Performance Engineering Research Institute
SciDAC-2 Enabling Technologies Institute

Final Report
20 April 2013

l. Introduction

This document is the final report for cooperative agreement DE-FC02-06ER25765, the Perfor-
mance Engineering Research Institute (PERI), an Enabling Technologies Institute of the Scientif-
ic Discovery through Advanced Computing (SciDAC-2) program of the Department of Energy’s
Office of Science (DOE SC) Advanced Scientific Computing Research (ASCR) program.

Enhancing the performance of SciDAC applications on petascale systems had high priority within
DOE SC at the start of the second phase of the SCIDAC program, SciDAC-2, and it continues to
do so today. Achieving expected levels of performance on high-end computing (HEC) systems is
growing ever more challenging due to enormous scale, increasing architectural complexity, and
increasing application complexity. To address these challenges, PERI implemented a unified, tri-
partite research plan encompassing: (1) performance modeling and prediction; (2) automatic per-
formance tuning; and (3) performance engineering of high profile applications. The PERI per-
formance modeling and prediction activity developed and refined performance models, signifi-
cantly reducing the cost of collecting the data upon which the models are based, and increasing
model fidelity, speed and generality. PERI’s primary research activity was automatic tuning (au-
totuning) of scientific software. This activity was spurred by the strong user preference for auto-
matic tools and was based on previous successful activities such as ATLAS, which automatically
tuned components of the LAPACK linear algebra library, and other recent work on autotuning
domain-specific libraries. Our third major component was application engagement, to which we
devoted approximately 30% of our effort to work directly with SCiDAC-2 applications. This last
activity not only helped DOE scientists meet their near-term performance goals, but also helped
keep PERI research focused on the real challenges facing DOE computational scientists as they
entered the petascale era.

The University of Southern California’s Information Sciences Institute organized PERI and ma-
naged its progress. Over the five-year course of SCiDAC-2, the original PERI consortium of ten
institutions was augmented with additional ones, either via subcontracts or because the research-
ers changed institutions, and their funding followed. This report is a summary of the overall re-
sults of the USC PERI effort. We direct interested readers to the final reports of each PERI insti-
tution for additional details.

I1. Application Performance Modeling

During the course of SciDAC-2, and under the direction of USC, PERI researchers established a
performance modeling methodology to predict application run-times accurately and with error
bounds as the application’s input parameters are varied. In addition, we demonstrated techniques
that provide significant cost savings for computer architecture sensitivity studies, which vary ma-
chine parameters, such as cache sizes or prefetch and branch prediction strategies. PERI research-
ers extended this work to enhance scalability, flexibility and the level of automation needed for

SciDAC-2 PERI 1 FY10 annual report

exascale extrapolation. Allan Snavely of UCSD was the leader of the PERI application perfor-
mance modeling activity, and USC did not participate directly in this research.

I11. Automatic Performance Tuning

In the area of automatic performance tuning, PERI researchers developed whole program analys-
es that facilitate optimizations spanning multiple kernels, files, and procedure boundaries. This
work utilized autotuning techniques on significantly larger scales than individual kernels, and was
targeted at full-scale ScCiDAC applications. The principal research focus involved scaling and
generalizing the techniques developed for kernel-level optimization and leveraging work else-
where within PERI to identify opportunities for improvement and then generate viable search
strategies. As an outgrowth of collaborations with SciDAC application teams, we defined addi-
tional analysis and transformation support required to meet the needs of SciDAC application de-
velopers. Architectural targets of these transformations included SIMD compute engines such as
SSE-3, prefetch into cache, and managing multiple cores. In addition, PERI personnel developed
transformations for specific application classes such as stencil computations, and specialization
for known problem sizes. A number of transformation mechanisms were explored to simplify the
development of application-specific transformations.

Kathy Yelick from the Lawrence Berkeley National Laboratory (LBNL) initially directed this
aspect of PERI’s research. When she was assigned to be the director of the National Energy Re-
search Scientific Computing Center (NERSC), USC’s Mary Hall took over. When Mary moved
to the University of Utah, to accept a faculty position in Computer Science, USC subcontracted to
Utah so that Mary could remain in the leader of the autotuning effort.

Autotuning Tool Integration

Within PERI, several different research groups were developing autotuning tools to address the
challenges of automatic performance tuning. These projects, many of which had benefitted from
years of DOE investment, had complementary strengths and could, therefore, be brought together
to develop an integrated autotuning system. Towards that end, PERI researchers worked to devel-
op a common framework to allow autotuning tools to share information and facilitate composi-
tion into the most appropriate set of tools for a particular application. Through common applica-
tion programming interfaces (APIs), they created an autotuning system that brings together the
best capabilities of each of these tools.

PERI researchers focused their development of interfaces on two portions of the autotuning
process. Any compiler-based approach will apply code transformations to rewrite application
code from its original form to a form that more effectively exploits architectural features such as
registers, caches, SIMD compute engines, and multiple cores. Commonly used code transforma-
tions include loop unrolling, blocking for cache, and software pipelining. Thus, researchers de-
signed a transformation API that is input to the Transformation box in Figure 1. This API pro-
vides a transformation recipe that described how to transform original source into an optimized
source representation.

By accepting a common transformation recipe, the PERI autotuning system permits code trans-
formation strategies derived by PERI compilers and tools (or users) to be implemented using any
transformation and code generation tool, such as CHiLL (USC/ISI, Utah and Argonne), the
ROSE LoopProcessor (LLNL), and POET (UTSA). The API supports the specification of un-
bound transformation parameters that are then tuned using search algorithms. The initial API
includes a naming convention for specifying language constructs in source code and code trans-
formations available in CHiLL and ROSE/POET. PERI researchers published two papers de-
scribing the transformation recipes [Hall2009]. The first paper, a collaboration between Universi-
ty of Utah, USC/ISI and Argonne researchers, described an API that attempts to generalize con-

SciDAC-2 PERI 2 FY10 annual report

cepts derived from the PERI team into a common recipe that can be the input/output of different
PERI tools. The second paper, produced in collaboration between University of Utah and
USCI/ISI, raised the level of abstraction for this framework and offered a programming language
interface for developing libraries of optimization strategies [Rudy2010]. Such optimization libra-
ries can be programmed by compiler experts, and then made available to application developers,
thus providing a high-level interface to the compiler code generation and transformation and the
autotuning framework.

A search APl was also created to provide input into the empirical optimization process by run-
ning experiments on actual hardware to determine the best optimized implementation. The search
API allows the autotuning tools to exchange information about their available tuning options and
constraints on the search space, and to plug-in different search algorithms. The common frame-
work supports both autotuning using training runs (and re-compilation) along with continuous
optimization during production runs. The search API, led by the UMD team, permits autotuning
systems to exchange information about their available tuning options, constraints on the search
space, and to plug-in different search algorithms. The common framework supports both auto-
matic tuning using training runs along with continuous optimization during production runs.

HPCToolkit (Rice), PAPI (UTK)

application ey cOQE triaQe mm— perf(()j;rtr;ance
ROSE
outlined
kernel

§ CHILT (Otanh, USC, Argonne

specialized
variants

YActiveHarmony
D

transformation
scripts (+ spe-
cialization in-

formation
user =9)

Figure 1: PERI automatic tuning workflow.

As stated above, PERI work in autotuning focused on the integration of several PERI tools. An
initial integration of UMD’s Active Harmony system and the CHILL transformation framework
developed and supported by researchers at USC/ISI, Utah and ANL provided experience in how
to integrate these separate tools effectively into an autotuning system. Through the APIs and sub-
stantial coordination activities, PERI researchers then focused on more extensive integration of
end-to-end tools applied to complete applications. In 2009, PERI researchers first applied this
integrated set of tools to SMG2000. In 2010, they applied these tools to PFLOTRAN as part of
the Tiger Team activity. Most of the remainder of this section describes in greater detail the work
on SMG2000 and PFLOTRAN.

SciDAC-2 PERI 3 FY10 annual report

Autotuning of SMG2000

The primary focus of PERI’s research goal was autotuning of a representative DOE application.
As a group, we chose to focus on SMG2000, which computes a semi-coarsening multigrid on
structured grids. This code, which is based on the TOPS-developed hypre library, is representa-
tive of a wide variety of SciDAC applications. As shown in Figure 2, we integrated tools that
included the work of seven PERI institutions to perform autotuning of a key kernel of SMG2000.
A code triage phase examines the original SMG2000 code to identify the key computations in
SMG2000. We use HPCToolkit, which in turn uses PAPI, to collect performance monitoring
information and map it back to the application code structures. HPCToolkit discovers that the
key performance bottleneck in SMG2000 is a residual computation which implements a 2-
dimensional 6-point stencil using a sparse matrix-vector multiplication. We then use the ROSE
compiler to outline the residual computation into a standalone program. The outlined kernel is a
very small piece of code with a much smaller execution time than the full application, is therefore
better suited for autotuning experiments. We describe a strategy for transforming the outlined
kernel to improve its performance, and provide this script to CHILL for automatic code genera-
tion of a set of variants of the outlined kernel. CHILL is invoked repeatedly by ActiveHarmony,
using a parallel rank ordering algorithm to evaluate the set of variants generated by CHiLL. The
parallel rank order search finds the best solution of 581M possible solutions in 20 steps, and
yields a 2.37X speedup on residual computation and 27% performance improvement on the full
application. Figure 2 below depicts the improvement of SMG20000 as the search process un-
folds.

Parallel Rank Ordering Algorithm - Search Evolution
1.5 T T T T T

1.2 -

Time (seconds)
I
!

0.9~ -

0.8 % -

0.7 ! ! ! ! ! ! ! ! !
0 2 4 6 8 10 12 14 16 18 20

Search Steps

Figure 2: Improvement of SMG2000 runtime vs. depth in search

Autotuning of PFLOTRAN

PFLOTRAN is a DOE application developed at LANL that models multiscale-multiphase-
multicomponent subsurface reactive flows. PFLOTRAN uses the PETSc library as the basis of

SciDAC-2 PERI 4 FY10 annual report

its parallel framework. As shown in Figure 1, PERI researchers integrated tools that included the
work of several PERI institutions to perform autotuning of key computations in PFLOTRAN. A
code triage phase examined the original PFLOTRAN code to identify the key computations. We
then used HPCToolkit, which in turn uses PAPI, to collect performance monitoring information
and map it back to the application code structures.

Using HPC Toolkit (Rice) and the Cray PAT tool, researchers at North Carolina State, Rice and
ORNL identified three main computations in PFLOTRAN as candidates for optimization: a
PETSc routine that computes a matrix-vector multiplication (MatMul_SeqBAIJ_N); a PETSc
function that solves the system A x = b, given a factored matrix A, (MatSolve_SeqBAIJ_N); and
a routine that calculates the contribution of aqueous equilibrium complexity to the residual and
Jacobian functions for Newton-Raphson (RTOTAL). These two PETSc functions comprise 17%
of execution time, and 6-7% of the computation is spent in a single loop nest computation of
RTOTAL,; all functions achieve only between 4 and 5% of peak on a node on Jaguar.

In a collaboration between USC/ISI, Utah and UMD, PERI researchers performed autotuning of
MatSolve_SeqBAIJ_N, which performs a forward and a backward solve, and uses a blocked
compressed row representation for matrix A. The block size N is a parameter, but instrumenta-
tion data shows that during production runs the block sizes are small numbers, up to 15. As pre-
vious work by the Utah, USC and ANL has shown [Shin2010], the performance of matrix com-
putations with small matrix sizes is very sensitive to optimization parameters such as loop unroll
factors and tile sizes. When combined with specialization, a compiler technique for generating
highly optimized code for known problem sizes, we achieved better performance than most high
performance libraries. The autotuning team used CHILL to generate specialized code versions
for a particular block size, and ActiveHarmony to search for the best performing version. Our
experiment used four different compilers available on Jaguar, and evaluated performance as a
function of unroll factors for the inner loops. PERI researchers compared results using Active
Harmony and an exhaustive search of a search space consisting of more than 1100 points. The
results are shown in Table 1. The original performance varies significantly by compiler, but the
best speedup and best overall performance was obtained with the Pathscale compiler, demonstrat-
ing a 1.8x performance gain with Active Harmony and a 1.9x performance gain using exhaustive
search. UMD and Utah worked on replacing this code in the full PFLOTRAN application.
USCI/ISI is currently working on the performance optimization of the backward solve targeting
the Cray XT5 at ORNL (Jaguar).

In a collaboration between Argonne, Utah and UMD, USC also performed autotuning for the
PETSc routine MatMul_SeqBAIJ_N. Like the previous example, the code was specialized for
block sizes of N=15 or a multiple of 15 (15x105,15x90,15x75, 15x60). Performance gains were
up to 1.5X on a single node of Jaguar using the PGI compiler.

In addition to these two PETSc kernels, we also optimized the RTOTAL function from PFLO-
TRAN. Early pathfinding and hand optimization by ORNL researchers revealed a collection of
optimizations that would improve the performance of the loop from this code in which the appli-
cation spent 6% of its time. The loop consisted of inner loop nests with a variable ncomp used to
establish the number of loop iterations. By analyzing instrumentation data, we discovered that
the value of ncomp was usually very small, between 2 and 4. By specializing the code for specif-
ic values of ncomp and aggressively unrolling the inner loop nests, we can achieve speedups
ranging from 1.32X to 1.52X using CHiLL, or up to 1.8X with additional manual optimizations
to remove recurrences between accumulations. These results are in Table 2.

SciDAC-2 PERI 5 FY10 annual report

[Compiler|Original |Active Harmony Exhaustive

Time Time (ul,u2) Speedup Time |(ul,u2) [Speedup
[pathscale[0.58 0.32 (3,11) 1.81 030 [(3,15) [1.93
lonu 0.71 0.47 (5,13) 1.51 046 [(5,7) 1.54
logi 0.90 0.53 (5,3) 1.70 053 [(53) 1.70
lcray 1.13 0.70 (15,5) 1.61 069 [1515) [1.63

Table 1. Autotuning results for forward solve from triangular solve library, using CHiLL
and Active Harmony.

[Ncomp Original Chill Hand Tuned
Time Time Speedup Time Speedup
1 0.09 0.06 1.52 0.05 1.80
2 0.13 0.096 1.32 0.087 1.46
3 0.18 0.12 1.49 0.11 1.45
4 0.21 0.16 1.32 0.15 1.45

Table 2. Results of optimizing RTOTAL function in PFLOTRAN.

At SciDAC 2011, a poster and short paper reported on overall performance improvement for
PFLOTRAN [Chame 2011]. After autotuning, each of these routines was sped up by nearly a
factor of two. Additional 1/0 tuning performed by our PERI collaborators resulted in a final over-
all 40-fold speedup of the initialization phase, 4-fold improvement in the a write stage, and a 5-
fold improvement of total simulation time on 90,000 cores.

Autotuning Technology Software Development

PERI researchers at Utah, USC/ISI and ANL developed CHILL, a framework for composing
high-level loop transformations designed to generate efficient code for complex loop nests. It
supports an extensive set of loop transformations for perfect and imperfect loop nests, including
tiling, permutation and unroll-and-jam, thus lifting the burden of generating multiple intermediate

SciDAC-2 PERI 6 FY10 annual report

steps from compilers or optimization tools. CHiLL uses an improved version of Omega (Ome-
gaPlus) to manipulate integer arithmetic and relies on polyhedral scanning provided by Omega’s
code generator. Utah, USC/ISI and UMD researchers integrated the UMD Active Harmony sys-
tem with the CHiLL framework. Users can customize the CHiLL optimizer via a process called
recipes. In the final year of PERI, we performed experiments applying CHiLL to two SciDAC-e
codes, MGDC and the QR factorization of. An integration of CHILL with the ROSE compiler
was undergoing extensive testing in preparation for release at the end of the PERI project.
CHILL and Omega Plus are available from http://www.cs.utah.edu/~chunchen/.

IV. Application Engagement

Throughout the course of SCiDAC-2, PERI researchers worked closely with application scientists
in DOE-funded computational science projects. PERI had two primary mechanisms for this ap-
plication engagement: Tiger Teams and Application Liaisons. We proactively communicated
with application groups through these activities and otherwise. PERI participants attended appli-
cation team meetings to make presentations, hosted individuals or groups at our sites to demon-
strate tools, and communicated directly with application developers to identify optimizations im-
portant to their codes.

Pat Worley of ORNL initially had overall management responsibilities for engagement and liai-
son activities. When other responsibilities led to his having to defer this role, Dr. Lucas reas-
signed it to Bronis de Supinski of LLNL, who had already been coordinating PERI’s Tiger
Teams.

Most of the computing resources for the PERI engagement activities on the ORNL and ANL
Leadership Class systems were provided by the Performance Evaluation and Analysis Consor-
tium End Station (PEAC) INCITE project, for which Pat Worley was the principal investigator.
During the course of PERI, Pat Worley led two successful proposals for 3-year PEAC INSIGHT
projects.

PERI application liaisons were established as long-term relationships with DOE computational
science projects having clearly identified performance needs and a desire to work with us. These
interactions are defined and maintained by individual PERI personnel, who are assigned to be the
liaisons between the science application project and PERI. The initial assignments were moti-
vated by the information collected in the PERI Application Survey. The nature and number of
liaison interactions evolved over the course of PERI, based on updates to the application surveys
and requests from science application personnel, from DOE computing centers, and from DOE
headquarters.

The nature of the interaction between PERI and each science application project was unique to
each, and varied over time. Some of the PERI liaisons were engaged actively, helping enhance
the performance of their colleague’s codes, bringing in other PERI resources and expertise as
needed, and educating PERI researchers as to the important performance issues. Other interac-
tions are more passive, with the liaison simply staying in touch, tracking performance needs, ad-
vising on performance issues, and looking for opportunities for PERI to contribute, but not direct-
ly engaged for the moment in tuning.

PERI reached out to every single SciDAC-2 Scientific Application Partnership (SAP), in an effort
to establish these performance engineering collaborations. Many enthusiastically agreed, some
politely declined if they felt they didn’t have the resources to hold up their end of the bargain, and
some frankly ignored us. Once potential collaborators had been identified, PERI liaisons were
assigned in such a manner as to exploit familiarity and proximity. We felt that this would maxim-
ize the probability of success. Therefore, USC was assigned to be the liaison with the Hierarchic-

SciDAC-2 PERI 7 FY10 annual report

al Petascale Simulation Framework for Stress Corrosion Cracking SAP, led by USC’s Prof. Priya
Vashishta.

As part of the active liaison relationship with the Hierarchical Petascale Simulation Framework
for Stress Corrosion Cracking application, USC/ISI and Utah worked with Aiichiro Nakano’s
group at USC to optimize a quantum mechanical code. Four key computational kernels were
identified that exhibited opportunities for improved performance: two linear algebra kernels, a
sparse-matrix kernel and a stencil computation. The two linear algebra kernels were replaced by
linear algebra libraries, and the sparse-matrix kernel was optimized by hand, resulting on a 25%
performance improvement. Through this initial hand-tuning, the performance of the application
improved by 19.8% on an Intel Core2Duo. The analysis also indicated that this code is an excel-
lent candidate for further optimization from applying a number of automatic performance tuning
technologies.

USC/ISI and Utah then worked with Aiichiro Nakano’s group to optimize the stencil kernel using
PERI autotuning tools. The kernel is part of a seismic wave propagation simulation where a three-
dimensional, 6™ order stencil computes spatial derivatives on uniform grids. The original compu-
tation had been parallelized at multiple levels. The three-dimensional data space is distributed
among cluster nodes, with computation following the “owner’s compute” rule, and node-to-node
communication implemented in MPI. Each node has thread-level parallelism and each thread has
SIMD parallelism. SIMD parallelism had been implemented manually using SSE intrinsics.

This original stencil computation suffered from high TLB misses (approximately 25%) and high
second-level cache misses on each node, on a 512-node cluster with Quad-Core Intel Xeon dual-
processor nodes running at 2.33GHz with 4MB L2 per die. To optimize performance on a single
node, the ISI /Utah team used loop tiling to improve locality at the L2 cache and TLB, and loop
unrolling and scalar replacement to improve locality at the register level. Loop unrolling also
exposed SIMD parallelism to the native compiler, which successfully generated SSE code.
CHiLL was used to automatically generate code variants of the stencil kernel with tile and unroll
sizes as unbound parameters, and an empirical search determined the tile and unroll sizes that
achieved best performance. These optimizations resulted in a 2.56 speedup for the stencil compu-
tation of a single thread on a single node.

In 2010, PERI was the recipient of three SciDAC-e awards. These were augmentations to PERI
funded by the American Recovery and Reinvestment Act (ARRA) of 2009. USC led one of the
three activities, a project entitled the Performance Engineering Research Institute SciDAC-e
Augmentation: Performance Enhancement of Simulating the Dynamics of Photoexcitation for
Solar Energy Conversion. The others were led by LBNL and UNC. The SciDAC-e projects are
required to submit final reports of their own, and thus will not be the subject of further discussion
herein.

SciDAC-2 PERI 8 FY10 annual report

VI. Institute Management and Outside Interactions

Institute Management

Robert Lucas of USC/ISI was the overall manager of the PERI institute, assisted by David H. Bailey of
LBNL. This included monitoring project activity, conducting biweekly teleconferences, overseeing twice-
yearly project meetings, preparing reports, and representing PERI in various community activities.

PERI was a widely distributed project, so we went to great lengths to stay connected and coordi-
nated. We had teleconferences, a meeting each year at the SC conference, and two annual PERI
team meetings. Teleconferences were held approximately every two weeks. The precise schedule
varied depending on the needs of the project as well as the availability of the Pls. PERI team
meetings were scheduled twice every year for the five-year duration of SCiDAC-2. Nine of PE-
RI’s ten initial institutions, as well as Utah, took a turn hosting the meeting. The meeting sche-
dule is depicted in Table 3, below. Meetings were also held every Monday at the annual SC con-
ference.

September 26 — 27, 2006 Argonne National Laboratory

March 12 — 13, 2007 Lawrence Berkeley National Laboratory
September 19 — 21, 2007 University of North Carolina

February 24 — 26, 2008 University of California, San Diego
September 25 — 26, 2008 Oak Ridge National Laboratory

March 25 - 26, 2009 University of Southern California
September 28 — 29, 2009 University of Maryland

March 23 - 24, 2010 University of Tennessee, Knoxville
September 1 -2, 2010 University of Utah

March 1 -2, 2011 Rice University

Table 3. Dates and locations of the PERI bi-annual project meetings.

PERI was augmented with three SciDAC-e wards in FY2010. These projects are led by Lucas,
Bailey, and Fowler. They include nine of the PERI institutions, as well as new subcontractors
including Duke, lowa, Oregon, and Sandia. These awards came very late in FY2010. As a result,
DOE granted PERI a no-cost extension until December 14, 2012.

In 2010, Bailey took the lead in organizing and producing a new book entitled Performance Tun-
ing of Scientific Applications. It is co-edited by Lucas and by Samuel Williams of LBNL, and
includes 16 chapters, most of which were co-authored by PERI-funded personnel. See the section
on “books” in the publication section below for additional details.

Dan Gunter of LBNL maintained and enhanced the PERI website and wiki. He also performed
server administration to make sure that the wiki software, MediaWiki, had been kept up-to-date
and secure. The website was organized to follow DOE guidelines, and kept a current list of liai-
son activities, mailing lists, and PERI publications. The wiki was used by PERI Pls, and Gunter
organized the content to clearly reflect the then current activities of the PERI tiger team efforts

SciDAC-2 PERI 9 FY10 annual report

and to provide a “home page” for the PERI search, database, and transformations working
groups.

Other External Interactions

In addition to creating formal liaison relationships with SciDAC application code teams and
forming Tiger Teams, PERI researchers worked with a variety of other DOE-sponsored computa-
tional projects. For example, work on the University of Oregon’s TAU Performance System re-
ceived PERI funding in 2008, and was part of SciDAC-e. Other external performance collabora-
tions included Portland State University, the University of Texas at San Antonio, the University
of Wisconsin, Barcelona, and Julich Supercomputing Center. In addition, both directly and
through the PEAC End Station, PERI interacted frequently with computer center staff at the
ALCF, the NLCF, and NERSC, and with IBM and Cray. For example, PERI ported and main-
tained performance tools, such as PAPI and HPCToolkit, required by PERI research and engage-
ment activities, and made these available to the centers’ users. Finally, PERI researchers were
active participants in workshops that target planning and preparing application teams for future
peta- and exascale computer systems.

Computer System Access

The Performance Engineering and Analysis Consortium End Station (PEAC) INCITE project
provided the PERI project with access to the Leadership Class Systems at ANL and at ORNL.
Access to these systems was critical to achieving PERI’s goals in both research and engagement.
PEAC also provides access to the larger performance engineering and research community, and
provides a mechanism for this larger community to contribute to the success of the DOE Leader-
ship Computing Facilities (LCF) and DOE’s goals in computational science at scale. Pat Worley
led the effort to submit the PEAC proposals, requesting in 2010 40M CPU hours on the Cray XT
systems at ORNL and 20M CPU hours on the IBM BG/P system at ANL. A separate but more
modest allocation was also obtained by Bailey on the NERSC facility for PERI project usage.

Outreach to SciDAC-2 and the Performance Community

Although PERI included many of the researchers working in performance evaluation, there were
other projects in that area, some funded by DOE SC. PERI’s intent was to be inclusive. We
therefore established collaborative relationships with several other performance evaluation
projects. These collaborations included access to our benchmark applications as well as substan-
tive relationships. For example, we are collaborated closely with the TASCS CET and
CSCAPES Institutes.

Training

During the course of PERI, Mary Hall directed students working on performance engineering
research at both USC and Utah. In the latter case, USC subcontracted for her services from the
University of Utah. Mary also had a post doctoral scholar.

Chun Chen, CS PhD at USC, then post doc at both USC and Utah
Protonu Basu, CS PhD at Utah

Malik Khan, CS PhD at USC

Shreyas Ramalingam, CS PhD at Utah

SciDAC-2 PERI 10 FY10 annual report

Bibliography

Books:

David H. Bailey, Robert F. Lucas and Samuel W. Williams, ed., Performance Tuning of Scientific
Applications, Taylor and Francis, New York, manuscript now complete; to be released in late
2010.

Chapters 1, 2, 3, 4, 7,10, 11, 12, 14, 15, 16 were directly authored or co-authored by PERI-funded
researchers; all chapters were at least edited by PERI-funded personnel:

1. “Introduction” by David H. Bailey
2. “Parallel Computer Architecture, by Samuel W. Williams and David H. Bailey
3. “Software Interfaces to Hardware Counters,” by Shirley V. Moore, Daniel K. Terpstra,

and Vincent M. Weaver.

4, “Measurement and Analysis of Parallel Program Performance using TAU and
HPCToolkit,” by Allen D. Malony, John Mellor-Crummey, and Sameer S. Shende.

5. “Trace-Based Tools,” by Jesus Labarta (Labarta is at the University of Barcelona in
Spain, but has collaborated with PERI in application analysis).

6. “Large-Scale Numerical Simulations on High-End Computational Platforms,” Leonid
Oliker, Jonathan Carter, Vincent Beckner, John Bell, Harvey Wasserman, Mark
Adams, Stephane Ethier, and Erik Schnetter.

7. “Performance Modeling: The Convolution Approach,” by David H Bailey, Allan
Snavely, and Laura Carrington.

8. “Analytic Modeling for Memory Access Patterns Based on Apex-MAP,” by Erich
Strohmaier, Hongzhang Shan, and Khaled Ibrahim.

9. “The Roofline Model,” by Samuel W. Williams.

10. “End-to-end Autotuning with Active Harmony,” by Jeffrey K. Hollingsworth and
Ananta Tiwari.

11. “Languages and Compilers for Autotuning,” by Mary Hall and Jacqueline Chame.

12. “Empirical Performance Tuning of Dense Linear Algebra Software,” by Jack Dongarra

and Shirley Moore.

13. “Autotuning Memory-Intensive Kernels for Multicore.” By Samuel W. Williams, Kau-
shik Datta, Leonid Oliker, Jonathan Carter, John Shalf, and Katherine Yelick.

14. “Flexible Tools Supporting a Scalable First-Principles MD Code,” Bronis R. de Su-
pinski, Martin Schulz, and Erik W. Draeger.

SciDAC-2 PERI 11 FY10 annual report

15. “The Community Climate System Model,” by Patrick H. Worley.

16. “Tuning an Electronic Structure Code,” by David H Bailey, Lin-Wang Wang,
Hongzhang Shan, Zhengji Zhao, Juan Meza, Erich Strohmaier, and Byounghak Lee.

Technical Articles:

[Bailey2007] David H. Bailey, Robert Lucas, Paul Hovland, Boyana Norris, Kathy Yelick, Dan
Gunter, Bronis de Supinski, Dan Quinlan, Pat Worley, Jeff Vetter, Phil Roth, John Mellor-
Crummey, Allan Snavely, Jeff Hollingsworth, Dan Reed, Rob Fowler, Ying Zhang, Mary Hall,
Jacqueline Chame, Jack Dongarra, Shirley Moore, “Performance Engineering: Understanding and
Improving the Performance of Large-Scale Codes,” CT Watch Quarterly, vol. 3, no. 4, pg. 18-23,
November 2007.

[Chen2007] C. Chen, J. Shin, S. Kintali, J. Chame and M. Hall, “Model-Guided Empirical Opti-
mization for Multimedia Extension Architectures: A Case Study,” Proceedings of the Workshop
on Performance Optimization of High-Level Languages, held in conjunction with IPDPS'07,
March 2007.

[Nelson2008] Y. Nelson, B. Bansal, M. Hall, A. Nakano, K. Lerman, “Model-Guided Perfor-
mance Tuning of Parameter Values: A Case Study with Molecular Dynamics Visualization,”
Proceedings of the Workshop on High-Level Parallel Programming Models and Supportive Envi-
ronments, held in conjunction with IPDPS '08, April 2008.

[Hall2008] M. Hall, Y. Gil, R. Lucas, “Self-Configuring Applications for Heterogeneous Sys-
tems: Program Composition and Optimization Using Cognitive Techniques,” Proceedings of the
IEEE, Special Issue on Cutting-Edge Computing, vol. 96(5), May 2008.

[Bailey2008] David Bailey, Jacqueline Chame, Chun Chen, Jack Dongarra, Mary Hall, Jeffrey K.
Hollingsworth, Paul Hovland, Shirley Moore, Keith Seymour, Jaewook Shin, Ananta Tiwari,
Sam Williams, Haihang You, “PERI Autotuning,” Journal of Physics: Conference Series 125
(2008), November 2008.

[Hall2009] M. Hall, J. Chame, C. Chen, J. Shin, G. Rudy, M. Khan, “Loop Transformation Reci-
pes for Code Generation and Autotuning”, The 22nd International Workshop on Languages and
Compilers for Parallel Computing, October 2009.

[Shin2010] Jaewook Shin, Mary Hall, Jacqueline Chame, Chun Chen, Paul Fisher and Paul Hov-
land, “Speeding up Nek5000 with Autotuning and Specialization”, The 24™ International Confe-
rence in Supercomputing (ICS 2010), June 2010.

[Rudy2010] G. Rudy, M. Hall, C. Chen, J. Chame, M. Khan, “A Programming Language Inter-
face to Describe Transformations and Code Generation,” The 23rd International Workshop on
Languages and Compilers for Parallel Computing, October 2010.

[Chame 2011] Jacqueline Chame, Chun Chen, Mary Hall, Jeffrey K. Hollingsworth, Kumar Ma-
hinthakumar, Gabriel Marin, Shreyas Ramalingam, Sarat Sreepathi, VVamsi Sripathi, Ananta Ti-
wari, “PERI Autotuning of PFLOTRAN,” Journal of Physics (to appear), Proceedings of Sci-
DAC 2011, July 2011.

SciDAC-2 PERI 12 FY10 annual report

