

LA-UR-

11-041580

Approved for public release;
distribution is unlimited.

<i>Title:</i>	International Safeguards Regime
<i>Author(s):</i>	Brian D. Boyer Los Alamos National Laboratory, Los Alamos, NM, USA
<i>Intended for:</i>	IGCC PUBLIC POLICY & NUCLEAR THREATS 2011 SUMMER TRAINING WORKSHOP August 10, 2011 UC San Diego Campus

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

International Safeguards Regime

IGCC PUBLIC POLICY & NUCLEAR THREATS

2011 SUMMER TRAINING WORKSHOP

August 10, 2011 UC San Diego Campus

**Brian Boyer
LANL**

ABSTRACT

This lecture describes the international safeguards regime. It details the role of the International Atomic Energy Agency (IAEA) in safeguarding the nuclear fuel cycle around the world. The technical objective of safeguards of “the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection” is elaborated on and made clear to the students. Examples of what significant quantities of nuclear material and timeliness of detection are made lucid to the students.

UNCLASSIFIED

International Safeguards Regime

Public Policy and Nuclear Threats

University of California San Diego

Institute on Global Conflict and Cooperation (IGCC)

August 10, 2011

Brian D. Boyer

Project Leader International Safeguards/R&D Engineer 5
Nuclear Nonproliferation Division N-4, Safeguards & Security Group

Los Alamos National Laboratory

MS E-541

Los Alamos, NM 87545-1663

bboyer@lanl.gov

UNCLASSIFIED

Operated by the Los Alamos National Security, LLC for NNSA

LA-UR 09-00207

Starting Point: Non-Proliferation Treaty (NPT)

- **The Fundamental nuclear arms agreement**
 - Prevents proliferation of nuclear weapons
- **NNWS at the time of signature (1968)...**
 - Agreed not to pursue nuclear weapons programs
- **Five NWS designated at the time of signature...**
 - Agreed to total and complete disarmament
 - USA, Russia, and U.K.(1968-70) France and China(1992)
- **Comprehensive Safeguards Agreements**
 - INFIRC/153 (corr.) Model Agreement (1972)
 - U.S. Voluntary Offer Agreement - In force Dec 1980 - INFIRC/288
- **Additional Protocol: Key Part of Strengthened Safeguards System**
 - INFIRC/540 (corr.) Model Agreement (1997)
 - U.S. in force - January 2009 - INFIRC/744

Let Us Define What is Safeguards

INFCIRC 153 Para. 28: The Safeguards Technical Objective

INFCIRC/153 Para. 28: The Safeguards Technical Objective

... the objective of safeguards is the *timely detection of diversion of significant quantities of nuclear material* from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and *deterrence of such diversion* by the *risk of early detection*...

NOTE:

- **Timeliness of Detection**
- **Significant Quantities (SQs) of Nuclear Material**
- **Deterrence by Risk of Early Detection**

“Nuclear Material and SQ” Defined

Nuclear Material	SQ in KG
Pu (<80% Pu-238)	8 kg Pu
U-233	8 kg U-233
HEU (=>20% U-235)	25 kg U-235
LEU (<20% U-235 including natural U and depleted U)	75 kg U-235 (or 10 t nat. U or 20 t depleted U)
Thorium	20 t Thorium

“Timeliness” - Material Guidelines

Detection Probabilities

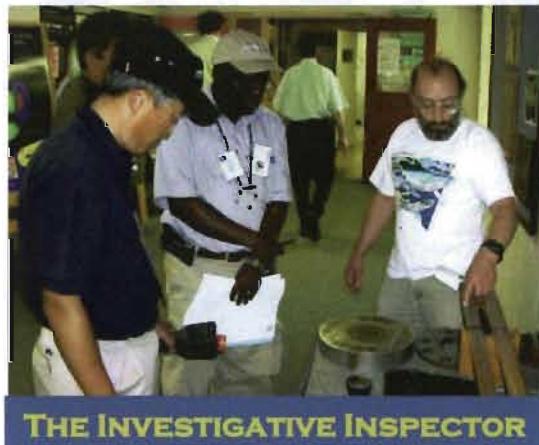
Nuclear Material	Material Form	Conversion Time	IAEA Timeliness Goals	Probability of Detection
Pu, HEU or U-233	Metal	few days (7-10)	1 MONTH	Random Low-Low (10%)
Pure Pu components	Oxide (PuO ₂)	few weeks (1-3)		Random Low (20%)
Pure HEU or U-233 compounds	Oxide (UO ₂)	few weeks (1-3)		Random Medium (50%)
MOX	Non-irradiated fresh fuel	few weeks (1-3)		Random High (90%)
Pu, HEU or U-233	In scrap	few weeks (1-3)	3 MONTHS	
Pu, HEU or U-233	In irradiated fuel	few months (1-3)		
LEU and Th	Unirradiated Fresh Fuel	order of 1 year	1 YEAR	

Note: INFIRC/153 safeguards assume possibility of clandestine facilities

The Present Safeguards System

The Keystone = State Declarations

- **State Declarations** – The basis of everything
- **The principle of independent verification**
 - Started as a marriage of principles and practices borrowed from
 - Property accounting
 - Statistical quality control
 - Financial accounts auditing



UNCLASSIFIED

Strengthened Safeguards System

THE UPDATED OBJECTIVES

*“the safeguards system should be designed to provide credible assurances that there has been **no diversion of declared nuclear material** and that there is **no undeclared nuclear material and activities** (BOG, March 1995)”*

Nuclear Material Accountancy

- Concepts of accountancy drive the CSA system
- Declarations – basis of everything
- Verify – via principle of independent verification
- Accountancy – includes
 - Balance numbers
 - Analyze verification
 - Review C/S

The Inspector Doing his Accountancy

Strengthened Safeguards System

Post 1991 Gulf War – SSS Inspection Role

- **Consequences for the Inspector**

- Additional Protocol / Complementary Access
- Emphasis on information based safeguards
- Increased transparency measures
- *The Investigative Inspector*
- Ask questions! Think!

*DDG-SG - Herman Nackaerts (1/19/10)
Not good enough for inspector to state he
does something because it is in the Criteria.
Why?*

Key to Transparency and Trust

Safeguards Confidential = Protection of Information

- What Needs to be Protected?

- Design of a nuclear facility
- Nuclear material information

- Quantity
- Location
- Composition
- Movement of nuclear material

- Safeguards approach or goals for a specific facility
- Results of a specific inspection
- A.P. Declaration

CONFIDENTIAL

**INTERNATIONAL ATOMIC ENERGY AGENCY
DEPARTMENT OF SAFEGUARDS AND INSPECTION**

**DESIGN INFORMATION
QUESTIONNAIRE***

IAEA USE ONLY

--	--	--	--

This purpose of this document is to obtain the facility design information required by the Agency in order to verify the implementation of the Safeguards. It may also serve as a check list for transmission of design information by Agency inspectors. It, in any case, is intended to facilitate and reduce planning by the extent necessary.

Questions which are not applicable may be left unanswered.

All figures & units are IAEA

IAEA USE ONLY

COUNTRY	COUNTRY OFFICER
TYPE	
DATE OF INITIAL DATA	
VERIFICATION	
LAST REVIEW AND UPDATING	

CONFIDENTIAL

Summary

- NPT – very successful treaty agreement
- Accountancy – verifying declarations will still be key
- The inspector key to verifying NPT Art III commitments
- Access to States and Facilities is key – eyes and ears
- How to prove the negative → Find undeclared activities
- Use of Information → Future → Effective/Efficient