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Abstract—MapReduce is increasingly becoming a popular
framework, and a potent programming model. The most popular
open source implementation of MapReduce, Hadoop, is based
on the Hadoop Distributed File System (HDFS). However, as
HDFS is not POSIX compliant, it cannot be fully leveraged by
applications running on a majority of existing HPC environments
such as Teragrid and NERSC. These HPC environments typically
support globally shared file systems such as NFS and GPFS.
On such resourceful HPC infrastructures, the use of Hadoop
not only creates compatibility issues, but also affects overall
performance due to the added overhead of the HDFS. This paper
not only presents a MapReduce implementation directly suitable
for HPC environments, but also exposes the design choices
for better performance gains in those settings. By leveraging
inherent distributed file systems’ functions, and abstracting them
away from its MapReduce framework, MARIANE (MApReduce
Implementation Adapted for HPC Environments) not only allows
for the use of the model in an expanding number of HPC
environments, but also allows for better performance in such
settings. This paper shows the applicability and high performance
of the MapReduce paradigm through MARIANE, an implemen-
tation designed for clustered and shared-disk file systems and
as such not dedicated to a specific MapReduce solution. The
paper identifies the components and trade-offs necessary for this
model, and quantifies the performance gains exhibited by our
approach in distributed environments over Apache Hadoop in a
data intensive setting, on the Magellan testbed at the National
Energy Research Scientific Computing Center (NERSC).

I. INTRODUCTION

MapReduce is an increasingly popular framework and pro-
gramming model. Introduced in 2004 at the USENIX Sym-
posium on Operating Systems Design and Implementation
(OSDI) [1], the model is inspired from the functional pro-
gramming construct ”map()”. As such, MapReduce consists
of the application of uniform functions ”map” and ”reduce”

to a set of input elements sub-divided into multiple chunks
to be processed by machines, part of a distributed computing
system. The appeal of the model stems from the fact that it
absolves the programmer from the burden of input manage-
ment, parallelism, and synchronization constraints. MapRe-
duce programs are written as single node programs by the
user, and are subsequently parallelized by the framework.
The details of input distribution, synchronization of necessary
data structures, as well as handling machine failures, are all
abstracted away from the user, and hidden in the paradigm
itself. The MapReduce model in its most popular form,
Hadoop [2], uses the Hadoop Distributed File System (HDFS)

[3] to serve as the Input/Output manager and fault-tolerance
support system for the framework. The use of Hadoop, and
of the HDFS is however not directly compatible with HPC
environments such as NERSC [4], the NY state Grid [5],
the Open Science Grid [6], and TeraGrid [7]. This is so
because Hadoop implicitly assumes dedicated resources with
non-shared disks attached. At NERSC’s Magellan cluster, the
system administrator has isolated a part of the large cluster for
use with Hadoop. This isolation not only limits the resources
available to MapReduce programs, but also produces perfor-
mance penalties with MapReduce programs, as HDFS on top
of an underlying filesystem introduces performance hampering
layers of indirection. In contrast, applications using the rest
of the cluster interact directly with GPFS. Furthermore, even
though Hadoop has successfully worked at large scale for a
myriad of applications , it is not suitable for scientific (legacy)
applications that rely on a POSIX compliant file systems in
the grid/cloud setting. The HDFS is not POSIX compliant.
In this paper, we investigate the use of Global Parallel File
System (GPFS) [8], Network File System (NFS) [9] for large
scale data support in a MapReduce context.

For this purpose we picked three application groups, two
of them, UrlRank and ”Distributed Grep”, from the Hadoop
repository, and a third of our own: XML parsing of arrays
of double, tested here under induced node failures, for fault-
tolerance testing purposes. The first two being provided with
the Hadoop application package, have been shown to provide
scalable performance with Hadoop [10]. Even as we limit
our evaluation to NFS and GPFS, our proposed design is
compatible with a wide set of parallel and shared-block
file systems, such as LUSTRE [11], pNFS [9], GFS2 [8],
and Oracle Cluster FS [12]. We present the diverse design
implications for a successful MapReduce framework in HPC
contexts, and show the performance data collected from the
evaluation of this approach to MapReduce along side Apache
Hadoop at the National Energy Research Scientific Computing
Center (NERSC) Magellan [4] cluster.

The contributions of this paper are the following:

• We design and implement a MapReduce framework,
MARIANE, capable of making use of various cluster,
shared-disk, POSIX, and parallel file systems.

• We show the possibility through MARIANE of the
MapReduce model’s applicability to a wider array of HPC



environments with different distributed file systems.

• We show the ability for MapReduce to make full use of
computational resources in HPC environments, wherein
computational jobs on all nodes do not have local disk
access.

• We show that high performance can be achieved by
offloading MapReduce file system operations to a shared
file system, in so doing, leaving the MapReduce frame-
work to only ”map” and ”reduce”.

II. THE ARCHITECTURE OF A MAPREDUCE PLATFORM

Hadoop uses the HDFS, inspired from the GFS [13] for
various background tasks such as input management, distri-
bution, locality, output collection, performance but also fault-
tolerance. As a data manager, the HDFS is tasked with dividing
the input among participating nodes in the cluster, keeping a
myriad of accounting tallies, including chunk size, location,
and duplication counts. The HDFS insures input distribution
and rally in providing the user with an interface whose role is
to provide bits of given data files to cluster nodes. Among its
chief advantages, the Hadoop Distributed File System provides
input locality by enabling nodes hosting input shards to apply
their processing on such chunks, rather than on remotely stored
data. This design provides significant performance benefits as
the computation is brought to the data, rather than the data
to the computation [14]. In line with its data management
role, the HDFS collects output data processed by nodes,
and ”shuffles” them for the reducer(s) to operate on them.
Following reducing, the file system then assembles data in a
coherent form and makes it available for user view, or for
subsequent MapReduce processing. In one of its most central
roles, the HDFS allows for the Hadoop MapReduce fault-
tolerance mechanism to thrive. The HDFS in that function
keeps integrity reports, block condition reports and triggers
the replication of faulty or missing blocks due to node failure.

III. MAPREDUCE FOR SHARED-DISK FILE SYSTEMS

As highlighted above, a successful MapReduce implementa-
tion requires parallelization, synchronization abstraction from
the user, as well as fault-tolerance and an effective data man-
agement scheme. These features must however be hidden from
the user’s responsibility, while embodying the fabric of the
framework. With today’s use of MapReduce for petabyte and
exabyte size data, other important factors such as scalability
stem from the correct application of the tenets outlined above.
With Apache Hadoop, all but synchronization abstraction rests
outside of the HDFS’s authority. The Hadoop Distributed File
System is however not a dedicated choice within many HPC
environments. In such settings including, but not limited to
NERSC [4], the NY state Grid [5], the Open Science Grid [6],
and TeraGrid [7], where the Message Passing Interface (MPI)
[15] is widely adopted, shared-disk file systems offering the
visibility of a storage solution to all nodes are favored. The use
of the HDFS and by extension of MapReduce not only through
Hadoop, but Twister [16], Dryad [17] need either the isolation
of limited resources to that end, or the revamping of the cluster

solely to MapReduce’s end. For example, at NERSC the sys-
tem administrators have set aside for Hadoop, 400 nodes out
of 17000. Access via ssh and queuing policies for these nodes
are different than the rest of the cluster. The latter case being
impractical, wherever applicable in such settings, MapReduce
users find themselves not able to make full use of existing
resources. More often, this means for cluster administrators,
the installation of the model on top of an already dedicated
system. This approach requires traversing additional layers of
indirections to the system as the HDFS must be accomodated
on the host cluster. Such additional layers of indirections
have been shown as performance degrading by [18], in which
Hadoop’s performance is shown as poor in virtualized settings,
precisely because of the many layers of abstractions sitting
between the native systems and the Hadoop Distributed File
System. In the case of Twister and Dryad, the issue is not
of HDFS’ use, as such frameworks do not make use of it,
but rather, the use of a similar approach requiring that each
node be granted independent storage from all other nodes in
the cluster. As has been our experience, such a request as in
Hadoop’s case leads either to resource isolation, or to resource
limitation. This is because, MPI friendly clusters, such as
TeraGrid, and NERSC, offer immense computing power, but
also favor directly networked and POSIX file systems, as such
a scheme is suitable for their operations.

IV. THE CASE FOR MARIANE

MapReduce itself constitutes a model rather than an im-
plementation. This model aiming at distributed processing
of large datasets is compatible in its tenets rather than its
implementation to most widely available HPC platforms. The
three pillars of the model (Data management, synchronization
abstraction, and fault-tolerance) can be found in the majority
of HPC platforms in use today. Where not present, the latter
two can be engineered. Nonetheless, the tight coupling of
the MapReduce model to its implementation in various cases
outlined, introduces inefficiencies not suitable for traditional,
batch and legacy systems. These inefficiencies, we believe,
should not handicap the model from evolving, nor should it
restrict applications from using the full force of its capacity in
HPC environments. To this effect, we designed the implemen-
tation of MapReduce on such systems for adaptability reasons
first, and subsequently analyzed the performance aspects pre-
sented by the approach. In this work we focus on NFS and
GPFS [9], [19]. Even though we limit ourselves here to NFS
and GPFS, due to a common high level structure, and disk
presentation, MARIANE can be installed and evaluated on
a myriad of shared-disk and clustered file systems. We will
focus in future work to benchmark a sizable number of such
file systems with MARIANE in a performance evaluation, as
this paper’s scope is focused on quantifying the HDFS bottle-
neck along with its performance implications of MARIANE’s
design choices.



A. The NERSC case

The National Energy Research Scientific Computing Center
(NERSC) [4] hosts over 7 central clusters, as well as a myriad
of specialized ”sub-clusters” hosting various energy research
projects. NERSC totals approximately 17,000 available nodes
setup for MPI use, used for research purposes, and within
which, sit over 200,000 processing cores. NERSC also offers
over 2000 Petabytes of storage space for compute and data
intensive applications. Apache Hadoop is installed on its
Magellan cluster and benefits from 400 processing cores and
785 TB of data space. This stems from Hadoop’s requirement
to operate under the HDFS and similarly structured storage
systems such as S3 with Amazon MapReduce [20]. Hadoop
and the HDFS however, similarly to other MapReduce im-
plementations such as Twister and LEMO-MR [21], when
operating under global filesystems as in NERSC’s case, re-
quire dedicated disks, or at least, dedicated disk partitions.
Each node also needs dedicated ports and active MapReduce
daemons running on them. In Hadoop’s case, the HDFS needs
to be large enough to accommodate minimum file replication
requirements for an effective fault-tolerance mechanism. This
by default means 3 times the input size for each file present
on the file system, and as such, 3TB of space for a 1TB
set of input files. These various conditions can cause the
MapReduce cluster to be spared minimal resources, as overall
resources can not be solely dedicated to MapReduce. In a
similar environment, MARIANE can make use of the existing
global filesystem as it is configured. The framework only uses
the secure shell, and does not require any dedicated ports and
daemons, nor does it require file replication space for its input.
In its operation, MARIANE can afford constant node deletion
and addition to its host file without requiring the cluster to be
reconfigured. The framework does not need to be started or
stopped, and only requires installation on the ”Master” node,
rather than on all participating computers as it is the case
with Hadoop and Twister. The MARIANE framework is thus
designed to be seamlessly setup on HPC environments with
no disruption to the environment’s integrity or structure.

B. Design considerations in MARIANE

The design of MARIANE rests upon of three princi-
pal modules, representing the tenets of the MapReduce
model. Input/Output management and distribution rests within
the Splitter. Concurrency management in the role of
TaskController, while fault-tolerance dwells with the
FaultTracker.

Figure 1 shows the design used for MARIANE

C. Input Management

1) Input Splitting: While Hadoop and most MapReduce
applications apportion the input amongst participating nodes,
then transfer each chunks to their destinations, MARIANE
relies on the inherent shared file system it sits on top for
this feat. The framework leverages the data visibility offered
by shared-disk file systems to cluster nodes. This feature

Fig. 1. Architecture used for MARIANE

exonerates MARIANE from operating data transfers, as such a
task is built-in and optimized within the underlying distributed
file system. Input management and split distribution are thus
not performed on top of an existing file system (FS), but rather
with the complicity of the latter. This absolves the application
from the responsibility of low-level file management and with
it, from the overhead of efficiently communicating with the
FS through additional system layers. Furthermore, MARIANE
in doing so, benefits not only from file system and data
transfer optimizations provided by evolving shared-disk file
system technology, but can solely focus on ”mapping” and
”reducing”, rather than data management at a lower level.

D. Input Distribution

Input distribution is directly operated through the shared
file system. As the input is deposited by the user, the FS is
optimized to perform caching and pre-fetching to make the
data visible to all nodes on-demand. This frees the MapReduce
framework from accounting, and transferring input to the
diverse nodes. Another benefit of shared-disk file systems with
MapReduce, one which became apparent as the application
was implemented is the following: current MapReduce im-
plementations, because of their tightly coupled input storage
model to their framework require cluster re-configuration upon
cluster size increase and decrease. This does not allow for
an elastic cluster approach such as displayed by the Amazon
EC2 cloud computing framework [20], or Microsoft’s Azure
[22]. Although cloud computing is conceptually separate from
MapReduce, we believe that the adoption of some of its
features, more specifically ”elasticity”, can positively benefit
the turn around time of MapReduce applications. With the



input medium isolated from the processing nodes, as MARI-
ANE features, more nodes can be instantaneously added onto
the cluster, without incurring the cost of data redistribution,
or cluster re-balancing. Such operations can be highly time
consuming, and only allow for the job to be started at their
completion, when all data settles on the cluster nodes involved
[2]. With MARIANE, input storage is independent from the
diverse processing nodes. Separating the I/O structure from
the nodes allows for a swift reconfiguration and a faster
application turnaround time. In Hadoop’s case, removing a
node holding a crucial input chunk means finding a node
holding a duplicate of the chunk held by the exiting node
and copying it to the arriving node, or just re-balancing the
cluster, as to redistribute the data evenly across all nodes.
Such an operation with large scale input datasets can be time
consuming. Instead, according to the number of participating
workers in the cluster, nodes can be assigned file markers as
to what part of the input to process. Should a node drop or be
replaced, the arriving machine simply inherits its file markers,
in the form of simple programming variables. This mechanism,
as our performance evaluation will show, also makes for an
efficient and light-weight fault-tolerant framework.

E. Task tracker and task control

The task tracker, also known as ”master” makes the ”map”

and ”reduce” code written by the user, available to all partic-
ipating nodes through the shared file system. This results on
the application level to a one time instruction dispatch, rather
than ”map” and ”reduce” instructions streaming to as many
participating nodes as there are in the cluster. Upon launch,
the nodes designated as mappers also subsequently use the
”map” function, while those designated as reducers, use the
”reduce” function. The task tracker monitors task progress
from the cluster nodes, and records broken pipes and non-
responsive nodes as failed. A completion list of the different
sub-tasks performed by the nodes is kept in the master’s data
structure. Upon failure, the completion list is communicated
to the FaultTracker. Slow nodes are similarly accounted
for, and their work is re-assigned to completed and available
machines. In a redundant situation caused by two nodes
running similar jobs, in the case perhaps of a slow node’s
job being rescheduled, the system registers whichever sub-job
completes first. This particular scheme is akin to Hadoop’s
”straggler” suppressing mechanism, and serves as a load
balancing maneuver.

F. Fault-tolerance

While Hadoop uses task and input chunk replication to
fault-tolerance ends, we opted for a node specific fault-
tolerance mechanism, rather than an input specific one. With
this approach, node failure does not impact data availability,
and new nodes can be assigned failed work with no need for
expensive data relocation. Upon failures, we elected for an
exception handler to notify the master before terminating, or
in the case of sudden death of one of the workers, the rupture
of a communication pipe. Furthermore, the master receives

the completion status of the ”map” and ”reduce” functions
from all its workers. Should a worker fail, the master receives
notification of the event through a return code, or a broken
pipe signal upon sudden death of the worker. The master then
updates its node availability and job completion data structures
to indicate that a job was not completed, and that a node
has failed. We later evaluate this low overhead fault-tolerant
component along with Hadoop’s data replication and node
heartbeat detection capability, and assess job completion times
in the face of node failures.

1) FaultTracker: The Fault-Tracker consults the task com-
pletion table provided by the master node, and reassigns failed
tasks to completed nodes. Unlike Hadoop, the reassignment
does not include locating relevant input chunks to the task and
copying them, if those chunks are not local to the rescuing
node. The task reassignment procedure rather provides file
markers to the rescuing node so it can process from the
input, the section assigned to the failed node. As the input
is visible to all nodes, this is done without the need to
transfer huge data amounts, should massive failures occur. The
FaultTracker’s operation is recursive; should a rescuing
node fail, the rescuer is itself added to the completion table
and the module runs until all tasks are completed, or until
all existing nodes die or fail. In the interim, dead nodes are
pinged as a way to account for their possible return and
inscribe them as available again. Hadoop uses task replication
regardless of failure occurrence. It also does not keep track
of nodes that might have resurfaced after suddenly failing.
MARIANE for its part only uses task replication in the case
of slow performing nodes, when the sloth is detected, and
not before. To this effect, whichever version of the replicated
sub-job completes first is accepted.

V. DISTRIBUTED LARGE-SCALE DATA PROCESSING

In this section, we test the applicability of MARIANE to
traditional MapReduce problems along side Hadoop MapRe-
duce. We not only test the framework in various node addition
schemes with constant input sizes to account for cluster
increase scalability and speed-up, but also test the cluster
for increasing input sizes faced with static cluster sizes. Our
experiments were conducted on the National Energy Research
Scientific Computing Center’s cluster (NERSC), and in the
Binghamton University Grid and Cloud Computing Research
Lab. On NERSC, we performed our tests on the Magellan
cluster where MARIANE was installed on top of GPFS, and
tested along side the local Apache Hadoop v.20 installation
running on the same test bed. The Binghamton University
Grid and Cloud Computing Research Lab benefits from the
same Hadoop version, and hosts MARIANE using NFS. In
all the experiments showcased, we ran MARIANE along side
Hadoop using identical nodes, identical node counts, identical
input data and similar user source code.

We chose for these experiments the application of traditional
MapReduce problems, available from Apache Hadoop’s ex-
ample repository. One being UrlRank, a popular application



similar to Google pagerank [23], and used at Yahoo! with
Hadoop MapReduce to categorize web pages by request
frequency. Similar versions of this application are also used
for data mining and user statistical analysis at Facebook [24].
The second application we tested was ”Distributed Grep”,
where typically, documents containing word or sequences
patterns are searched and returned from Terabytes of raw data,
or potentially hundreds of millions of individual documents,
making processing on a single computer, an unacceptable
option. Variations to this application include pattern appear-
ance frequencies and count. As a final application group,
we tested a compute intensive application, one of our own:
distributed parsing and processing of XML elements, using
the AxisJava parser [25]. AxisJava is a web services-based
toolkit consisting of a SOAP engine capable of creating SOAP
processors allowing data content parsing. Resulting tokens
from this parsing can then subsequently be streamed into
application-friendly content and returned to the user. Our input
data for testing purposes is composed of arrays of floating
point numbers. In [26], [27], we have shown that AxisJava
scales poorly for applications that require processing arrays
of floating point numbers. The computation is intensive and
demanding on the systems involved, regardless of overall data
size. With our XML data parsing experiments, we test the
performance of both frameworks’ fault-tolerance mechanisms
in the face of node failures.

VI. PERFORMANCE RESULTS

We run our tests on a selection of two clusters:

NERSC Magellan cluster

• 1× 8 core – Intel Nehalem machines, with 2.6Ghz and
3 GB of ECC RAM, running Linux The file system in
use here is GPFS. Results on this class of machines are
taken by averaging the timings produced on these nodes.

Grid and Cloud Computing Research Lab Cluster at Bingham-
ton University

• 1× dual core – One desktop-class machine, which has a
single 2.4Ghz Intel Core 6600 with 2 GB of ECC RAM,
and quad cores running Linux 2.6.24. The file system in
use here is NFS v.4.

• 2× quad core – 1U nodes in a cluster, each of which
has two 3.2Ghz Intel Xeon CPUs, 4 gigabytes of RAM 8
cores, and run a 64 bit version of Linux 2.6.15. Results on
this class of machines are taken by averaging the timings
produced on these nodes. The file system in use in the
test directory is NFS v.4

Experiments 1, 2, 3 were run on NERSC, under GPFS,
whereas experiment 4, 5 and 6 were run on at Binghamton
University under NFS.

Figure 2 compares Hadoop and MARIANE in a data
intensive scenario. This experiment being more data intensive
than compute intensive, MARIANE can comfortably rely on
the shared-disk file system for data management, while the
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Fig. 2. 400-node MARIANE and Hadoop clusters, each ranking over 5
billion given urls on the National Energy Research Scientific Computing
Center’s (NERSC) cluster. Both MapReduce frameworks gradually process
diverse increasing input loads ranging from 0.1 to 5.6 billion urls.
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Fig. 3. MARIANE and Hadoop clusters processing each 1.7 billion urls
with diverse cluster sizes ranging from an 8 node cluster to a 256 node
cluster. This experiment, like the previous one, was run on the National
Energy Research Scientific Computing Center’s (NERSC) cluster. Hadoop is
considerably slower for small clusters as its data management operation needs
more nodes to replicate and disseminate data, in an effort to make it local to
each of its nodes. MARIANE automatically benefits from this feature even
with smaller cluster sizes, as the shared-disk file system makes its input local
and visible to the entire cluster. Despite the convergence of curves towards
256 nodes, it is worth pointing out that with 256 nodes, Hadoop runs the 1.7
billion urls in 67.09 seconds while MARIANE runs the same load in 16.723
seconds, thus 4 x faster.

platform solely focuses on ”mapping” and ”reducing”. Hadoop
on its end, working in tight concert with the HDFS for fault-
tolerance and data integrity purposes, needs to traverse the
HDFS to access its input data. What’s more, Hadoop needs to
operate and maintain the HDFS as it performs ”map” and ”re-

duce” operations on all its nodes. Such tasks include among
others, chunk integrity checks, datanode heartbeat checks, and
chunk replication count threshold verifications. As MapReduce
processes huge datasets, the result of this experiment is also
heavily dependent on the data transfer ability exhibited by both
technologies. In our tests, we measured GPFS’s transfer speed
at the time of the experiments, to be ranging around 0.83GB/s,
while HDFS showed 0.12GB/s.
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Fig. 4. Speed-up computed from MARIANE and Hadoop clusters processing
1.7 billion urls with diverse cluster sizes ranging from 8 nodes to 256 nodes.
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Tp
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relative to its previous sized versions. Both clusters roughly scale in a similar
fashion. Hadoop however scales slightly better size-wise vis-a-vis itself as it
shows slower performance in earlier runs.

Figure 3 shows a performance trend similar to that shown
in Figure 2. In this case however, the cluster size is gradually
increased from 8 nodes to 256 nodes, while the input sits at
a cumulus of 1.7 billion urls processed per cluster run. The
slower performance exhibited by Apache Hadoop for small
clusters here stems from the need for intermediate results to
more often be checked onto disk (HDFS), rather than held
in memory; this is so, as the small number of nodes does not
permit the latter. As a result, this circumstance causes repeated
HDFS reads and writes in the midst of ”map” and ”reduce”

operations, thus further negatively impacting performance.
MARIANE also suffers from the inability to make use of
faster memory storage offered by a wide array of nodes. In
MARIANE’s case however, the disk penalty is simply not
as high, for the framework is devoid of file management
responsibilities, and the file system in play appears more
efficient.

In Figure 4, speed-up is computed as a measure of how
both clusters scale relative to themselves. Even though both
scale in a similar fashion vis-a-vis themselves, Hadoop speed-
ups slightly better when more nodes are added to the cluster.
When such is the case, HDFS transfers can diminish as data
can be held in greater size in memory as a result of more
nodes’ presence in the cluster.

In Figure 5, both clusters process word pattern searches on
0.5TB of data with cluster size ranging from 8 nodes to 256
on the Binghamton University cluster. As a direct consequence
of those cluster sizes, processing runtimes range from 5 hours
with 8 nodes to 8 minutes with 256 nodes. Here, as with
GPFS , performance trends are maintained, even as Hadoop’s
performance considerably improves in this context. This is
perhaps due to the nature of the application run, because
”Distributed Grep” relies heavily on memory operations, and
can do without a constant need for disk (HDFS) access, espe-
cially disk writes. In such an environment, Hadoop emerges
less penalized by HDFS housekeeping and operations during
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Fig. 5. This figure shows the operation of ”Distributed Grep” on 0.5TB of
data by both frameworks, with diverse cluster sizes ranging from an 8 node
cluster to a 256 node cluster for both Hadoop and MARIANE. MARIANE
here benefits from the support of NFS, as this experiment was run on the
cluster at the Binghamton University Grid and Cloud Computing Research
Lab.
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Fig. 6. Speed-up computed from MARIANE and Hadoop clusters processing
0.5TB of data with diverse cluster sizes ranging from 8 nodes to 256 nodes.
Speed-up is computed as T1

Tp
and represents how fast each cluster performs

relative to itself. Hadoop scales vis-a-vis itself better as it starts slow.

its runtime. Towards 256 nodes, despite the appearance of
proximity of both plots in the Figure, MARIANE runs the
input in 8 minutes, whereas Hadoop does so in 13. With NFS
on our test bed, at the time of the experiments, we recorded
transfer speeds of 0.08GB/s, while HDFS showed 0.04GB/s
for internal HDFS transfers and 0.03GB/s for NFS to HDFS
transfers. Note the closer NFS and HDFS rates, compared to
GPFS, as perhaps a factor in Hadoop’s closer performance
numbers to MARIANE’s.

In Figure 6, Hadoop shows faster speed-up than MARI-
ANE. Starting slow, the framework gains faster speeds com-
pared to its previous runs. MARIANE however keeps a
constant increase throughout the experiment. The difference
in speed-up stems from Hadoop’s comfort with growing
cluster sizes. In such settings, memory from the cumulus
of participating nodes abounds, and as such HDFS access
from intermediate data storage can be bypassed. This gives
the framework a boost of performance as overhead prone
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Fig. 7. Parsing of 84 million XML elements under failing conditions. Both
MARIANE and Hadoop start with 400 nodes each. Gradually, we pull the
power plug on 8, 20, 40, 80, 120 and 160 processing nodes, causing them to
fail. As its input data is held by its nodes, upon failure, Hadoop is subjected to
input data integrity checks, replication checks, data replication, relocation and
cluster re-balancing. These operations in HDFS can be time consuming and
as a result negatively impact performance. MARIANE, under failing nodes,
instructs its TaskController to pass file markers from the dead nodes
to the rescuing nodes for them to commence work. This involves simple
argument passing, as data values are exchanged, and explains the performance
observed under failing conditions.

operations are avoided. MARIANE, even as it is the subject
of the same advantages and disadvantages, does not suffer
as greatly from constant NFS access as Hadoop does from
HDFS access. Figure 7 shows in action MARIANE’s fault
tolerance mechanism outlined in the design section (IV-B). As
nodes are decoupled from the input in MARIANE’s design,
their failure does not take with them input chunks necessary
for the application’s well-being. As such, the input does not
need to be relocated or even replicated. Rescuing nodes in
MARIANE’s case are simply told where to find the input
left by the failed nodes. Such input, visible to the entirety
of the processing cluster, can be readily accessed by any
rescuing node lending help to a failed node. The hand-off as
such, consists of file marker passing, and as a result, occurs
relatively fast, explaining the performance observed in Figure
7 under failing conditions. It should be noted that should the
storage solution fail, the cluster will find itself inoperable. This
however would entail the cluster as a whole, and not only
MARIANE’s operations. Similarly, should the HDFS itself or
even the master node fail in Hadoop’s case, the Hadoop cluster
will find itself in an inoperable state as well. Figure 8 shows
how much slower vis-a-vis itself, each framework performs as
more nodes fail. This graph is a different perspective on Figure
7. In Hadoop’s case, we can observe a progressively faster
slow-down trend as more nodes fail, due to cluster balancing,
data replication and relocation features, happening within the
framework. MARIANE, on the other hand, proceeds to file
marker hand-offs to rescuing nodes, allowing them to swiftly
act upon the occurring node failures.
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Fig. 8. Slow-down factor computed from MARIANE and Hadoop clusters
parsing XML elements with the AxisJava engine, using diverse cluster sizes
ranging from 8 nodes to 256 nodes. Slow-down, as speed-up is computed as
T1

Tp
and represents here how much slower vis-a-vis itself, each framework

performs as more nodes fail. Hadoop’s processing slows down more as the
platform loses more nodes. The same is true for MARIANE, at a slower rate
however.

VII. RELATED WORK

In the High-Performance Distributed Computing commu-
nity, many systems such as Sphere/Sector [28] have been
designed and developed for distributed data, application man-
agement and processing. Sphere is however not a MapReduce
application, and as such does not offer all the advantages
embodied in the model and in MARIANE. Amazon has
produced EC2 [20], a cloud computing framework allowing
for MapReduce applications to be implemented. In a similar
fashion, Microsoft has produced Azure [22]. EC2 and Azure
are proprietary applications, and hence an insightful analysis
on their design decisions is not possible. Twister [16] and
DELMA [29] are MapReduce frameworks, one espousing an
iterative approach, and the other an elastic approach to solving
MapReduce problems. Both however require each of their
nodes to benefit from individual storage units, as a shared
storage option is not yet supported by both implementations.
The same can be said for Microsoft Dryad [17]. These
measures to storage management cast both Twister and Dryad,
as Hadoop and DELMA, with the inability as of yet to flourish
on traditional HPC frameworks.

VIII. CONCLUSIONS

With its applications in search engine technology, space
monitoring and data mining technology, among others,
MapReduce has slowly grown to be a successful and widely
acclaimed data processing model. A testament to the model’s
effectiveness dwells in, to cite a few, among Yahoo!, Facebook,
and Google’s use of it, for large scale data processing. Before
the application of MapReduce, Yahoo! took 26 days of pro-
cessing to build automatic completion indexes for their search
engine. After MapReduce, the same operation was reduced to
20 minutes with a cluster of computing nodes [30]. MapRe-
duce has however in so far as it has been presented required
dedicated disk-space for its applications. Founded on the



HDFS, in Hadoop’s case, and in the HDFS’s image in auxiliary
implementations of the paradigm, MapReduce’s adoption from
our observations, shows impractical if not impossible on many
batch, legacy and traditional HPC systems. Such systems as
NERSC, TeraGrid, NYS Grid, Open Science Grid, to list
a few do not harbor a file storage system in line with the
Hadoop Distributed File System, but rather one which favors
providing shared disk resources to all nodes. In this paper,
we built upon such file systems, and presented MARIANE.
A MapReduce implementation adapted and designed to work
with existing and popular distributed file systems. With this
framework, we eliminate the need for an additional file system
and along with it, the involvement of MapReduce in expensive
file system maintenance operations. By doing so, we show a
significant increase in performance and decrease in application
overhead along with a dramatic speed up in fault tolerance
response as we compare our results to Apache Hadoop. Not
only does MARIANE allow for traditional benefits offered
by MapReduce such as ease of programming, synchronization
and parallelization abstractions, the platform also allows for:

• High performance under working and failing conditions.
• The applicability and expansion of the MapReduce

paradigm to a wider array of HPC environments espous-
ing different distributed file systems.

• The evolution and adaptability of the MapReduce model,
while still preserving the tenets that popularized it.

IX. FUTURE WORK

In future work, we plan to benchmark a wide array of
shared-disk file systems with MARIANE.
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