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Mesoscopic Modeling of Ferroic and Multiferroic Phase Transformations
A. Saxena

Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

This talk will provide an overview of materials undergoing ferroic and multiferroic phase
transformations. Materials exhibiting ferroic phase transformations are ubiquitous in
nature. Ferroic materials possess two or more orientation states (domains) that can be
switched by an external field and exhibit hysteresis. Typical examples include
ferromagnets, ferroelectrics and ferroelastics, which occur as a result of a phase
transformation with the onset of spontaneous magnetization (M), polarization (P) and
strain (e), respectively.  Materials that display two or more ferroic properties
simultaneously are called multiferroic, e.g. magnetoelectrics (simultaneous P and M).
Another novel class of ferroic materials called ferrotoroidics has been recently found.
These materials find widespread applications as actuators, transducers, information
storage and memory devices as well as shape memory elements in biomedical
technology. We will discuss their properties, model the transformations at mesoscale and
describe their microstructure. We will emphasize the role of both crystallographic and
magnetic symmetry in determining the relevant order parameters and the resulting free
energy. We will also discuss long-range, anisotropic forces that arise from either the
elastic compatibility constraints or the (polar and magnetic) dipolar interactions in
determining the microstructure. In addition, we will explore the importance of defects
such as dislocations in multiferroics. Finally, we will focus on thermodynamic and
caloric effects in these technologically important materials.

Collaborators: T. Lookman, A. Planes, T. Castan.
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MESOSCOPIC MODELING OF FERROIC AND MULTIFERROIC
PHASE TRANSFORMATIONS

Avadh Saxena (Los Alamos National Lab)

1. Crystals (polar, strain, shuffle): space.

2. Magnetism: space and time; color symmetry.
3. Magnetoelectrics: P, M coupling; strain.

4. Ferrotoroidic materials: LiCo(PO,),.

5. Caloric effects in ferrotoroidics; Experimental implications.

- Collaborators: T. Lookman (Los Alamos),
A. Planes, T. Castan (Univ. Barcelona)
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The Three Pillars of Functionality
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Ferroic phenomena

Ferroics 1s a family of materials exhibiting one or more
multifunctional characteristics such as ferroelectric,
ferromagnetic, or ferroelastic properties

Ferromagnetic Ferroelectric Ferroelastic
M Spontaneous Spontaneous Spontaneous
" _magnetization P polarization strain




Four Primary Ferroics: Symmetry
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INTERACTIONS in MULTIFERROICS

Spaldin et al., Physics Today, Oct. 2010
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Toroidal Field: G=E x H
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Toroidal domains




Ferrotoroidic Domain Walls

Van Eken et al., Nature 449, 702 (2007): LiCoPO,



Coexisting AFM and Ferrotoroidic walls




M control of P (H)
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2D Magnetic Point Groups
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RMnO;: R=Ho, Er, Tm, Yb, Lu, Y, Sc
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Conclusions

Multiferroics: simultaneously ferromagnetic (M), ferroelectric (P),
ferroelastic (e).

Ferrotoroidic materials.
Magnetoelectrocaloric effect.
Toroidocaloric effect.

2D multiferroic and toroidic materials.
Synthesis of new materials.

Notion of color symmetry.

Phase transitions within toroidic subgroups.
Free energy: F(P,M,T,e), domain walls, microstructure simulation.
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REMARKS

Multiferroics as metamaterials (NIM).
Spintronics and “Straintronics”.

Ferroic glasses: strain glass, toroidic glass.
Multiferroic & magnetoelectric tweed.
Quantum paraelectrics, paraferroics.
Quantum criticality in multiferroics.
Metamagnets: metaferroics, metaelectrics.
(J.W. Kim, PNAS 106, 15573, 2009).



DISLOCATIONS IN MAGNETIC CRYSTALS

EDGE: AFM spin ordering SCREW: spiral spin distribution
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TOROIDOCALORIC EFFECT
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TOROIDAL ORDER PARAMETER
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FIELD DEPENDENCE
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PHASE DIAGRAM
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LANDAU FREE ENERGY FOR FERROTOROIDICS:
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TOROIDOCALORIC EFFECT:
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" MAGNETOCALORIC N

EFFECT: S
 S(TH=0)

Equations: H ( S




GIBB’S FREE ENERGY:

G=ExH, P=-TxH M=TxE
dU =TdS+E-dP+H - -dM + G - dT

G=U-TS-E-P-M-H-T- -G
dG = —SdT — [P+ (H x T)] - dE — M + (T x E)] - dH

dE AS
dT ~ AP +H x AT
dH AS

dT ~ AMA+E x AT



Thermodynamics

Thermodynamic description of system K: take temperature and

generalized forces[T,{y, }]., , as independent variables. Then:
N

dS=(£) aT+y B w,
or Yial..N Jj= ayf T\Yiu;

where (3S/9T)=C/T and y, son external fields (or generalized forces)

that couple to the system (pressure, magnetic field, electric field,...).
C N
Magnetic system: dS=—dT +|—| dH.
T oH |,

This equation enables the following definition,

Magnetocaloric effect: Change of entropy or change of temperature
of a magnetic system arising respectively from the isothermal or
adiabatic application/removal of an external magnetic field




MAGNETIC POINT
GROUPS DERIVED
FROM: 2/m

Ferromagnetic state
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MIRROR PLANE MAGNETIC SYMMETRY

POINT GROUP: 2/m

() (b)

axial

M. De Graef, 2009



3D Magnetic Point Groups

Polar (1)

Gray (lI)

Mixed (111)

Total

M#0, P=0 7 0 11 18
M=0, P#0 4 10 4 18
M=0, P=0 15 22 36 S I
32 32 58 122
AFM/Chiral AFM/Chiral
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AFE/Chiral
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