lin-
earized system to six dynamic states. The linear dependence of rows 2 and 4 is unaffected
by this reduction, so one of the eigenvalues remains zero. Because a76 6= 0, no simple
pairing of columns produces linear dependence. In fact, linear dependence involves
all the columns of the reduced A-matrix. Accordingly, the zero-eigenvector includes a
contribution from all six states of the reduced model.

Case 4: xc-integrator blocked, θo = 0. This case also has ∆xc ≡ 0, so the A-matrix is again
reduced. Because θo = 0, the element a76 = 0, and by inspection the columns corre-
sponding to ∆xp and ∆θ are linearly dependent. The zero-eigenvector therefore involves
only ∆xp and ∆θ.

2.5.2 Eliminating the zero eigenvalue

It is possible to eliminate the zero eigenvalue caused by integrator duplication by exploiting
the explicit coupling between integrator states Tω and xp given by (24). Linearizing that
affine relationship gives

∆xp(t) =
Kip

Kitrq
∆Tw(t). (26)

In the linearized model (25), removing the row corresponding to ∆xp, and replacing all
occurrences of ∆xp by (26), reduces the system dimension by one. It can be shown that
the remaining eigenvalues are exactly the same as the original non-zero eigenvalues. If those

4For convenience, the right eigenvector associated with the zero eigenvalue will be referred to as the zero-
eigenvector.
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original non-zero eigenvalues all have negative real parts, as is generically the case, the system
will be exponentially stable.

Even though the linear model has a continuum of equilibria defined by the zero-eigenvector,
perturbations that satisfy (26) will induce behaviour that returns to the original equilibrium
point. On the other hand, perturbations that do not satisfy (26) will result in convergence to
points on the zero-eigenvector that generically differ from the original point.

2.5.3 Linearizing at limits

Linearization about an equilibrium point requires the dynamical system to be smooth in a
neighbourhood of that point. With hybrid dynamical systems, such as the WTG model,
equilibria may coincide with conditions that induce switching. In such cases, it is impossible
to find a neighbourhood of the equilibrium point where the dynamical system is smooth.
Linearization is therefore not well defined.

Consider the pitch compensation xc-integrator, whose equilibrium characteristic is pro-
vided in Figure 11. Linearizing about an equilibrium point anywhere on the vertical or
horizontal sections of the characteristic, away from the transition point at the origin, is well
defined and discussed in Section 2.5.1. At the origin, however, switching will occur as per-
turbations in xc transition from positive to zero. To establish a linear model at this point,
switching must be disabled. The xc-limit may be ignored, so the origin behaves like a point
on the vertical characteristic, or it may be enforced, in which case the origin will act like a
point on the horizontal characteristic. It is important to note that the two cases will result
in different linear models, and hence eigen-structures that differ. Neither is strictly correct,
and results must be interpreted with great care.

A similar discussion applies for the pitch angle θ dynamics. As mentioned in Section 2.4.1,
it is common for θ to be initialized on its lower limit PImin. A choice must be made whether
to treat the integrator as active or blocked. The analysis of Section 2.5.1 was based on the
assumption that the integrator was active.

The ill-defined nature of linearization at a switching point is particularly important for
analysis packages that use finite differences to generate approximate derivatives. Care must
be taken to ensure that differences are calculated using perturbations that are physically
meaningful. Otherwise the linear model may be quite inaccurate.

2.6 Conclusions

The dynamic behaviour of type-3 WTGs is governed by interactions between a wound-rotor
induction machine and a back-to-back inverter. The inverter response time is much faster
than the time constants of the induction machine, allowing the inverter to respond rapidly to
the electromechanical dynamics of the WTG. Consequently, the dynamic characteristics of
a type-3 WTG that are important from the grid perspective are dominated by the response
of controllers that regulate active power, pitch angle and terminal voltage. These controllers
involve interactions between continuous dynamics of state variables and discrete events that
occur when limits are encountered. WTGs may therefore be classed as hybrid dynamical
systems.

Non-windup limits within the WECC type-3 WTG model have been structured so that
various integrators are blocked when a limit is encountered. The interactions inherent in
this model structure can be quite complex, and may lead to a form of trajectory deadlock
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known as chattering Zeno. Deadlock precludes continuation of the trajectory in the normal
sense, so numerical simulation techniques that accurately capture hybrid system dynamics
cannot proceed beyond such a point. Filippov solution concepts are required for continuing
the trajectory. It has been shown that deadlock can be eliminated by incorporating hysteresis
into the switching of non-windup limits.

The converter controller and the pitch controller of the WECC type-3 WTG model both
include an integrator that is driven by the same frequency error signal. This integrator
duplication results in an under-determined description of steady-state conditions, allowing
the existence of a continuum of equilibria. As a consequence, power systems that incorporate
WTGs may converge to a post-disturbance steady-state that does not match initial conditions,
even though the parameter set has not changed. Furthermore, the duplicate integrators result
in linearly dependent rows in the linearized WTG model, so the system is singular. Small
disturbance analysis of power systems with WTGs will yield at least one zero-eigenvalue for
every WTG.
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3 Wind-Farm Reactive Support and Voltage Control

3.1 Introduction

Utility-scale wind generation facilities should be capable of regulating voltage through the
provision of dynamic reactive support [33]. Wind-farms, however, are comprised of many
distributed [34] wind turbine generators (WTGs) and therefore exhibit behavior that is vastly
different to that of traditional large generators. Nevertheless, from a power system operational
point-of-view, wind-farms should offer voltage controllability that is consistent with other
forms of generation.

The voltage regulating capability of WTGs varies with generator technology and manu-
facturer [35]. Type 1 and 2 WTGs are based on induction generators, and have no inherent
voltage controllability. Type 3 and 4 WTGs involve power electronic converters, which offer
the ability to regulate reactive power, and hence achieve voltage control. For various reasons,
this capability is often not utilized in type 3 WTGs. Rather, they are often operated at unity
power factor. When reactive power regulation is enabled, WTG reactive power set-points are
usually coordinated by a central controller that determines a desirable schedule for all WTGs
within the wind-farm.

Wind generation installations typically include a substation that establishes the intercon-
nection between the collector network and the grid. These substations incorporate a variety
of equipment to regulate voltage, including capacitors, tap-changing transformers, STAT-
COMs and static VAr compensators (SVCs). This equipment should be used in the most
efficient way to meet operational requirements, though there are often multiple conflicting
goals. Furthermore, the interactions between devices can be difficult to predict.

This chapter considers three aspects of reactive power control. Of initial interest is the
ability of WTGs to provide reactive power support. It is demonstrated that voltage constraints
in the collector network limit the total amount of reactive power that can be supplied to the
grid. Consequently, the available reactive power at the collector bus is often much less than
the specified capability.

Secondly, the stability of the voltage control system is considered. Each device has its
own independent controller. These independent control laws can interact to create unexpected
or unstable behaviour. Tap-changing transformers are especially vulnerable. This problem
is addressed analytically for a simple system to generate threshold criteria for acceptable
behaviour.

The third major issue is the high-level, long-term control of the wind-farm reactive support
devices. It is desirable to treat all equipment as an integrated system rather than indepen-
dent devices in order to meet cost, maintenance, fault tolerance, or other requirements. This
strategic control updates slowly (minutes) and involves some form of planning for the hours or
days ahead. This is a challenging problem because the optimal decisions are time-dependent.
Both the current state of the system and the future demands and requirements must be known
to arrive at an optimal solution. Controllers are designed with various levels of future infor-
mation to study the relative importance of forecasting and future estimation. Deterministic
and stochastic dynamic programming are used to develop optimal control algorithms.

The chapter is organized as follows: Section 3.2 describes the example wind-farm used in
the analysis. Section 3.3 studies the amount of reactive power that can be provided by the
WTGs to the collector bus. Section 3.4 undertakes an analytical investigation to determine
when the voltage gain of a tap-changing transformer will unexpectedly change sign, that is,
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Figure 14: A generic wind-farm layout.

when increasing the tap ratio will decrease the high-side voltage. Section 3.5 analyzes the
case where interactions between a tap-changing transformer and a reactive current source
can cause instability. Section 3.6 studies the substation-level control problem associated with
meeting high-level long-term goals. Finally, conclusions are presented in Section 3.7.

3.2 System Layout and Problem Motivation

A schematic layout of a generic wind-farm is depicted in Figure 14. Turbines may have
some form of shunt compensation and a step-up transformer (buses 4 and 5) connecting to a
collector system (L3) that transmits power to a substation (buses 2 and 3). Many turbines
are connected through a single substation, which typically contains switched capacitors for
passive reactive power support, as well as controllable reactive support in the form of SVCs or
STATCOMs. A step-up tap-changing transformer T2 connects the substation to the higher-
voltage grid, with the strong grid modelled as the infinite bus 1. The various devices associated
with buses 2 and 3 are physically located in the same substation, and provide overall reactive
power support for the wind-farm.

While the overall layout of the wind-farm is shown in Figure 14, the following sections focus
on particular aspects of the reactive power control, and will make simplifying assumptions.
Section 3.3 analyzes the collector grid, and Sections 3.4-3.6 focus on the substation. Each
section specifies the particular model under consideration.

3.3 Collector system impact on reactive power availability

Type 3 and 4 WTGs employ power electronic converters that allow production or absorption
of reactive power. Many WTGs are capable of operating over a power factor range of 0.95
lagging (generating reactive power) to 0.95 leading (absorbing reacting power) at full active
power output, for example. Manufacturers specify active/reactive capability curves for their
WTGs to describe their exact operational characteristics. Often wind-farm developers use
those capability curves directly to determine the total reactive power available at the point
of interconnection. Whilst such calculations take into account losses on the collector system,
they tend not to consider voltage rises/falls across the collector feeders and WTG step-up
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Figure 15: Example wind-farm topology.

transformers. The following discussion shows that as a result, the total reactive power (both
lagging and leading) that’s available at the collector bus tends to be overstated.

In discussing the restrictions on reactive power that arise due to collector bus voltages, it
is convenient to refer to the example system shown in Figure 15. For clarity, the figure does
not show the step-up transformers associated with each WTG, though those transformers
have been included in the analysis. Also, the discussion focuses on reactive power production
(WTGs operating in lagging power factor), though a similar argument holds for reactive
power absorption (leading power factor).

Consider a process where the reactive power output from all WTGs is increased simulta-
neously. This could be achieved by a central controller sending every WTG a reactive power
set-point Qset. With Qset = 0, none of the WTGs would be at their voltage limits, so all
could respond to a change in the set-point ∆Qset. The example system consists of 19 WTGs,
so the total change in reactive power supplied to the collector bus would be approximately
19 × ∆Qset. (Losses would change by a small amount.) As Qset increases, voltages across
the collector system will increase, with the most dramatic increases occurring at the remote
ends of radial feeders. Eventually those WTGs at the ends of feeders will encounter their
upper voltage limits. To ensure the voltage limit is not exceeded, protection overrides the
Qset set-point. Reactive power output can no longer increase with increasing Qset, and in fact
may fall to ensure the voltage does not rise above the limit. As Qset continues to increase,
more and more WTGs will reach their upper voltage limits, preventing further increase in
their reactive power output.

The process described above was simulated using a continuation power flow. Results of
this process, for the example system of Figure 15, are presented in Figure 16. Each curve in
the figure corresponds to a different, randomly chosen, set of active power generation values
for the WTGs. It can be seen that the reactive power output saturates in every case. For
small Qset, the slope of each curve is close to 19, the number of WTGs. However, as Qset
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Figure 16: Variation of total reactive power with set-point Qset.

increases, and WTGs progressively encounter their voltage limits, the slope steadily decreases.
Eventually all WTGs are on voltage limits, and further increases in Qset have no effect.

For this example, all WTGs are rated to produce 1.65 MW at 0.95 power factor (lagging
and leading), which corresponds to maximum reactive power of 0.54 MVAr per turbine. This
suggests the WTGs should be capable of supplying total reactive power of around 19×0.54 =
10.3 MVAr. In fact, based on Figure 16, the maximum available reactive power is actually
less than 6.5 MVAr, and may be as low as 3.7 MVAr. The restriction is due to each WTG’s
upper voltage limit of Vmax = 1.1 pu.

Wind-farms that include long radial feeders are most prone to saturation in total reactive
power output. The effect is less significant for short feeders. Clearly, the collector system
topology must be taken into account when assessing the total reactive power available from
WTGs.

3.4 Transformer tap-changing gains

3.4.1 Background

It is not uncommon for step-up transformers associated with traditional generators to be used
to regulate their high-side bus voltage. In a similar way, numerous wind-farms have sought
to use the tap-changing capability of their collector transformers to regulate the voltage at
the (high voltage) point of interconnection. It has been observed, though, that such tap
changing may exhibit unstable behaviour, with the transformer tapping to an upper or lower
limit and remaining there. Consequently, tapping-based voltage regulation is disabled in most
wind-farms.
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Figure 17: Power system for analyzing tap-changing dynamics.

In the following analysis, the simple power system of Figure 17 will be used to explore
the nature of tap-changing instability, and to suggest sufficient conditions for ensuring stable
behaviour. Given the tapping arrangement shown in Figure 17, the voltage regulator requires
dV2
dn > 0 for correct operation, i.e., it is assumed that an increase in tap raises the voltage on

the high-voltage (tapped) side of the transformer. The following analysis shows that such a
condition is not always satisfied.

3.4.2 Passive voltage support

Initially consider the case where the wind-farm has zero output, and the only device connected
to the collector bus is a capacitor C. The injected current is given by

I3 = −jBV3

where B = ωC is the capacitive susceptance. Simple circuit analysis yields

V2 =
1

1− X1B
n2(1−BX2)

× V1. (27)

In per unit, it is normal for BX2 � 1. This allows (27) to be simplified, giving

V2 =
1

1− X1B
n2

× V1. (28)

Assuming constant susceptance B, differentiating gives

dV2

dn
= − 2nX1BV1

(n2 −X1B)2
. (29)

With capacitance connected to the collector bus, susceptance B is positive. It follows that
dV2
dn < 0, implying that tap changing is unstable. Capacitance is commonly connected to the

collector bus to provide power factor correction and reactive support. Furthermore, when an
SVC is at its capacitive limit, it is effectively just a capacitor.
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Figure 18: Curves of V2 versus n for various values of capacitive and inductive susceptance.

Notice that if shunt reactors (inductors) are connected to the collector bus, then the
susceptance becomes B = − 1

ωL . According to (29), dV2
dn > 0 in this case. It follows that the

tap changer would operate correctly to achieve voltage regulation. Figure 18 shows plots of
V2 versus tap position n for the system shown in Figure 17, with various levels of capacitive
and inductive susceptance. The slopes of the curves are in agreement with (29).

The simplified analysis above assumed zero active power production from the WTGs. To
explore this effect, active power of 1.0 pu, at unity power factor, was injected by the WTGs
into the collector bus. The continuation power flow cases of Figure 18 were repeated with
this power injection, and are shown in Figure 19. Notice that the conclusions drawn in the
prior analysis remain true:

capacitive susceptance ⇒ dV2

dn
< 0

inductive susceptance ⇒ dV2

dn
> 0.

When STATCOMs encounter a limit, they act as a current source. It is therefore useful
to consider the case of a reactive current source

I3 = jÎ3 (30)

injecting current into the collector bus. Note that Î3 > 0 for an inductive source (reactive
power delivered from the grid to the STATCOM), with Î3 < 0 for a capacitive source (reactive
power delivered from the STATCOM to the grid.) Again, simple circuit analysis yields

V2 = V1 −X1
Î3

n
(31)
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Figure 19: Curves of V2 versus n taking into account WTG active power production.

and so
dV2

dn
= X1

Î3

n2
.

If the current source is inductive, dV2
dn > 0 and hence tapping-based voltage regulation will

operate correctly. However, if the current source is capacitive, dV2dn < 0, so tap-changer control
will go unstable. The continuation power flows of Figure 18 were repeated for these current
injection cases, with the results shown in Figure 20.

3.4.3 Active voltage support

Consider a reactive support device that injects voltage dependent current

I3(V3) = jÎ3(V3)

into the collector bus. It can be shown that in this general case, dV2
dn takes the form

dV2

dn
=
Î3(V3) + V3

dÎ3(V3)
dV3

n2

X1
+ dÎ3(V3)

dV3

. (32)

In the special case where reactive support is provided by a capacitor,

Î3(V3) = −BV3. (33)

Substituting this into (32) and simplifying gives (29), as expected. The advantage of (32),
though, is that more general forms of support may be considered.
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Figure 20: Curves of V2 versus n for various values of capacitive and inductive current injec-
tion.

1) STATCOMs: Assume a STATCOM has current limits of ±Īstat. (Recall the current
convention of Figure 17, which implies capacitive current is negative.) It is common for voltage
control to employ a droop characteristic, such that the current injected into the collector bus
is given by,

Istat =
Īstat
Dstat

(
V − V̄

)
(34)

where Dstat is the droop value (typically around 0.03-0.05), V̄ is the target voltage at zero
output, and V is the collector bus voltage. This yields full output when the voltage difference
exceeds the droop value. All quantities are in per unit.

With a fixed capacitor and a STATCOM at the collector bus, the total injected current
is,

Î3(V3) = −BV3 +
Īstat
Dstat

(
V3 − V̄

)
, (35)

and hence
dÎ3(V3)

dV3
= −B +

Īstat
Dstat

. (36)

From (32), positive (stable) dV2
dn requires that

Î3(V3) + V3
dÎ3(V3)

dV3
> 0. (37)

Substituting (35) and (36) into (37) and simplifying gives

−2BV3 +
Īstat
Dstat

(
2V3 − V̄

)
> 0.
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Exploiting the fact that V3 ≈ V̄ allows further simplification,

Īstat
Dstat

> 2B. (38)

For a capacitor, B > 0, implying Dstat > 0. Therefore, dV2
dn will be positive if

0 < Dstat <
Īstat
2B

. (39)

It is interesting that the STATCOM droop characteristic must over-compensate the ca-
pacitor to ensure dV2

dn > 0. To explore this result further, consider the situation if the droop

characteristic only just compensated the fixed capacitor, i.e., Īstat
Dstat

= B. According to (35),
the net current injection would be

Î3(V3) = −BV̄ , (40)

which is effectively a constant capacitive current. It was shown in Figure 20, though, that
dV2
dn < 0 for such a current injection. By requiring the condition (38), the inductive effect

of the droop characteristic overcomes the combined effects of the actual capacitor and the
“apparent” capacitive current source (40).

2) SVCs: SVCs introduce a variable susceptance B into the current injection equation (33).

With B functionally dependent upon V3, the derivative dÎ3
dV3

becomes,

dÎ3

dV3
= −B − V3

dB

dV3
. (41)

Substituting (33) and (41) into (37) gives,

−BV3 − V3

(
B + V3

dB

dV3

)
> 0

⇒ 2B + V3
dB

dV3
< 0

⇒ dB

dV3
< −2B

V3
. (42)

Assume an SVC has symmetric susceptance limits ±B̄svc, where capacitive susceptance is
positive. A typical droop characteristic has the form

Bsvc =
B̄svc
Dsvc

(
V̄ − V

)
(43)

where parameters are defined similarly to (34), and are again in per unit. If a fixed capacitor
with susceptance −Bfix is connected to the collector bus together with the SVC, then the
total susceptance is

B(V3) = Bfix +Bsvc(V3),

and
dB(V3)

dV3
= − B̄svc

Dsvc
.
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It follows from (42) that dV2
dn is positive (stable) when

B̄svc
Dsvc

>
2B

V3
.

To ensure this condition is satisfied over the full range of B(V3) requires that

B̄svc
Dsvc

>
2(Bfix + B̄svc)

V3
,

or rewriting,

0 < Dsvc <
V3B̄svc

2(Bfix + B̄svc)
.

3.5 Transformer Tap-Changing Dynamics

This section addresses a similar issue to Section 3.4, but now considers the system dynamics
rather than the steady-state condition. The results derived in Section 3.4 are “static” in that
they do not depend on time or the previous states of the system. There are no functions of
time or time derivatives.

Now consider the case where the tap-changing and voltage support controllers have their
own dynamics. Specifically, the controllers for tap-changing and reactive support are single
input single output (SISO) integral controllers that operate independently, as is typically the
case when control is isolated on each particular piece of hardware.

The main consideration is the relative speed between the two control loops. It will be
shown that if the tap-changing controller is sufficiently fast (aggressive) compared to the
reactive support, instability may result.

Using the same system considered in Section 3.4 and shown in Figure 17, assume a reactive
current injection into the collector bus as in (30). Voltage V2 is given by (31) and V3 is,

V3 =
V1

n
−X Î3(V3)

n2
. (44)

Let target voltages (set by the operator) at bus 2 and 3 be V̄2 and V̄3. For simplicity, as-
sume that continuous tap ratios are available. Then the independent SISO integral controllers
for the tap ratio n and the reactive power injection Î3 are,

ṅ = −kn(V2 − V̄2) (45)

˙̂
I3 = (V3 − V̄3). (46)

Normally, the speed of each control loop would be scaled by some gain. In this case, the
primary interest is stability and the important factor is the relative speed between the two
loops. Therefore, the gains are normalized by the gain of the reactive support loop (46),
leaving it with a gain of one. The gain kn (positive) in (45) represents the relative speed of
the two loops; increasing kn means that tap changing is becoming faster and more aggressive
relative to the reactive support.

To check the stability of the system, the dynamics are linearized about an equilibrium
point. For simplicity, assume that the desired set-points are V̄3 = 1 p.u., and V̄2 is a function
of the equilibrium tap ratio n̄. This leaves V̄2 = n̄V3 (e.g. n̄ = 1.05). At this equilibrium
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point, all derivatives will be zero and the system will remain there unless perturbed. Setting
the derivatives (45) and (46) equal to zero, and substituting (31) and (44),

ṅ = 0 = −kn(V1 −X
Î3(V3)

n
− V̄2) (47)

˙̂
I3 = 0 = (

V1

n
−X Î3(V3)

n2
− V̄3). (48)

An important distinction is the difference between a state (n or V2) and the linearization
point (n̄ or V̄2). A fixed equilibrium point, denoted by a bar, is selected to conduct the
linearization, but the system dynamics still evolve about that point.

Equations (47) and (48) are identical given the definition of V̄2 and may be solved for the
equilibrium current injection,

Î3(V3) = −n(n̄− 1)V1

X
(49)

completing the specification of the equilibrium point.
Taking the partial derivatives of (47) and (48), substituting (49) and assuming that V1 =

1 p.u. gives the linearized system dynamics,[
ṅ
˙̂
I3

]
=

1

n̄2

[
knn̄(n̄− 1) knn̄X

1− 2n̄ −X

] [
δn

δÎ3

]
, (50)

which has a characteristic polynomial,

s2 + s(−knn̄(n̄− 1) +X) + n̄2knX. (51)

Given that the final term is positive by the definition of kn, the s term must contain a
positive coefficient to yield two stable eigenvalues. This condition holds when 0 < n̄ < 1
for positive X. However, when n̄ > 1, there is a maximum tap changing gain kn to ensure
stability,

kn <
X

n̄(n̄− 1)
. (52)

In short, if the bus 2 voltage set-point V̄2 is less than 1 p.u. (n̄ < 1) there is no stability
issue. If that is not the case, however, then a sufficiently aggressive tap changer can cause
the system to go unstable.

3.6 Supervisory Control of Reactive Power Support

As previously discussed, reactive power may be controlled by a combination of capacitors,
tap-changing transformers and FACTS devices. The system operator desires to use this equip-
ment in the most efficient way possible to meet requirements and often has multiple conflicting
goals. For example, these goals may include minimizing capacitor switching, tap changing
and power losses while maximizing reactive reserve. More sophisticated objectives are pos-
sible, like prioritizing different kinds of reactive reserve (i.e. capacitors versus STATCOMs)
or maximizing the possibility of successfully dealing with a system fault. There is significant
potential for better control performance by incorporating future knowledge, including wind
and load forecasts.
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This level of complexity suggests the need for a system-level control approach, where
all the reactive power sources are controlled by a single controller. This approach may yield
better performance than relying on the controls of the individual devices. This section focuses
on longer-term supervisory control which makes decisions at a relatively slow rate, roughly
once per minute or slower. Fault conditions or fast transients are assumed to be handled by
standard control methods.

3.6.1 Problem Formulation

The proposed system-level control formulation can be treated as a dynamic optimization
problem. An important aspect of this form of problem is the type of future information
available, its quality, and the forecasting horizon. The goal here is to generate the best
possible controller given the available information.

Consider an optimization problem with a finite horizon, even if very long, perhaps a year.
The various types of future information can be grouped into five broad classes:

1. Exact Future Knowledge - Exact knowledge of the future for the full time horizon.
This yields the maximum attainable performance, although it is unrealistic in practice.
A less restrictive case assumes that exact future knowledge is available, but only for a
short duration, e.g. a 24-hour exact forecast.

2. Uncertain Future Knowledge - Time-dependent future information with uncer-
tainty of some type, including uncertain forecasts and time-dependent Markov tran-
sition probabilities. This information may be available for the full time horizon or a
shorter duration.

3. Cyclical Stochastic Knowledge - General stochastic predictions about the future
that are repetitive and cyclical. An example are Markov transition probabilities that
change based on the time of day, but are repeated each day. This category is well-suited
to model daily demand fluctuations as well as day/night wind patterns.

4. Stationary Stochastic Knowledge - Stationary stochastic predictions about the
future, including Markov-chain based wind models. No explicit forecasting or time-
dependent knowledge is required.

5. No Explicit Future Knowledge - Both optimization- and rule-based methods that
do not explicitly account for the future.

Each of these five classes will generate controllers with different characteristics. Several
controller subtypes are available for each class; the information class is identified for each
controller type proposed in the following Section 3.6.2. The list is ordered roughly in decreas-
ing order of complexity and performance. In general, having more information available does
not guarantee improved performance, but it should do no worse than the baseline case. The
two extreme cases (1 and 5) listed above may be undesirable, which forces the determination
of the best tradeoff between performance and complexity. Specifically, the designer should
determine the performance improvement available with increasing controller complexity in
order to make an informed decision
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1) Overall Optimization Strategy: The most general formulation describes the system
dynamics using a function of the system state x, control input u, and disturbance w,

xk+1 = fk(xk, uk, wk). (53)

The function f may or may not change with time, as represented by fk.
For a given time series of states (x1...xT ), controls (u1...uT ), and disturbances (w1...wT ),

a performance metric J is assigned to represent the total cost. A general optimization for-
mulation represents this cost as a function Φ of the states, controls, and disturbances over a
time window T ,

J = Φ(x1...xT , u1...uT , w1...wT ). (54)

Other formulations are available that generate a finite cost even with infinite stopping time,
for example by discounting future costs.

Many different techniques are available to solve these types of problems, but optimal
solutions can be difficult to obtain because the number of possible control sequences grows
exponentially with time. If the total cost is restricted to be an additive cost function ck(xk, uk)
that can be evaluated at each individual time-step,

T∑
0

ck(xk, uk), (55)

techniques are available to drastically reduce computational requirements. The subscript k
indicates that the cost may be a function of time. By focusing on problems of this type,
the optimization problem may be stated formally as minimizing (55) subject to possibly
time-dependent constraints gk(xk, uk),

min

T∑
0

ck(xk, uk) (56)

such that gk(xk, uk) ≤ 0 ∀k.

Controller performance was evaluated by generating test optimization-based controllers
for three cases, including the two extreme cases: exact future knowledge, stationary stochastic
knowledge, and no explicit future knowledge. In addition, these three controllers are compared
to a “baseline” algorithm that uses hysteresis-based switching of the capacitors based on
current reactive power demand.

2) Example System: The various control techniques can be illustrated using a simple
test system. This system consists of a wind-farm collector network connected to an infinite
bus through a substation. The substation uses four capacitor banks and a STATCOM for
reactive power compensation, as shown in Figure 14. The optimization goal is to minimize
both STATCOM usage and capacitor switching. The STATCOM is assumed to perfectly
regulate the bus voltage V3 and supply any reactive power not supplied by the capacitors.
For now, the STATCOM is also assumed to have unlimited capability, but realistic limits
may be easily implemented. This yields a relatively simple power flow problem, while clearly
illustrating the control design tradeoffs. The power flow equations are solved to determine
the reactive power required to hold the bus voltage at 1 p.u., and the optimization is simply
the distribution of this reactive power between the STATCOM and capacitors.
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To model this system in terms of (56), the system has four states x representing the
current state of each capacitor bank, either on or off. Four controls u represent the command
to turn each capacitor bank on or off. Thus the system dynamics (53) reflect the simple result
that at the next time-step, the capacitor state xk+1 will match the current command uk.

For the cost function, the number of capacitor switches NCS is weighted by a penalty
α to reflect maintenance and wear costs. The STATCOM usage S̄ is calculated based on
the current reactive power demand and the capacitance established by the control uk. It is
defined as the time integral of STATCOM output over the time-step. Of interest is the relative
tradeoff between capacitor switches and STATCOM usage, so only one tuning parameter is
needed. Accordingly, the stage cost has the form,

ck(xk, uk) = αNCS + abs(S̄). (57)

The definitions of ck(x, u) and fk(x, u) form the basic optimization problem and are used
in the various algorithms that follow.

3.6.2 Control Design Methods for Various Information Classes

The control design methods proposed here are standard techniques. The main ideas are
presented here, but full details are available in standard texts [36, 37].

1) Deterministic Dynamic Programming: In the case of exact future knowledge, De-
terministic Dynamic Programming (DDP) can be used to solve (56). For each time-step, the
optimal “cost to go” function J∗k (x) is calculated. It represents the minimum cost required to
go from time k and state x to the final time T . Starting at the final time T , the terminal cost
(if any) is assigned for the final state, yielding J∗T (x). The algorithm proceeds by backward
recursion,

J∗k (x) = min
u∈U

[ck(x, u) + J∗k+1(fk(xk, u))], (58)

where c(x, u) is the instantaneous cost as a function of state and control. Recall that the func-
tion fk(xk, uk) determines the next state xk+1. This equation (58) represents a compromise
between minimizing the current cost ck(x, u) and the future cost J(xk+1). This formulation
is entirely deterministic with no stochastic disturbances because the exact future is known.
Anything that changes with time, e.g. reactive power demand, is included in the time-varying
cost ck(x, u) or dynamics fk(xk, uk). In this case, the cost is given by (57) and changes based
on the required reactive power.

The optimal control u∗ is any control that achieves the minimum cost J∗k (x) in (58),

u∗k(x) = argmin
u∈U

[c(xk, u) + J∗k (fk(xk, u))]. (59)

This method requires two steps: an off-line step to calculate the controller using the
future knowledge, and an on-line step where the control is causally implemented, possibly in
real-time. The off-line step solves (58), and the end result is a control policy u∗k(x) and a
cost-to-go Jk(x), both for all times k. In the on-line implementation, one may either use the
policy u∗k(x) or calculate the control on-line using (59) and the cost-to-go Jk(x). Intuitively,
Jk(x) represents the minimum cost required to operate from time k until time T when starting
in state x. It essentially contains the future information about the system.
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2) Stochastic Dynamic Programming: Stochastic Dynamic Programming (SDP) is used
to incorporate uncertain future knowledge, stationary stochastic knowledge in this case. This
algorithm is a variant of the deterministic version described previously, but the main ideas
are the same. The key difference is that the future is uncertain, so everything is based on an
expectation of the future Ew over the disturbance w. While the designer still wished to solve
(56), the algorithm can no longer solve it exactly due to the uncertain future. Instead, the
algorithm uses a slightly different optimization formulation,

min Ew

∞∑
0

γkck(xk, uk) (60)

such that gk(xk, uk) ≤ 0 ∀k.

This formulation differs from (56) in several ways. The future cost is discounted by the
factor γ < 1, which keeps the sum finite. This technique is called “infinite horizon discounted
future cost.” Although the time horizon is no longer finite, a value of γ close to one forces
the algorithm to consider a “reasonable” time horizon, while discounting the infinite future.

To use the algorithm,

V ∗(x) = min
u∈U

Ew[c(x, u) + V ∗(f(x, u, w))] (61)

is solved for the “Value Function” V (x). The value function is very similar to the cost-to-go
Jk(x) in (58). The primary difference is that V (x) is not a function of time, only of the state.
It represents the expected future cost of being in state x. The time horizon is infinite, and
hence V (x) does not change with k. The optimal control u∗ is again any control that achieves
the minimum cost V ∗(x) in (61),

u∗(x) = argmin
u∈U

Ew[c(x, u) + V ∗(f(x, u, w))]. (62)

The control policy is also independent of time and hence is a stationary policy.
The future disturbances, wind power in this case, are specified via a finite-state Markov

chain rather than exact future knowledge. This wind model adds additional states to the
model. In general, the designer must determine the probability distribution of the disturbance
w based on the current state and control,

P (wk|xk, uk). (63)

A one-state Markov chain has been used for these investigations. The current wind power Pk
is the state. The probability of the wind power at the next time-step depends on the current
wind power, which means estimating the function

P (Pk+1|Pk). (64)

The designer may choose how this disturbance is specified. For example, the disturbance may
be the value of the wind power at the next time-step, or it may be given as the change in wind
power. More complex models can be used by adding additional model states, for example the
last three recorded values of the wind power.

The transition probabilities (64) can be estimated from known wind patterns. The powers
P are discretized to form a grid. For each discrete state Pk there are a variety of outcomes
Pk+1. The probability of each outcome Pk+1 is estimated based on its frequency of occurrence,
and is a function of the current wind power.
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3) Instantaneous Optimization: The simplest optimization-based algorithm seeks to
minimize cost with no future knowledge. This technique is termed Instantaneous Optimization
(IO) because it has no estimate or prediction of the future and the control is generated by
minimizing the current cost at each instant,

u∗(x) = argmin
u∈U

c(x, u). (65)

The control decision clearly lacks the future estimates of (59) and (62).

4) Baseline Controller: The baseline controller is not based on optimization at all, but a
simple rule-based hysteresis strategy. Recall that the STATCOM usage S̄ is the difference be-
tween the required reactive power and that supplied by the capacitors. A switching threshold
β is assigned, and when the STATCOM usage exceeds this threshold, an additional capacitor
bank is switched in or out. Define NC as the number of capacitor banks currently switched
in. Then the update rule can be written as,

NCk+1 =


NCk + 1 if S̄ > β

NCk − 1 if S̄ < −β
NCk otherwise.

(66)

3.6.3 Simulation Results

The various types of controllers discussed in Section 3.6.2 were designed and tested using
the example system to evaluate their effectiveness. Wind data from the National Renewable
Energy Lab’s EWITS study was used. The simulation covered a 30-day period, and the
controller commands updated every 5 minutes. Each controller was designed with the appro-
priate level of information: controllers that use exact future knowledge were given the entire
wind-power trace ahead of time, stochastic controllers were given the probability distribution
(64) for the test period, and the other two controllers were not given any future information.

For each controller type, a number of different controllers were designed with varying
values of the penalty α in (57) or the hysteresis threshold β in (66). This yielded a range of
controllers of the same type with varying attributes. The results are shown in Figure 21. The
horizontal axis shows the number of capacitor switches. The vertical axis represents total
STATCOM usage, measured as cumulative absolute value

∑
abs(S̄). As the optimization

goal is to minimize both capacitor switching and STATCOM usage, the best performance is
found in the lower left of the plot.

3.6.4 Discussion

The DDP controllers designed with perfect information demonstrate the best performance,
which is to be expected. Perhaps more surprising is that the other three controller types all
generate similar performance. This motivates an open research question: What level of future
information is appropriate? For the five information classes enumerated in Section 3.6.1, the
two simplest cases (classes 4 and 5) yield similar performance, but the most complex case
(class 1) yields vast improvements. This points to a “middle ground” of controller complexity,
where significant improvements may be found with reasonably complex controllers of classes 2
to 4. If exact future knowledge provided no benefit, simple controllers could be used while
attaining optimal performance.
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Figure 21: Performance of various types of optimal controllers based on different types of
information. Best performance is attained with low STATCOM usage and low capacitor
switching, in the bottom left of the figure. These data are for one month periods. Detailed
time traces are shown in Figure 22.

The IO controllers generate identical performance to the baseline hysteresis method be-
cause they essentially do the same task. With no future knowledge, the instantaneous opti-
mization is based solely on the cost function (57). A capacitor switch will not occur until the
STATCOM usage exceeds the cost of the capacitor switch, which acts as a threshold policy.
Arguably, the simple hysteresis method is a rudimentary optimization.

The behaviour of the instantaneous optimization has a discontinuity, as shown by the
unpopulated region for lower capacitor switches. At each time-step, the STATCOM usage
is evaluated for only that time-step. The maximum savings obtained by switching in one
capacitor bank is finite, specifically the value of the capacitor bank times the time-step. If
the cost of a capacitor switch exceeds this maximum, no capacitors will ever be switched on
because the decrease in STATCOM usage is always less than the cost of a capacitor switch.

The performance of the SDP stochastic controllers is identical to that of the simpler
controllers without any future knowledge. This implies that the Markov chain wind model
does not provide any additional future information. This is clear from the calculated statistics
(64) as the distribution of change in wind power is approximately constant regardless of the
current wind power. The SDP controllers studied here use a very simple Markov chain wind
model. More sophisticated controllers can be designed that use additional states and generate
better performance, for example by storing the last few wind-power values rather than just
the current value. They will still be classified as having stationary stochastic knowledge (class
4). However, independent work [38] suggests that Markov chains are not particularly good
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(a) Minimum STATCOM/max switching case for De-
terministic Dynamic Programming with exact future
knowledge.
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(b) Moderate switching (98 Switches) with Determin-
istic Dynamic Programming and exact future knowl-
edge.
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(c) Moderate switching (98 Switches) with Stochastic
Dynamic Programming and future statistics.

Figure 22: Time traces of wind-farm reactive power control. The solid black line is the required
reactive power. The solid blue line is the capacitance, which changes in discrete steps. The
green and red regions represent the positive and negative STATCOM usage required to exactly
meet the reactive power demand.

at wind forecasting.
Although the example system used here is very simple, the optimization framework of

Section 3.6.1 can handle quite complex systems. Additional attributes [39] may be consid-
ered, including reserve requirements, failure probabilities, short and long term STATCOM
limits, and capacitor discharge times. The downside of this framework is computation, which
typically grows exponentially with the number of system states. Including all the equipment
in a substation is feasible, but including all the equipment in a region is probably not. These
techniques can provide the most benefit for systems with complex dynamics, constraints, non-
intuitive behaviour, and a relatively small number of actuators (<15). Large problems can
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often be partitioned [40, 41] with some loss of optimality, i.e. solving for the reactive power
output of each substation, then solving for the reactive power supply within each substation
to meet that requirement.

3.7 Conclusions

The control of reactive power support for wind generation is a challenging problem on several
levels. WTGs themselves may be used to provide reactive power support, but the design of
the collector network may limit their reactive power output. This has been illustrated using
an accurate model of a real wind-farm.

It has been shown that wind-farm voltage regulating schemes are susceptible to instability.
Two instability mechanisms were explored, with the analysis highlighting the difficulty of
coordinating multiple types of equipment with independent SISO controllers. It was shown
that capacitive susceptance could cause a reversal of the tap-changing transformer voltage
gain, with the high-side voltage decreasing (instead of increasing) with increasing tap ratio.
In such cases, transformers will tap to their high or low limit and remain there. Furthermore,
under certain conditions, interactions between the controllers of tap-changing transformers
and reactive current sources, such as STATCOMs, can lead to instability.

Higher-level scheduling of reactive support devices within a wind-farm should take into
account competing objectives, such as minimizing capacitor switching whilst maximizing the
dynamic response capability of STATCOMs/SVCs. The stochastic nature of wind makes
this a challenging problem though. A variety of control strategies have been considered,
with varying assumptions about future information: some required perfect prediction, some
used stochastic predictions, and some had no information. The results demonstrated that
future knowledge plays a vitally important role in determining optimal solutions. In con-
trast, rudimentary future knowledge, in the form of simple wind forecasts based on Markov
chains, provides negligible benefit. This leaves an open research question regarding the role
of forecasting in these systems, and the relative tradeoff between controller complexity and
performance as more information becomes available.
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4 Impact of Wind Power Variability on Sub-transmission Net-
works

4.1 Introduction

It is often convenient and economical to connect distributed generation, in particular wind-
farms, at sub-transmission levels (40-120 kV). In fact, in many cases it is unavoidable as
only a lower voltage network is available. However, relative weakness of the sub-transmission
network, characterized by low short-circuit ratios and high impedances [42], poses serious
challenges for the large-scale integration of variable generation. In the case of wind power,
its inherent variability can lead to unusual reactive power absorption and injection patterns.
Since reactive power is closely coupled with voltage magnitudes and voltage regulating assets,
wind-power variations at multiple nodes may affect bus voltages and transformer tap positions
in complicated and unexpected ways.

Many utilities require wind-farm operators to regulate the voltage at the point of in-
terconnection (POI) to a set-point value determined by the system operator. Nevertheless,
varying power flow can cause voltage fluctuation at unregulated load buses that are some-
times located far from the POI. As voltage fluctuations can be problematic for consumers,
utilities are required to install additional voltage regulating equipment. Varying power flow
can also result in a higher frequency of tap-changing operation of transformers that connect
weak sub-transmission networks to the transmission system. This increase is unacceptable
for asset owners as it may significantly shorten the lifetime of these expensive devices.

Therefore it is important to examine interactions between wind-farm voltage regulation
and other, pre-existing voltage regulating equipment, such as tap-changing transformers,
and coordinate their goals to achieve optimal operation of the grid. Previous studies have
shown for radial distribution feeders that voltage regulation at the POI tends to increase
tap-changing operations [43]. However, many sub-transmission and distribution networks
have a mesh structure. The presence of multiple wind injection nodes in a mesh network
further complicates the impact of wind on voltages and taps. Existing techniques for ana-
lyzing power system response provide limited insights into the complex interactions between
regulating devices and variable generation.

This chapter examines the impact of wind generation on sub-transmission networks, focus-
ing particularly on the effect of power flow variability on the voltage profile and transformer
tap-changing. Studies are based on a mesh network that serves the south-eastern region of
Michigan. It is anticipated that major wind developments will occur in this region, and that
the wind-farms will be connected to the 40 kV sub-transmission network. Sensitivity analysis,
based on the power flow Jacobian, has been used to identify transformers that are most sen-
sitive to wind-power variability at two sub-transmission wind generation nodes. Power flow
continuation methods are also used to produce contour diagrams that allow more extensive
investigations of the quantities that are most sensitive to wind injections at these two nodes.

The use of the power flow Jacobian for sensitivity analysis is not new, with applications
dating back to the late 1960s [44]. Since then, sensitivity analysis has been applied in a wide
range of power system studies, from voltage stability [45, 46, 47] to assessing the impact of
distributed generation on line losses [48]. Continuation methods have been in existence for
many years [49], and first found application in power system studies in the early 1980s, see for
example [50]. Subsequent power system applications of continuation methods include voltage
stability studies [51] and solution space investigations [52]. The chapter considers the use of
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these methods to examine the impact of active power injection on tap positions and voltage
magnitudes in the context of wind power.

The chapter is structured as follows. Section 4.2 describes analysis tools used to investigate
the impact of wind injection. Section 4.3 applies these tools to the network of interest,
explains various observed patterns, and establishes general trends in voltage regulation and
tap-changer operation in weak sub-transmission systems. The temporal characteristics of tap-
changer operation are discussed in Section 4.4, and line congestion is considered in Section 4.5.
Conclusions are provided in Section 4.6.

4.2 Power System Analysis Tools

4.2.1 Sensitivity Analysis

The power flow is fundamental to power system analysis, underpinning studies from contin-
gency analysis to system planning. The power flow problem consists of a set of nonlinear
algebraic equations that can be expressed as,

P (θ, V ) = 0 (67)

Q(θ, V ) = 0 (68)

where (67) describes the active power balance at PV and PQ buses, (68) describes the reactive
power balance at PQ buses, θ is the vector of voltage angles (relative to the slack bus) at all
PV and PQ buses, and V is the vector of voltage magnitudes at PQ buses [53]. It follows
that P and θ have the same dimensions, and likewise the dimensions of Q and V are equal.

Transformer taps can be incorporated into the power flow equations by assuming tap
positions ai are continuous variables, and noting that each transformer regulates a particular
bus voltage. That bus voltage magnitude Vi takes on a known fixed value, and so it can be
replaced in (67)-(68) by the new variable ai. The power flow equations can be generalized

accordingly by replacing the voltage vector V with V =

[
Ṽ
a

]
where Ṽ is the vector of voltage

magnitudes at non-regulated buses, and a is the vector of tap positions associated with the
transformers that are regulating bus voltages. Note that Q and V still have equal dimensions.

Taking partial derivatives of P and Q with respect to θ and V gives the linearized rela-
tionship, [

∆P
∆Q

]
=

[
Pθ PV
Qθ QV

] [
∆θ
∆V

]
(69)

where Pθ ≡ ∂P
∂θ , and likewise for the other sub-matrices. Of interest is the way in which vari-

ations ∆P in the injected active power at wind-farm locations affect voltage magnitudes and

tap positions, which are given by ∆V =

[
∆Ṽ
∆a

]
. For transmission systems, where resistance

is negligible, the off-diagonal blocks in (69) are almost zero, and so are normally neglected.
This decouples ∆P from ∆V. However in sub-transmission and distribution networks, where
resistance is non-negligible, the off-diagonal blocks become important. To understand how
∆V varies with ∆P , the Matrix Inversion Lemma [54] can be used to give,

∆V =−
[
QV −QθP−1

θ PV
]−1

QθP
−1
θ ∆P

+
[
QV −QθP−1

θ PV
]−1

∆Q. (70)
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Assuming that reactive power remains unchanged at PQ buses, so ∆Q = 0, it follows that
the desired sensitivities are given by,

∆V = −
[
QV −QθP−1

θ PV
]−1

QθP
−1
θ ∆P

= SV ∆P (71)

where SV =

[
SṼ
Sa

]
, and

∆Ṽ = SṼ ∆P for buses where voltages are not regulated,

∆a = Sa∆P for transformer taps.

Later analysis will also make use of,

∆θ =
[
Pθ − PVQ−1

V Qθ
]−1

∆P

= Sθ ∆P. (72)

4.2.2 Continuation Power Flow

Sensitivity values only provide local information around a single operating point. This can
be helpful in identifying bus voltages and transformer taps that are highly sensitive to wind
injection at a certain operating point. However sensitivity analysis may not accurately capture
the behaviour of these variables in response to large changes in the system.

The power flow equations (67)-(68) can be written in generalized form as f(x) = 0, where
f and x have the same dimension. This problem is fully determined, so solutions will be
points. If a single parameter is allowed to vary, for example the active power at a PV or PQ
bus, or the voltage set-point at a voltage regulated bus, the problem takes the form,

f(x, λ) = 0, (73)

where λ is the single free parameter. Now the problem has one more variable than constraint,
so is under-determined. In this case, the solution is no longer a single point, but rather defines
a curve. Freeing a second parameter results in a surface which can be shown as a collection of
curves, i.e. contour diagram, similar to a topographic map with contours of elevation. This
concept underlies the continuation power flow.

Continuation methods for solving problems of the form (73) are well documented [49, 55].
Predictor-corrector algorithms, such as the Euler homotopy method, provide a robust process
for obtaining a sequence of points along the desired curve. Applications of this particular
method to power system problems are discussed in [50, 52].

The continuation power flow enables a range of studies that assist in assessing the impact
of wind power in weak grids, including:

1. Exploring parametric influences in the relationship between wind power injection and
bus voltages, tap positions and line flows, and

2. Extending those studies to consider interactions between multiple wind-injection points.
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Figure 23: Wind development network: wind-injection nodes (blue), load bus L1 (orange), the
120 kV transmission system and the 120/40 kV tap-changing transformers (red), the 40 kV
sub-transmission network (black). Lines of interest in later congestion studies are shown in
green.

4.3 Grid Analysis

Figure 23 shows a section of an actual power grid that is being studied for wind development.
Active power is delivered from central power plants to the 40 kV sub-transmission system
through a 120 kV transmission loop that is highlighted in red. At the interconnection points,
the lower voltage (40 kV side) is regulated by five tap changing transformers highlighted by
red ellipses. Initial studies consider wind-injection nodes WG1 and WG2, highlighted in blue,
each with a capacity 50 MW. The third wind-farm WG3 will be introduced in Section 4.5.
Typically distribution companies require wind-farm operators to regulate the voltage at the
point of interconnection to its set-point value, and this makes reactive power compensation
at the wind-injection nodes indispensable.

To better understand the impact of this local reactive compensation on transformer tap
operation and voltage magnitudes of adjacent nodes, this section and the following will con-
trast two cases:

1. No compensation at wind-injection nodes.

2. Compensation of ±15 MVAr at each wind-injection node.

The case of no compensation is often not permitted by the system operator as voltage
fluctuations caused by wind variability place enormous stress on voltage regulating equipment
in distribution substations. Figure 24(a) shows the voltage contour diagram of load bus L1

(highlighted in orange in Figure 23) which is in the vicinity of the wind-injection nodes.
The region of interest, corresponding to the feasible range of wind injection at each node,
is highlighted in the red box, and an enlarged version is shown in Figure 24(b). As wind
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injection at the nodes simultaneously varies from 0 to 50 MW, voltage increases from 0.99 p.u.
to 1.10 p.u. This voltage rise phenomenon, caused by wind-power injection on weak networks
[56], has led to stricter grid standards requiring large distributed-generation installations to
operate in voltage control mode. Figure 25 shows voltage contours of the same bus for the
case of ±15 MVAr compensation and, as shown in Figure 25(b), the voltage fluctuation range
is now reduced to 0.99-1.05 p.u. However later studies illustrate that even though the no-
compensation case may appear extreme and impractical, it is useful in the way it highlights the
need for coordination between reactive compensation at wind-injection nodes and transformer
tap operation.

The transformer tap sensitivity values for the two cases mentioned above are presented
in Tables 1 and 2 respectively. Three operating points were considered, namely no wind,
40% and 80% wind output, and 100% correlation between wind injections was assumed. The
latter two operating points correspond to medium and high wind generation respectively. It
can be noticed that tap positions are in general more sensitive to wind injection in the case
of ±15 MVAr reactive compensation and that T3 has the highest sensitivity values followed
by T4 and T5. Furthermore, in the case of ±15 MVAr reactive compensation, tap sensitivity
is high at no wind, peaks at medium wind and drops to its lowest at high wind. This pattern
is most visible for T3 and T4. In contrast, the no-compensation sensitivity values are highest
at no wind and are almost zero at medium and high wind.

These sensitivity values provide an indication as to which transformers and buses are
most sensitive and at what range of wind injection. With that knowledge, contour diagrams
of relevant variables (tap positions or voltage magnitudes) can be generated. Figure 26(a)
shows the tap position contour diagram of T3 which overall had the highest sensitivity values.
By looking at the region of interest shown in Figure 26(b), we see that at low to medium wind
injection, tap contour lines (each corresponding to a tap step) are closely spaced whereas at
higher wind the tap position does not change at all. Contrasting Figures 25(b) and 26(b)
reveals an interesting pattern. Regions of high tap and low voltage sensitivity almost entirely
overlap.

Moreover there are discontinuities in the contour lines when injection is high at one node
and low at the other. These somewhat symmetrical discontinuity points correspond to limits
of reactive compensation at each injection node. As wind injection increases, reactive compen-
sation absorbs more reactive power until its inductive limit is encountered. As wind injection
continues to increase, the voltage magnitude of the injection node and adjacent nodes starts
to rise. Figures 27 and 28 show the contour lines corresponding to inductive limits of WG1

and WG2 superimposed on voltage magnitude and tap position diagrams respectively. The
solution space is divided into four regions labelled A, B, C and D. In region A, both WG1

and WG2 are regulating. In region C, WG2 has reached its inductive limit but WG1 is still
regulating, whereas in region D the situation is the reverse. In region B both WG1 and WG2

have reached their inductive limits. This latter region corresponds with where T3 tap position
stabilizes. According to the sensitivity values, this is also the case for all other transformers.
The tap position contour diagram of T3 for the case with no compensation, shown in Fig-
ure 29, also confirms, albeit in a negative way, the observation that reactive compensation
results in higher tap sensitivity. Therefore, in the absence of any voltage regulation at the
injection nodes, tap position sensitivity is reduced.

However, before concluding that there exists a tradeoff between voltage regulation at the
injection nodes and tap change operation, the actual tap-changing operation of transformers
under normal operating conditions, prior to wind, should be investigated. This base case,
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(a) Global

(b) Region of Interest

Figure 24: Contour diagrams of voltage magnitude at load bus L1 for varying active power
injections at wind nodes (no voltage regulation).
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(a) Global

(b) Region of Interest

Figure 25: Contour diagrams of voltage magnitude at load bus L1 for varying active power
injections at wind nodes (±15 MVAr compensation).
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Tap Step Sensitivities ( step
MW injection)

Operating Point Injection Node
Transformer

T1 T2 T3 T4 T5

No Wind Output
WG1 -0.01 -0.03 -0.07 -0.09 0.00
WG2 -0.01 -0.01 -0.07 -0.07 0.00

40% Wind Output
WG1 0.01 -0.01 -0.02 -0.03 0.01
WG2 0.01 0.00 -0.02 -0.02 0.02

80% Wind Output
WG1 0.02 0.00 0.00 -0.01 0.03
WG2 0.02 0.00 0.00 0.00 0.03

Table 1: Tap step sensitivities for the transformers highlighted in Figure 23. No reactive
compensation at wind-injection nodes.

Tap Step Sensitivities ( step
MW injection)

Operating Point Injection Node
Transformer

T1 T2 T3 T4 T5

No Wind Output
WG1 0.04 0.04 0.10 0.11 0.07
WG2 0.05 0.04 0.14 0.09 0.06

40% Wind Output
WG1 0.04 0.04 0.09 0.05 0.05
WG2 0.08 0.07 0.20 0.18 0.14

80% Wind Output
WG1 0.03 0.01 0.02 0.03 0.05
WG2 0.03 0.01 0.02 0.03 0.06

Table 2: Tap step sensitivities for the transformers highlighted in Figure 23. Compensation
of ±15 MVAr at each wind-injection node.

where transformer taps are adjusted only in response to changes in the system load, must be
compared with cases where variable wind is added, with and without local reactive compen-
sation.

4.4 Wind and Tap Change Operation Simulation

The previous section established a relationship between voltage regulation of wind-injection
nodes and sensitivity of the tap positions of the transformers that connect the sub-transmission
and transmission systems. This will be explored further via simulation of the tap change op-
eration of the five transformers in the system of interest.

The simulation is based on power flow code developed in Matlab and verified with com-
mercial power flow programs. The simulation models tap position as a discrete variable. The
power flow is executed every minute with updated load (P,Q) information for all buses in
the network, and with minute-by-minute wind generation data. If the voltage of the bus that
is regulated by a tap-changing transformer moves outside the deadband (− 1

120 ,+
1

120) p.u.,
centered on the voltage set-point, for two consecutive power flow executions (i.e. more than
one minute) then the tap is adjusted accordingly (increased or decreased by a single step) to
bring the voltage magnitude within the deadband. This reflects actual tap-changing opera-
tion, where the regulated voltage is allowed to deviate from the set-point by a certain margin
for a certain period of time (typically one minute or up to several minutes depending on the
setting of the transformer) before the tap-change operation is triggered. This mechanism is

50



(a) Global

(b) Region of Interest

Figure 26: Contour diagram of T3 tap position for varying active power injections at wind
nodes (±15 MVAr compensation).
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(a) Global

(b) Region of Interest

Figure 27: Demarcation of the L1 voltage magnitude contour diagram into the four regions
determined by reactive compensation limits.

52



(a) Global

(b) Region of Interest

Figure 28: Demarcation of the T3 tap position contour diagram into the four regions deter-
mined by reactive compensation limits.
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Figure 29: Contour diagram of T3 tap position for varying active power injections at wind
nodes (no voltage regulation).

designed to prevent small disturbances from triggering unnecessary tap-change operations.
The cases considered in the simulation study are as follows:

1. No Wind Injection.

2. Wind Injection at WG1 (50 MW, ±15 MVAr compensation).

3. Wind Injection at WG2 (50 MW, ±15 MVAr compensation).

4. Wind Injection at WG1 and WG2 (each 50 MW, no reactive compensation).

5. Wind Injection at WG1 and WG2 (each 50 MW, ±15 MVAr compensation).

The simulations used load data for the south-east Michigan grid, and wind generation data
from two wind-farms in Michigan, all with one minute resolution. Table 3 shows the number
of tap changes per month for the five cases. It can be seen that wind injection in general
increases tap change operation. However this increase is significant when both wind-farms
WG1 and WG2 have local reactive compensation (voltage regulation).

Deeper insights can be obtained by considering the trend in the number of monthly tap
change operations as the reactive compensation capacity at wind-injection nodes increases.
This is shown in Figure 30. As the reactive compensation increases, the number of monthly
tap operations initially remains relatively constant before starting to increase significantly
around ±10 MVAr. At that point the sub-transmission network begins to draw large amounts
of reactive power from the 120 kV transmission system. Before the voltage regulating devices
reach their inductive limits (as wind injection increases), more and more reactive power is
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Number of Monthly Tap Changes

Simulation Cases
Transformer

T1 T2 T3 T4 T5

No Wind 140 23 98 85 173
WG1 -/+15 Mvar 140 30 116 107 208
WG2 -/+15 Mvar 142 44 154 102 230

WG1 and WG2 no compensation 142 28 134 113 176
WG1 and WG2 each -/+15 Mvar 213 105 511 456 442

Table 3: Number of monthly tap change operations for the transformers highlighted in Fig-
ure 23.

Figure 30: Number of monthly tap-change operations for each transformer, for varying reac-
tive compensation capacity at wind-injection nodes.

drawn from the transmission system. This increase in reactive power flow causes the voltage
on the primary side of the tap-changing transformers to drop, so the transformers respond
by raising taps. Figure 31 illustrates the impact of greater reactive compensation on the
transmission system voltage. For higher wind-power production, tighter voltage regulation at
wind-injection nodes and nearby load buses comes at the cost of greater voltage deviations
on the 120 kV transmission system.

4.5 Quadratic Optimization for Line Congestion

In order to minimize the cost of distribution networks, distribution line designs are usually
closely tied to the load profile of the network and its growth projections. The addition of
substantial wind power to such networks is, therefore, likely to cause overloading of line
segments.

In a meshed network with multiple points of connection to the transmission system, as
in Figure 23, varying wind generation patterns may cause line flows to vary in ways that are
not always obvious. Consequently, line segments that are not even necessarily near wind-
injection nodes may be driven to their limits as wind generation changes. On the other
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Figure 31: Voltage drop on the primary (120 kV) side of transformer T3 for varying wind
injection and different reactive compensation capacities.

hand, maximum generation at all wind-farms may not cause any congestion. It is therefore
challenging to discover potential line overload vulnerabilities using conventional power-flow
methods. To circumvent this difficulty, it would be useful to know the smallest change in the
wind generation pattern that would cause any line segment to encounter its limit. This would
immediately identify the most vulnerable line, as well as the most troublesome generation
pattern.

Two optimization methods have been proposed for determining that information for any
given operating point. Both are based on a convex quadratic optimization formulation, with
the first using a DC power-flow approximation, and the second using AC sensitivities. The first
of these methods shares some similarities with the instanton formulation developed in [57].
The DC method is more efficient computationally whereas the AC sensitivity-based method
is more accurate. The AC approach may, however, require multiple iterations to achieve
convergence, with each iteration solving a power flow and computing sensitivities. The AC
formulation also does not provide any guarantee of a globally optimal solution, though based
on experience, this does not seem to be an issue. Both methods take into account correlation
between wind at different nodes.

4.5.1 DC power flow approximation

At the core of the DC quadratic optimization is the DC power flow. The usefulness of this
optimization approach therefore depends on how accurately the DC power flow approximates
actual line flows. It has been argued that the DC power flow may yield inaccurate approxima-
tions for networks where resistance is non-negligible (XR < 4) [58, 59]. However, it was found
for the power system of Figure 23, where X

R ≈ 1, that the DC power flow approximation is
quite accurate. Table 4 compares the DC approximation with the accurate AC power flow for
the lines highlighted in green in Figure 23. The values in the table are given as a percentage
of the line rating, and correspond to the case where each of the wind-farms in Figure 23 is
producing 30 MW.
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Line DC Flow (%) AC Flow (%)

1 66 55

2 45 43

3 82 84

4 107 95

5 114 90

Table 4: DC approximation of actual line flows, for lines highlighted in green in Figure 23.

4.5.2 DC quadratic optimization

Let the power generated at m wind-farms be described by the vector ρ ∈ Rm. The wind-power
generation pattern ρ that is closest (in a weighted 2-norm sense) to base-case generation ρ0,
and that causes line i to encounter its flow limit `i, is given by the DC quadratic optimization
problem,

ρ̄i = argmin
ρ

1

2
(ρ− ρ0)>W (ρ− ρ0) (74)

subject to [
Aρ
Ab

]
θ −

[
ρ
b

]
= 0 (75)

s>i θ − `i = 0 (76)

0 ≤ ρ ≤ ρmax (77)

where W is a symmetric, positive definite weighting matrix that captures the correlation
between generation at the m wind-farms. For an n-bus network, bus phase angles are given
by θ ∈ Rn−1, and non-wind power injections/loads by b ∈ Rn−1−m. The admittance matrix[
Aρ
Ab

]
establishes a linear mapping between phase angles and power injections. Equation (76)

forces the flow on a single chosen line i to equal its limit value, given by the scalar `i.
The Lagrangian [60] for this problem is given by,

L(ρ, θ, λρ, λb, γ) =
1

2
(ρ− ρ0)>W (ρ− ρ0) + λ>ρ (Aρθ − ρ) + λ>b (Abθ − b) + γ(s>i θ − `i) (78)

with the Karush-Kuhn-Tucker conditions [60] yielding the set of linear equations,

∂L
∂ρ

= (ρ− ρ0)>W − λ>ρ = 0 (79)

∂L
∂θ

=
[
λ>ρ λ>b

] [Aρ
Ab

]
+ γs> = 0 (80)

∂L
∂λρ

= Aρθ − ρ = 0 (81)

∂L
∂λb

= Abθ − b = 0 (82)

∂L
∂γ

= s>i θ − `i = 0 (83)
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which can be expressed in matrix form as,
W 0 −I 0 0
0 0 A>ρ A>b si
−I Aρ 0 0 0
0 Ab 0 0 0
0 s>i 0 0 0



ρ
θ
λρ
λb
γ

 =


Wρ0

0
0
b
`i

 . (84)

This problem can be efficiently solved for large systems using standard sparse linear solvers.
Note that the base-case generation ρ0 appears only in the right hand side of (84). Therefore
a range of base-case conditions can be evaluated efficiently through forward and backward
substitution.

Because (84) considers only one line limit at a time, determining the most restrictive
case from a set of candidate lines requires repeated solutions, with different line parameters
(si, `i) for each case. The modifications required in (84) for each new case are minimal though,
allowing efficient partial refactorization techniques [61] to be used to reduce the computational
burden. Collecting the minima for all the candidate lines into the set P = {ρ̄1, ρ̄2, . . . }, the
most restrictive case is given by,

ρ∗ = argmin
ρ∈P

1

2
(ρ− ρ0)>W (ρ− ρ0). (85)

The network presented in Figure 23 provides a realistic test case for illustrating the DC
optimization. The three wind-farms WG1, WG2 and WG3 have the potential to overload the
five feeders that are labelled and highlighted in green in the network diagram. For this initial
case, it was assumed the outputs of the wind-farms were not correlated, so the weighting
matrix W was set to the identity matrix. Table 5 presents the minimal wind generation that
will drive each line to its limit. These results were obtained for ρ0 = 0, as absolute generation
levels were of interest, rather than changes from pre-existing loading conditions.

The insights provided by the results are helpful in understanding the influence of gener-
ation on feeder loadings. Line 1, for example, reaches its maximum loading when the flow is
towards the south from WG1, in the general direction of WG2 and WG3. When the other
wind-farms generate, they produce a counter-flow on line 1, allowing WG1 to further increase
its output. Hence line 1 in most vulnerable to overload when WG2 and WG3 are out of
service. Similarly, line 2 reaches its limit when flow is towards the west, from WG2 in the
direction of WG1 and WG3. In this case, generation at WG1 and WG3 will produce counter-
flows on line 2, so this line is most vulnerable to overloading when those generators are not
producing power. In the other cases, all generators contribute to line overloading, though
typically the generator that is electrically closest has the greatest influence.

The value of the DC optimization can be further illustrated by considering vulnerability
of lines when the wind-farms are operating at various different output levels. Table 6 lists
operating points obtained from all combinations of low (10 MW) and high (30 MW) wind
generation. Each case identifies the line that would reach its limit first as wind generation
was increased, along with the corresponding change in wind-power production ∆ρ. The effect
of correlation between wind-farms was explored by first assuming no correlation, so W in
(74) was simply the identity matrix. Secondly, it was assumed the three wind-farms tended
to increase/decrease output in unison. In this latter case, the desired correlation matrix W
was obtained by shaping the axes of the ellipsoids given by level-sets of the cost function
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Line WG1 WG2 WG3

1 37 0 0

2 0 27 0

3 19 46 18

4 31 23 22

5 13 10 36

Table 5: Minimal wind injection needed to cause line congestion.

No.
Operating point Congested line / ∆ρ

WG1 WG2 WG3 No Correlation Correlation

1a 30 30 30 – –

2 30 30 10 4 / [5,3,3] 4 / [4,4,4]

3 30 10 30 5 / [0,0,2] 5 / [1,1,1]

4 10 30 30 5 / [1,1,1] 5 / [1,1,1]

5 30 10 10 1 / [9 -1 -1] 1 / [10,4,4]

6 10 30 10 2 / [-3,5,-3] 2 / [-4,4,-4]

7 10 10 30 5 / [2,2,6] 5 / [4,4,5]

8 10 10 10 2 / [-10,17,-10] 5 / [14,13,19]

a Lines 4 and 5 are already congested according to the DC
power flow approximation.

Table 6: Most vulnerable lines at each operating points, DC optimization.

(74). The axis in the direction [1 1 1]> was scaled by a factor of 4 relative to the axes in the
orthogonal directions. This scaling is illustrated in Figure 32, which shows a 2-dimensional
projection of the level-sets. The resulting correlation matrix was

W =

 3 −1 −1
−1 3 −1
−1 −1 3

 . (86)

The results of Table 6 again reveal interesting trends in the relationships between gen-
eration patterns and line overloads. It can be seen that whenever WG3 is heavily loaded,
line 5 is the first to become congested. This is consistent with the findings of Table 5. Line 1
becomes limiting when WG1 is heavily loaded, and the other wind-farms are not, which is
again consistent with Table 5. There is a similar connection between WG2 and line 2.

The eighth case is interesting in that correlation between wind-farms clearly affects the
outcome. With no correlation, the most vulnerable loading direction ∆ρ = [−10 17 −10]>

has WG2 increasing its output, while WG1 and WG3 reduce theirs. This would be unlikely if
the outputs of all three wind-farms tended to change in unison. With correlation taken into
account, the optimization has identified the more likely scenario of ∆ρ = [14 13 19]>, where
all wind-farms undergo a similar change.

4.5.3 AC sensitivity-based quadratic optimization

The DC quadratic optimization of (85) is guaranteed to give the globally optimal solution
for the approximate DC system [60]. However, because of the approximation inherent in the
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Figure 32: Ellipsoids generated by correlation matrix (86).

DC formulation, there is no guarantee that the line limits discovered are in fact the most
restrictive. The AC sensitivity-based quadratic optimization provides increased accuracy
over the DC method, though at an increased computational cost, and with no guarantee of
achieving global optimality.

The magnitude of the current flow over a line between two nodes i and k can be written
as the function,

Iik = Iik(θi, θk, Vi, Vk). (87)

Linearizing gives

∆Iik =
[
∂Iik
∂θi

∂Iik
∂θk

∂Iik
∂Vi

∂Iik
∂Vk

]
∆θi
∆θk
∆Vi
∆Vk

 (88)

where the partial derivatives are evaluated at the operating point. Also, linearizing the power
flow equations, as in (69), and inverting provides an approximate linear relationship between
perturbations in power injection ∆P and ∆Q, and the corresponding perturbations in the
state variables ∆θ and ∆V. Assuming all perturbations in power injections are zero except
for ∆ρ at wind-farms, perturbations in the states associated with nodes i and k are given by,

∆θi
∆θk
∆Vi
∆Vk

 =


Sθ[i,ρ]

Sθ[k,ρ]

SV [i,ρ]

SV [k,ρ]


∆ρ1

...
∆ρm

 (89)

where SV and Sθ follow from (71) and (72) respectively, and subscript [i, ρ] refers to the i-th
row and the subset of columns that correspond to ρ. Combining (88) and (89) allows the
change in line current ∆Iik to be related directly to changes in wind generation ∆ρ through,

∆Iik = SIρ∆ρ. (90)
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If the line current limit of I limik and operating point value I0
ik are sufficiently close, the

linearization (90) can be used to establish a first-order approximation to the minimum change
in wind power that would force the line to its limit. The resulting formulation is,

∆ρ̄ik = argmin
∆ρ

1

2
∆ρ>W∆ρ (91)

subject to
I limik − I0

ik = ∆Iik = SIρ∆ρ. (92)

The Lagrangian for this problem can be written as,

L(∆ρ, λ) =
1

2
∆ρ>W∆ρ+ λ

(
SIρ∆ρ−∆Iik

)
(93)

with the Karush-Kuhn-Tucker conditions yielding,

∂L
∂∆ρ

= ∆ρ>W + λSIρ = 0 (94)

∂L
∂λ

= SIρ∆ρ−∆Iik = 0 (95)

or more compactly, [
W S>Iρ
SIρ 0

] [
∆ρ
λ

]
=

[
0

∆Iik

]
. (96)

Solving (96) is straightforward, and yields an estimate ∆ρ̄ik of the change in wind-power
output that is most likely to drive line i-k to its limit. That estimate can be used in an
iterative scheme:

1. Update wind-power production ρ+ ∆ρ̄ik,

2. Solve the AC power flow for the new operating point,

3. Calculate new sensitivities, and

4. Repeat the optimization.

This process often converges reliably within 1-2 iterations. This iterative solution process
is then repeated for each line in a specified set of candidate lines. The line that is most
restrictive, in the W -norm sense of (85), establishes the most vulnerable loading direction for
the wind-farms.

Table 7 lists the lines identified as the most vulnerable for the same set of operating points
as in Table 6. Again, the influence of correlation between wind-farms has been considered.

4.5.4 Comparison of the results

There is generally strong qualitative agreement between the DC and AC optimization results
presented in Tables 6 and 7 respectively. This is particularly so for the operating points that
are more heavily loaded. In cases where the two methods identified different lines, the DC
results were investigated further. It was found that the difference in cost (85) between the
two most vulnerable lines was small. In such cases, typically the second ranked line matched
the line selected by the AC optimization.

Computationally, the efficiency of the DC optimization provides a significant advantage
when analyzing systems with large numbers of wind-farms and numerous lines that are sus-
ceptible to overloading.
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No.
Operating point Congested line / ∆ρ

WG1 WG2 WG3 No Correlation Correlation

1 30 30 30 4 / [1,1,1] 4 / [1,1,1]

2 30 30 10 4 / [9,6,6] 4 / [8,7,7]

3 30 10 30 5 / [2,2,8] 5 / [5,5,6]

4 10 30 30 5 / [3,2,9] 5 / [5,5,7]

5 30 10 10 1 / [14,-5,-6] 4 / [14,13,13]

6 10 30 10 2 / [-8,3,-8] 3 / [12,15,12]

7 10 10 30 5 / [4,3,13] 5 / [8,8,11]

8 10 10 10 5 / [10,7,31] 4 / [22,21,20]

Table 7: Most vulnerable lines at each operating points, AC optimization.

4.6 Conclusions

The analysis tools presented in this chapter are well suited to assessing the impact of wind
variability on bus voltages, voltage regulating transformers and line flows. These tools provide
valuable insights into the effects of wind generation on sub-transmission and distribution
networks. Because of the relative weakness of these networks, wind variability can induce
unacceptable voltage excursions, excessive transformer tapping, and line overloads. The tools
that have been presented not only help identify vulnerabilities within networks, but can also
offer insights into ways to retune parameters to mitigate the impacts of wind variability.
This will help pave the way for higher penetration of wind and other intermittent renewable
resources into weak networks.

Although voltage regulation at the point of wind interconnection is indispensable, the
analysis presented in this chapter suggests that it has a detrimental effect on tap-changer
operation for the transformers that connect the sub-transmission network (40 kV) to the
transmission system (120 kV). Wind-farm voltage regulation tends to increase the sensitivity
of tap position to wind-power variations, and significantly increases the number of tap change
operations. Consequently, the life of these expensive assets will be decreased, hindering the
development of wind power in weak grids.

The simulation results presented in this chapter indicate that the tap positions of the
120/40 kV transformers tend to remain relatively constant when the voltage at wind-injection
nodes in not regulated. On the other hand, lack of voltage regulation at wind-farms leads to
unacceptable voltage fluctuations within the sub-transmission network. This highlights the
importance of optimizing the size of reactive compensation to balance voltage fluctuations
and tap changing.
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Appendices

A Switched equations for WT3E

In the following set of switched equations, (97) implements the rate limits associated with
the Pord block, establishing the rate-limited signal Pord,rtlm that drives Pord in (3). Equations
(98) and (99) implement the Pmax and Pmin non-windup limits respectively. Consider the
Pmax limit described by (98). While Pord ≤ Pmax, the trigger variable ymx ≥ 0, so the
switch ymx,sw = 1. This ensures the integrator (3) is not blocked. On the other hand, if
system conditions sought to drive Pord beyond Pmax, then ymx would immediately change
sign, triggering ymx,sw to switch to 0. That would force the right hand side of integrator
(3) to zero, ensuring Pord was frozen at its Pmax limit. While Pord,rtlm remained positive,
seeking to drive Pord harder onto the limit, the trigger variable ymx < 0. As soon as Pord,rtlm
changed sign though, allowing Pord to come off its limit, ymx would also change sign, and
ymx,sw would switch to 1, thus re-enabling the integrator (3). Similar logic applies in (99) for
the Pmin limit.

Equation (100) enforces the rules specified in (i) and (ii) of Section 2.2.1 that link the
blocking of the PI-integrator with the Pord limit conditions. It does so through the use of
switch variable yfreeze that is used to turn on/off the integrator (2).

if Pord,rate > dPmax/dt

Pord,rtlm = dPmax/dt

elseif Pord,rate < −dPmax/dt
Pord,rtlm = −dPmax/dt

else

Pord,rtlm = Pord,rate

endif


(97)

if ymx ≥ 0

ymx = Pmax − Pord
ymx,sw = 1

else

ymx = −Pord,rtlm
ymx,sw = 0

endif


(98)

if ymn ≥ 0

ymn = Pord − Pmin
ymn,sw = 1

else

ymn = Pord,rtlm

ymn,sw = 0

endif


(99)
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if ymx,sw = 0 and ω − ωref > 0

yfreeze = 0

elseif ymn,sw = 0 and ω − ωref < 0

yfreeze = 0

else

yfreeze = 1

endif


(100)

B Switched equations for WT3P

In the following set of switched equations, (101) implements the rate limit associated with the
θ block, establishing the rate-limited signal θrtlm that drives θ in (7). Equations (102) and
(103) implement the PImax and PImin non-windup limits respectively, while (104) models
the lower non-windup limit on the pitch compensation integrator. Equations (105) and (106)
enforce the rules that link the blocking of the pitch-control and pitch-compensation integrators
to the PImax/PImin non-windup limits.

if θrate > PIrate

θrtlm = PIrate

else

θrtlm = θrate

endif


(101)

if ymx ≥ 0

ymx = PImax − θ
ymx,sw = 1

else

ymx = −θrtlm
ymx,sw = 0

endif


(102)

if ymn ≥ 0

ymn = θ − PImin
ymn,sw = 1

else

ymn = θrtlm

ymn,sw = 0

endif


(103)
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if yxc ≥ 0

yxc = xc − xc,lim
ysw = 1

else

yxc = Pord − Pset
ysw = 0

endif


(104)

if ymx,sw = 0 and ω − ωref > 0

yfr,1 = 0

elseif ymn,sw = 0 and ω − ωref < 0

yfr,1 = 0

else

yfr,1 = 1

endif


(105)

if ymx,sw = 0 and Pord − Pset > 0

yfr,2 = 0

elseif ymn,sw = 0 and Pord − Pset < 0

yfr,2 = 0

else

yfr,2 = 1

endif


(106)

C WECC default parameter values

The test system is given in Figure 33. Parameter values are given in Tables 8 to 14. The
wind-generator output is 100 MW = 1.0 pu. A 10 MVAr capacitor is connected at bus 3, but
no shunt is connected at bus 5.

A three-phase fault is applied at bus 2 at 1 sec. It is cleared at 1.15 sec by disconnecting
one of the 230 kV transmission lines.

Figure 33: Standard test system for evaluating WTG dynamic performance.
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R1 = R2 X1 = X2 B1 = B2 Rt Xt

0.025 0.250 0.05 0.0 0.1

Re Xe Be Rte Xte

0.015 0.025 0.01 0.0 0.05

Table 8: Impedance values for the test system of Figure 33.

Xeq Kpll Kipll Pllmax

0.8 30 1 0.1

Table 9: Parameter values for WT3G.

varflg vltflg Vref Kqi Vmax Vmin

0 0 1 0.1 1.1 0.9

Table 10: Parameter values for WT3E reactive power control.

Kptrq Kitrq Tpc Pmin Pmax Ipmax dPmax/dt Tsp

3 0.6 0.05 0.04 1.12 1.1 0.45 5

Table 11: Parameter values for WT3E active power (torque) control.

ωpmin ωp20 ωp40 ωp60 Pωp100 ωp100

0.69 0.78 0.98 1.12 0.74 1.2

Table 12: Parameter values for speed-power curve f(Pgen).

Kaero θ0 Pm0 H D

0.007 0 1 4.94 0

Table 13: Parameter values for WT3T single-shaft model.

Kpp Kip Kpc Kic TPI PImax PImin PIrate Pset

150 25 3 30 0.3 27 0 10 1

Table 14: Parameter values for WT3P.
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