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OUTLINE 

 
•  One- and Three-Dimensional Formulations 
•  General Approach 

•  Dynamical Equations 
•  Steady-State vs Time-Dependent 
•  Particle Loading Algorithm 
•  Start-Up from Noise 
•  Harmonics 
•  Three-Dimensional Effects 
•  Oscillators/Amplifiers 

•  Simulation-Generated Movie 
•  Code Benchmarking & Validation Examples 
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GENERAL FORMALISM 
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FEL INTERACTION
Electron beam undulates in wiggler and bunches at 
optical wavelength

Optical radiation is amplified at the double-Doppler- 
shifted wavelength of the wiggler

Input 
radiation
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GENERAL FEL SCHEMATIC	


In  general,  an  FEL consists  of  an  electron  beam  propagating 
through a wiggler.	



The axial ponderomotive force is 
(vw × BR)z acts to decelerate the 
beam. The energy lost by the 
beam in this way acts to amplify 
the electromagnetic wave. 

Helical Wiggler 

Planar Wiggler The effective wiggler strength 
is reduced to the rms wiggler 
field in a planar wiggler. 
Harmonic behavior is also 
different. 
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PRESENT STATE-OF-THE-ART IN FEL CODES 

•  1-D Models: 
•  well-known - 20-30 year old formulations 

•  3-D Models: 
•  Well-developed & VALIDATED 

•  Amplifiers 
•  MEDUSA, GINGER, GENESIS, TDA3D 

•  Oscillators 
•  MEDUSA, FELIX, NPS Codes 

•  Scope for future development (?) 
•  No major code development programs necessary 
•  Physics-based modifications to present models 

•  examples: harmonics in oscillators, real beam 
distributions 

•  Engineering based application 
•  Start-to-End (S2E) simulation 
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GENERAL SIMULATION FORMULATIONS 

 All FEL simulation codes include models for (1) the 
electromagnetic field, and (2) electron beam dynamics.   

•  The Electromagnetic Field  
•  Slowly-Varying Envelope Approximation (SVEA) vs 

Particle-in-Cell (PiC) Simulation 
•  Time-Domain vs Frequency Domain 
•  Amplifier vs Oscillator vs SASE 
•  Field Solver vs Modal Decomposition 
 

•  Particle Dynamics 
•  Wiggler-Averaged vs Non-Wiggler-Averaged 
•  Particle Loading 

•  random vs deterministic 
•  noise statistics 
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GENERAL INFORMATION ON MEDUSA 

•  Model Name: MEDUSA 
•  Family of codes: ARACHNE, WIGGLIN, CHIFEL, MEDUSA, 
and MEDUSA1D 

•  Purpose: Simulation of FEL Amplifiers, Oscillators, and Harmonics 
•  Entire wavelength spectrum/harmonics & sidebands 
•  Multiple wiggler configurations 
•  Additional focusing fields 
•  Start-Up from Noise 
•  Linked to OPC for oscillator simulations 

•  Distortion modeling through OPC 
•  Principle Users & Applications 

•  SAIC, LANL, Argonne Nat’l Lab 
•  Amplifiers, Oscillators, SASE, OK/HGHG, Oscillators 

•  Development has been funded over the years by the ONR, JTO, DoE 
(ANL), SAIC, and myself 
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THE MEDUSA FAMILY OF FEL CODES 

Code 
Property 

ARACHNE WIGGLIN CHIFEL MEDUSA 

Creation 1985 1987 1995 1995 

E & M 
Modes 

Cylindrical 
Waveguide 

Rectangular 
Waveguide 

Coaxial 
Waveguide 

Gaussian 
Optical 

Wiggler 
Models 

Helical Planar CHI Planar or 
Helical 

Polychrom-
atic 

Yes No No Yes 

Prebunched 
Beam 

No Yes No Yes 

Additional 
B-Fields 

No No No Yes 
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IMPLEMENTATION/INTERFACE ISSUES 

•  Programming Language: 
•  Fortran 90/95 

•  Dynamic Memory Allocation 

•  User Interface: 
•  Batch Mode/Command Line Execution 
 

•  Operating Environment: 
•  Windows, Unix, Linux, Mac 
 

•  Execution Times: 
•  Variable 

•  From Seconds to Days (JLab FEL à 30-60 seconds/pass) 
•  Parallelized: MPICH 

•  Portable 
•  Mac, PC, Beowulf, Supercomputers 
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TREATMENT OF THE ELECTROMAGNETIC FIELD 

•  All presently-used FEL codes employ the SVEA 
•  When λres << λw PiC models inappropriate. 
 

•  The envelope can vary in either space or space & time. 
•  Fast oscillation removed via average over wave period 
•  Variation slow compared to wavelength and wave period 
 

•  Time domain uses space & time variation 
•  computationally intensive 
 

•  Frequency domain uses spatial variation 
•  can include multiple wavelengths à oscillators & SASE 
 

• Field Solver vs Modal Decomposition  
•  Accuracy depends on either the grid spacing or the number of 
modes à affects run times 
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SIMPLIFIED 1-D SVEA FORMULATION 

In a helical wiggler, the interaction is with a circularly polarized 
wave whose vector potential in the SVEA (amplitude varies in z 
only) representation is 

ϕ z,t = dz'k z' −ωt
0

z

A R = δΑ z excos ϕ z,t − e ysin ϕ z,t

Assumption: δA(z) and k(z) are nearly constant over a 
wavelength. 

             à Neglect 2nd derivatives of the amplitude & phase 

∂2

∂z2 −
1
c2

∂2

∂t2
A R = −

4π
c J⊥ z,t

k =
∂ϕ
∂z

ω2

c2 − k
2 δΑ = −

4π
c J x cos ϕ − J y sin ϕ

2k ddzδΑ =
4π
c J x sin ϕ + J y cos ϕ
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HOW FAR CAN THE SVEA BE PUSHED? 

 For a variety of problems such as for pre-bunched beams, 
optical klystrons or high gain harmonic generation designs, the 
amplification can be faster than exponential; hence, it is useful to be 
able to treat problems where the field grows rapidly even when 
compared with the wiggler period. In these cases, the SVEA can be 
adapted to treat these problems. 

•  The 2nd order derivatives need not be neglected. 
•  This adds equations and increases run times, but this is not 
prohibitive. 

•  There is no need to start with the 2nd order wave equation. 
Instead, the basic equations can be obtained from a Poynting’s 
theorem approach which retains the 1st order nature of 
Maxwell’s equations. 
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THE QUASI-STATIC APPROXIMATION 

The source current for a mono-energetic can be represented as an 
integral over entry times t0 

Quasi-Static Assumption: particles entering the interaction region 
at intervals of the wave period execute the same trajectories 
 

                    à v(t + 2πN/ω,t0 +2πN/ω) = v(t,t0) 

Average is over “initial” state 

J z,t = − enbυz0 dt0
−Τ

T
σ t0 v t,t0

δ t − τ z,t0
υz t,t0

τ z,t0 = t0 + dz'
υz z',t00

z

dt
0

2π/ω
dt0

−Τ

T
G z,t,t0 δ t − τ z,t0 = dt0

0

2π/ω
G z,τ z,t0 ,t0
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TIME-AVERAGED MAXWELL EQUATIONS 

Averaging Maxwell’s equations over a wave period, then yields 

ω2

c2 − k
2 δa =

ωb
2

c2 β z0
υ1 cos ψ −υ2 sin ψ

υz

2k ddzδa = −
ωb
2

c2 β z0
υ1 sin ψ −υ2 cos ψ

υz

⋅ ⋅ ⋅ ≡ 1
2π

dψ0
0

2π
⋅ ⋅ ⋅

ψ = ψ0 + dz'
0

z
k + k w −

ω
υz

υ1 = υx cos k wz + υ y sin k wz

υ2 = − υx sin k wz + υ y cos k wz

Frame rotating with a helical 
wiggler 

N.B.: this assumes a monoenergetic 
initial state 

Ponderomeotive Phase 
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•   This fast time scale has been removed and we treat the co-
propagation of a “beamlet” with the wave 

•  Quasi-static assumption implies a CW beam 
•  λ << cT  à electron bunch is many wavelengths long 
•   “Steady-state” interaction – each bunch interacts in an 
identical manner 

•  The field at some point z is the average value determined by 
the interaction of those particles that pass that point in one wave 
period 

PHYSICAL MEANING OF THE SVEA 
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TREATMENT OF PARTICLE DYNAMICS 
•  Wiggler-Averaged Formulation (also called KMR Model) 

•   Originally developed because early simulations were not 
typically run on supercomputers. 
•  Model integrates 2 equations: ponderomotive phase and energy. 

•  transverse motion is approximate. 
•  wiggle motion is included through the pendulum equation. 

•  large integration steps (> λw). 
 

•  Non-Wiggler-Average Formulation 
•  First Principles Integration of the Lorentz force equations. 
•  Longer run times than KMR models. 
•  Harmonic interactions implicitly included in particle dynamics. 
•  Ease of handling complex magnetic fields (wigglers, chicanes, 
optical klystrons, quadrupoles, etc.). 

•  same integration engine. 
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1-D PARTICLE DYNAMICS 

d
dt p = − eδE −

e
c v × Bext + δB

dψ
dt = k +k w −

ω
υz

For each macro-particle, we integrate 4 equations: 

The ponderomotive phase represents a Lagrangian time coordinate 
that substitutes for integration over dz/dt 

Full relativistic dynamics for three momentum components using 
the magnetostatic (wiggler, solenoid, etc.) and radiation fields 
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PARTICLE LOADING ALGORITHM 

•  Particle loading done differently in MEDUSA than in most other FEL codes, and 
uses a deterministic algorithm 

•  Amplification is governed by 

2k ddzδa = −
ωb
2

c2 β z0
υ1 sin ψ −υ2 cos ψ

υz

An 8-point Gaussian integration for a uniform phase will yield a null 
phase average to within machine accuracy 
 

            à QUIET START is implicit in the algorithm 

discretize 
integration 

Gaussian 
Quadrature 

sin ψ = 1
2π

dψ0
0

2π
F ψ0 sin ψ

= 1
2π

wiΣn F ψi sin ψi

Initial phase 
distribution 
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1-D MODEL VALIDATION 

1-D model validation performed by 
comparison with linear theory for 
helical wiggler with axial solenoidal 
field 

δk δk + 2κ δk − Δk ≅ −
υw2

2υz2
ωb
2k w

γ0γz
2c2
Φ

δk = k −
ω
υz

−κ

κ =
ωb

γ0
1/2γzc

Φ1/2

Δk =
ω2 − ωb

2/γ0
c +k w −

ω
υz

−κ

Space-Charge Parameter 

Detuning Parameter 
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NON-WIGGLER-AVERAGED FORMULATION 

While Maxwell’s equations are averaged over a wave period, there is 
no need to average the Lorentz force equations. A first principles 
treatment of particle dynamics has the following advantages: 
 

•  All harmonic/sideband behavior is implicitly preserved. 
 

•   Complex magnetic fields (wigglers, dipoles, chicanes, 
quadrupoles, optical klystrons, etc.) can be added with minimal 
effort. 

The first principles approach introduces no further 
assumptions or approximations into the formulation. Beowulf 
clusters can be expected to further facilitate this approach by 
reducing run times. 
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1-D ORBITS: HELICAL WIGGLER & SOLENOID 

υz2

c2 1 +
Ωw
2

Ω0 − k wυz
2 ≅ 1− 1

γ0
2

The solenoid acts to increase the transverse 
velocity and can increase the coupling 
coefficient 

Negative mass instability is possible for 
strong solenoidal fields in the Group II 
regime 

dυz
dγ0

∝ Φ
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1-D GAIN COMPARISONS 

Simulation shows uniform growth 
rate yielding exponential gain until 
saturation 

Comparison with the linear dispersion 
equation shows good agreement with 
the simulation. The “error bars” for one 
point are due to a mismatched beam 
injection leading to fluctuations about a 
mean growth rate 
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1-D COMPARISON OF SATURATION EFFICIENCY 

The parameters correspond to the Raman 
regime where space charge forces dominate 
over the ponderomotive potential. The 
saturation efficiency is given by 

η = 1 + K 2

γ0

ωb
γ0
1/2k wc

≈ 4%

This is in good agreement with the simulation for B0 = 0. 

The phase space at saturation shows the 
expected trapped particle distribution. 
Note that not all electrons are trapped. 
The number of simulation particles 
must be large enough to predict this 
trapping fraction. 
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POLYCHROMATIC GENERALIZATION 

A R =Σn δΑ n z excos ϕn z,t − e ysin ϕn z,t

ϕn z,t = dz'k n z' − nΔωt
0

z

We can include multiple wavelengths by explicitly including a 
“Fourier Spectrum” of regularly-spaced frequencies in the field 
representation 

Average Maxwell’s equations over Δτ = 2π/Δω “projects out” each 
frequency component. 

•  The “beamlet” now stretches over a longer interval, requiring 
more particles and longer run times. 

•   Quasi-static assumption can be relaxed to include 
details of pulse shape. 

•  Allows us to treat harmonics and sidebands. 
•  Allows us to treat time-dependent behavior. 

•  Temporal behavior using an inverse FFT. 
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TIME-DEPENDENCE/SLIPPAGE 

•   At resonance, the radiation slips 
ahead of the electron by one 
wavelength/wiggler period. 

•  Can result in pulse distortions 
and reduced gain. 
•  Must include”blank” radiation 
slices. 

•  These equations for the (z,t) SVEA are solved by breaking the pulse into “slices” 
for both the beam and radiation.	



•  Each slice is treated as in the steady-state, and the slippage is applied to the 
radiation slices to advance the field.	


•  Can apply this to harmonics also.	



•   This is  equivalent to the explicit  harmonic expansion for polychromatic 
fields.	
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TIME-DEPENDENT MAXWELL’S EQUATIONS 

∂
∂z +

1
c
∂
∂t

δah1

δah2
= −

ωb
2

2hωc

υxsin ϕh + υ ycos ϕh
υz

υxcos ϕh − υ ysin ϕh
υz

δA z,t = δAh1 e x cos ϕh − e y sin ϕhΣ
h = 1

∞

− δAh2 e x sin ϕh + e y cos ϕhΣ
h = 1

∞

In treating time-dependence, we express the vector potential as 

So the dynamical equations for each harmonic field component are 

In practice, we integrate z à z + Δz and then apply the slippage (i.e., 
the time derivative) using the forward time-derivative to ensure that 
information does not propagate backward in z. 
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TIME DEPENDENCE vs POLYCHROMATIC 

•  Equivalent Approaches 
•  Explicit Fourier Spectrum in the Polychromatic Extension 
is Formally Equivalent to the Multi-Slice Time-Dependent 
Formulation 

•  Polychromatic Approach 
•  Harmonics 
•  Sidebands (Δω << ωres) 

•  Time-Dependent Approach 
•  Sidebands 

•  Combination 
•  Time-Dependence & Polychromatic allows harmonics & 
time-dependence 

DISTRIBUTION A 



SIMULATING SHOT NOISE 

10-2

100

102

104

106

108

0 2 4 6 8 10 12 14

MEDUSA1D & PERSEO

Fundamental
3rd Harmonic
5th Harmonic
Fundamental-PERSEO
3rd Harmonic-PERSEO
5th Harmonic-PERSEO

Po
w

er
 (W

)

z (m)

•  Most seeded simulations assume that <exp(iψ)> = 0 and will not start 
unless it is seeded. 

•   Real beams contain shot noise that satisfies Poisson statistics 
where <exp(iψ)> = 1/√N, where N = number of correlated electrons. 

•   Need to develop an algorithm that introduces the corresponding 
“jitter” into the initial phase distribution. 
•  Algorithm developed on ONR-sponsored visit to ENEA-Frascati. 
•  Choose jitter magnitude δψ1 = 1/√N and hδψh = δψ1, then select jitter 
φ using a random number generator 

•  Works for fundamental & harmonics 
•  Good agreement for MEDUSA1D & 
PERSEO (in-house at Frascati) 

ψ0 j
' = ψ0 j + δψhΣ

h = 1

hmax
sin h ψ0 j − φ
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THREE-DIMENSIONAL EEFECTS: BEAM QUALITY	


•  The FEL interaction depends on the axial bunching of the beam, 
and  is  sensitive  to  the  axial  energy  spread.  This  can  arise  from 
various causes:	



•  Energy Spread: may be correlated or uncorrelated 	



•  Emittance: phase space area (RbΔθ) à angular spread	



•  Wiggler Gradients: transverse shear in wiggler à velocity shear	


Δγz
γb
=
γz
γb

Δγth
γb
+ 12

εn
Rb

2 γz
γb

3

+
k wRb
2

K
γb

2
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•  The electron beam acts like a optical fiber that can confine the bulk 
of the radiation to within the electron beam.	



•  The light is optically guided by two related mechanisms	


•  Gain Guiding: Rays don’t grow away from the e-beam	


•  Refractive Guiding: Wavenumber shift à e-beam acts like an 
optical fiber	



Leads  to  an  extended  interaction 
length where the coupling is high.	


	


 LEUTL at Argonne Nat’l Lab à	


              LG ≈ 0.5 m	


               zR ≈ 1.5 m	
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THREE-DIMENSIONAL EFFECTS:OPTICAL GUIDING	
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FINITE PULSE LENGTH EFFECTS	



SLIPPAGE: Describes the tendency of the e-beam to lag behind 	


	

           the light pulse. Unimportant when s < vbτp. 	



c	



vb	



τp	



c	



vb	



τp	



s	



Lw	



   
s ! Lw

2"b
2 ! Nw#

LETHARGY: describes the distortion of the pulse shape due to 	


                          slippage. Trailing edge of pulse undergoes more  	


                          growth than the leading edge.	
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c	



vb	



Lw	
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THREE-DIMENSIONAL GENERALIZATION 

The 1-D formulation can be readily generalized to 3-D by including a 
polarization function that varies in (x,y) or (r,θ) in addition to the 
sinusoidal variation is (z,t). 

polarization function 

The polarization function can be derived from: 
 

•  Field solver – Accuracy depends on fineness of the grid 
•  boundary value problem 
 

•  Modal decomposition – Accuracy depends on the number of 
modes 

•  Waveguide modes (cylindrical, rectangular, etc.) 
•  Gaussian optical modes (Hermite, Laguerre) 

A R = 12 δΑ z e⊥ x,y e
iϕ z,t + c.c.
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δA x,t = e x el,n,h x,yΣ
l,n,h

δAl,n,h1 z,t cos ϕh + δAl,n,h
2 z,t sin ϕh

el,n,h x,y = e− r
2/wh2 z,t Hl

2x
wh z,t

Hn
2 y

wh z,t

ϕh = h k 0z −ω0t + αh z,t
r2

wh2 z,t

THREE-DIMENSIONAL MODAL EXPANSION 

We use a Slowly-Varying Envelope Approximation in z and t along 
with a superposition of Gauss-Hermite modes. This permits the 
inclusion of explicit time-dependence 

Spot Size 

A Source-Dependent Expansion [Sprangle et al., Phys. Rev. A 36, 202 (1987)] is used to track 
the evolution of the slowly-varying amplitudes, spot size, and curvature 

Curvature 
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THREE-DIMENSIONAL FIELD EQUATIONS 

∂
∂z +

1
c
∂
∂t +

wh'
wh

δal,n,h1

δal,n,h2
+ Kl,n,h

δal,n,h2

−δal,n,h1
=
sl,n,h1
sl,n,h2

wh' = ∂
∂z +

1
c
∂
∂t wh =

2αh
hk 0wh

− whYh

αh
' = ∂

∂z +
1
c
∂
∂t αh =

2 1 + αh
2

hk 0wh2
− 2 Xh + αhYh

sl,n,h1
sl,n,h2

=
2ωb

2

hk 0c2
1

2 l + nl!n!wh2
υx
υz

el,n,h
cos ϕh
− sin ϕh

Kl,n,h = l + n + 1 αh
wh'
wh −

αh'
2 −

1 + αh
2

hk 0wh2

Xh = 2
s2,0,h1 + s0,2,h1 δa0,0,h2 − s2,0,h2 + s0,2,h2 δa0,0,h1

δa0,0,h
2

Yh = − 2
s2,0,h1 + s0,2,h1 δa0,0,h1 + s2,0,h2 + s0,2,h2 δa0,0,h2

δa0,0,h
2 DISTRIBUTION A 



dγ0
exp − γ − γ0

2/2Δγ 2

π/2Δγ 1 + erf γ0/ 2Δγ0

∞

× dx0dy0d px0d py0
exp −r02/2σr

2−p⊥02 /2σ p
2

2π 2σr
2σ p

2 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ≡
dψ0

2π0

2π

THREE-DIMENSIONAL AVERAGING OPERATOR 

We use a Gaussian distribution function 

Macro-particles are loaded using the Gaussian Quadrature 
algorithm 

•  Efficient 
•  Implicit quiet start 
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THREE-DIMENSIONAL PARTICLE DYNAMICS 

dψ
dt = k +k w −

ω
υz

dx
dt = υx
dy
dt = υ y

d
dt p = − eδE −

e
c v × Bext + δB

We now have 6 equations per particle, as well as the field 
equations 
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NUMERICAL ALGORITHM 

•  Integration of the dynamical equations using a 4th-order Runge-
Kutta algorithm 

•  Permits variable step size 
•   Important in treating multiple wiggler segments, drift 
spaces, magnetic dipoles and quadrupoles 

•  The number of equations is 
        
           N = [6Nparticles + 2Nmodes + 2 Nharmonics]Nslices 

•  Parallelizable on the number of slices 
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PARALLELIZATION - MEDUSA 
•  Parallelization important for treating “large” simulations since single CPU runs are 
too long 

•  SASE/start-up from noise/many “slices” 
•  Time-dependence/many “slices” 

•  Message Passing Interface (MPI) is a standard and transportable protocol 
•  Works best for independent tasks 
•  Communication between slices required to treat slippage will limit advantage 
•  Computer architecture will also affect run times 

•  Beowulf cluster versus shared memory systems 
•  Type of interconnect (ethernet vs miranet) 

•  Example: Beowulf cluster at SAIC 
•  3.2 GHz Xeons/Gigabit ethernet 

•  “Ideal” case would show a slope of 
unity 

•  Indicates efficient use of cluster 
•  The curve hasn’t begun to  roll over 
indicating the further gains would be 
possible using still more cpu’s 0

5
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OSCILLATORS: MEDUSA/OPC 

electron beam 

wiggler 

•  OPC is an optics propagation code that propagates the field using 
either a Spectral Method or a Modified Fresnel Diffraction Integral 
both of which are solved using FFTs. 
•  MEDUSA hands off the field at the exit from the wiggler, and OPC 
propagates the field to the downstream mirror, the upstream mirror, 
and back to the wiggler entrance. 

MEDUSA 
Input 

MEDUSA 
Output 

•  OPC treats mirror distortion (Zernike 
polynomials), hole or transmissive out-
coupling, dispersive optical elements in 
the resonator, different resonator designs, 
harmonic propagation, and more. 
•  MEDUSA & OPC both use MPI. 
•  MEDUSA/OPC interface is written in 
PERL. 

•  We wrote translators for MEDUSA 
ßà OPC. 

OPC 
Downstream 

OPC 
Upstream 
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HARMONIC GENERATION 

•   FELs implicitly generate more harmonic power than 
conventional lasers 

•  Similar to difference between solid state & vacuum tube 
audio amplifiers 
•  Due to harmonic bunching of the electron beam 

•  Important in both amplifiers & oscillators 
•   Degradation of mirror coatings – especially for UV 
harmonics 

•  Formation of color centers 
•  Can cause catastrophic faileure of resonator in oscillator 
•  Can cause damage to turnig mirror in amplifiers 
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LINEAR HARMONIC GENERATION 

•  Process different for planar & helical wigglers 
•  Sensitive to Energy Spread 
•  Helical Wigglers 

•  Phase matching of circularly polarized wave and helical beam 
rotation 

•  High gains even when aw/γ is small 
•  Generates off-axis modes 

•  Planar Wigglers 
•   Need aw/γ large for substantial gain 
•  Due to oscillatory nature of axial velocity 

v = aw
γ
ex cos k wz + υzez

υz
c = 1 − 1 + aw

2/2
γ2

−
aw2

2γ2
cos 2k wz ≅

υz
c −

aw2

4γ2
cos 2k wz
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NONLINEAR HARMONIC GENERATION 

The radiation depends on the source current J = - env, where the 
density n = n(0) + n(1) + …. + n(n) and the velocity v = v(0) + v(1) + … 
+ v(n) and the expansion is in powers of the electromagnetic field E. 

∂
∂t n

n + ∇ ⋅ n i v n − iΣ
i = 0

n
= 0

Continuity: convolution between density & velocity bunching 

Electron Dynamics: relativistic effects 

γme
dv
dt = − e 1 −

vv
c2 E − e

v
c × Bw + B

dγ
dt = −

e
mec2

v ⋅E

Operative in all FEL configurations: amplifiers, oscillators, SASE, 
optical klystrons, and HGHG.  
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NONLINEAR HARMONIC GROWTH 

• Because it depends on fundamental bunching, it is less sensitive 
to beam quality (emittance & energy  spread) than the linear 
harmonic process. 

•   The source current at the harmonics varies as J ∝ Eh, if E ∝ eΓz, 
then the harmonic growth rate varies as Γh ∝ hΓ. 

•  This leads to extremely rapid growth 
 

•   The power levels can be substantial with the 3rd harmonic 
reaching powers of as much as ≤ 1% of the fundamental and the 
5th harmonic at 0.1% of the fundamental. 

Implicitly included in non-KMR formulation 
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NONLINEAR HARMONICS SIMULATIONS 
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NHG has been observed in several 
SASE FELs (LEUTL, TESLA, 
VISA). MEDUSA has been used to 
simulate harmonic growth for 
sample LEUTL parameters, and 
the results are shown at the right. 

The gain length scales 
inversely with the harmonic 
number as expected, and 
substantial harmonic power 
levels are predicted. 

Harmonic No.   Gain Length (m)      Power

         1                       0.619          110 MW
         2                       0.364              189 kW
         3                       0.217              2.67 MW
         4                       0.166              84.3 W
         5                       0.128              103 kW
         6                       0.115              195 W
         7                       0.092              49.5 kW
         8                       0.079              478 W
         9                       0.072              50.0 kW
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NONLINEAR HARMONICS IN FEL OSCILLATORS 
Nonlinear harmonics have been studied in SASE & HGHG FELs, 
but not in oscillators. MEDUSA can be used to study steady-state 
oscillators by generating a drive curve of output power versus input 
power. Since mirror loading is an issue and short Rayleigh range 
oscillators are under consideration, we take as our test case: 

        Energy                                                  140 MeV 
        Peak Current                                         800 Amps 
        Normalized Emittance                          1.9 microns 
        Peak on-Axis Wiggler Amplitude       10.1 kG 
        Wiggler Period                                      3.0 cm 
        Wiggler Length                                      20 λw 
        Fundamental Wavelength                   1.04 microns 
        Rayleigh Range                                   1.93 cm 

Parameters taken from an earlier study by Colson, Todd, and Neil 
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NONLINEAR HARMONIC PERFORMANCE 

The gain at the fundamental and 
the powers in the 3rd and 5th 
harmonics versus input power at 
the fundamental are shown at 
right. Saturation occurs when the 
gain equals the mirror losses. 

To get the harmonic power find the drive power where the gain equals 
the mirror losses. We find that: 

•   For 20% output coupling, the peak powers on the mirrors are about 
5 GW at the fundamental, 13 MW at the 3rd harmonic, and 1.6 MW 
at the 5th harmonic. 

• For a duty factor of 0.1%, this leads to average powers of 5 MW at 
the fundamental and 13 kW & 1.6 kW at the harmonics. 
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The oscillator results are consistent with those for the amplifier in that: 
 

•   The power for the harmonics in the unsaturated regime scales as the 
fundamental power raised to the hth power. 

•   The saturated power at the 3rd harmonic is £ 1% that of the 
fundamental, and at the 5th harmonic it is ³ 0.1% that of the 
fundamental. 

•   For the case under study, these harmonic power levels occur for 
output coupling £ 40% and fundamental powers ³ 3 GW. This would 
provide for an FEL in the multi-MW class. 

•   The harmonic powers decline, and peak 5th harmonic powers in 
excess of 100 kW is expected for energy spreads £ 0.5%. 

•  Not a show stopper, but NHG must be taken into consideration in 
designing high–average power FELs 

                    à may need to go to helical wigglers 

CONCLUSIONS ON NHG IN FEL OSCILLATORS 
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RUN MOVIES 
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CODE VALIDATION AND BENCHMARKS 

•  Benchmarks against other codes 
•  GENESIS, TDA3D, GINGER, RON, PERSEO 
•  Amplifier/Oscillator (OPC) 

•  ELF Experiment at LLNL (35 GHz Amplifier) 
•  THz SASE Experiment at MIT (500 GHz) 
•  Reversed-Field FEL at MIT (35 GHz Amplifier) 
•  2nd Harmonic Oscillator Experiment at Jefferson Laboratory 

•  2nd harmonic generated by configuring the resonator for off-
axis modes 

•  High Gain Harmonic Generation Experiment at BNL (5.3 
microns) 

•  Energy detuned Amplifier at BNL (794 nm) 
•  Tapered wiggler Amplifier at BNL (794 nm) 
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MEDUSA1D/PERSEO – START-UP FROM NOISE 

10-13

10-11

10-9

10-7

10-5

0 2 4 6 8 10 12 14

MEDUSA1D & PERSEO

1st-MEDUSA1D
3rd-MEDUSA1D
5th-MEDUSA1D
1st-PERSEO
3rd-PERSEO
5th-PERSEO

En
er

gy
 (J

)

z (m)

10-11

10-9

10-7

10-5

10-3

10-1

84 86 88 90 92 94

Po
w

er
 (a

.u
.)

Wavelength (nm)

MEDUSA1D 3rd Harmonic
z = 7.055 m

10-11

10-9

10-7

10-5

10-3

10-1

84 86 88 90 92 94

Po
w

er
 (a

.u
.)

Wavelength (nm)

3rd Harmonic
z = 7.055 m

PERSEO

MEDUSA1D & PERSEO show 
good agreement despite radically 
different formulations. The example 
corresponds to a full SASE 
simulation. The 5th harmonic 
spectrum is similarly close. 

DISTRIBUTION A 



MEDUSA/MEDUSA1D/PERSEO 
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MEDUSA1D & PERSEO have 3-
dimensional correction factors for 
diffraction/guiding and emittance 
as an option, and agreement is 
reasonably good 

The 1-D codes can do some 
parameter scans quickly, but are 
not a substitute for full 3-D 
simulations. 
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COMPARISONS: GINGER, GENESIS, TDA3D, RON 

Some MEDUSA development 
(version 2) was funded by 
Argonne National Lab, which 
was interested in a code 
comparison for further analysis 
of x-ray FEL concepts. 
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The codes were in generally good 
agreement, but they did not yield 
identical results, as shown in the 
tuning curve at left. 
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Code     Single-Segment     Multi-Segment 
 Lsat(m)  Psat (MW)  Lsat(m)  Psat (MW) 

 
GENESIS  15.5  69  18.8  58 
GINGER  13.7  62  17.2  120 
MEDUSA  14.0  87  20.8  110 
TDA3D  15.4  69  18.7  110 

CODE COMPARISONS – POWER vs DISTANCE 
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The four nonlinear codes were 
i n g o o d a g r e e m e n t n e a r 
resonance for  single-segment 
and a multi-segment cases. 
Difference may be due to the 
discrepancies in the previous 
figure concerning the resonance. 
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CODE COMPARISONS – GAIN LENGTH SCALING 
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Comparisons of the codes and with 
a linear analytic theory showed 
good agreement for the scaling of 
the gain length at resonance with 
emittance, peak current, and energy 
spread. 
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CODE COMPARISONS – WIGGLER ERRORS 
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At the time of the study, only MEDUSA, GENESIS, and TDA3D 
included a model for wiggler imperfections. These three codes were 
run to compare these models for the single-segment case. 

Reasonable agreement 
was found for the codes. 
The differences between 
TDA3D and GENESIS 
here were surprising 
since these codes are 
siblings; however, the 
differences are not large 
for any of the codes. 
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ELF EXPERIMENT AT LLNL 

1 m Segment of the ELF Wiggler 

This experiment was a 34.6 GHz amplifier using the ETA induction 
linac at LLNL and a planar wiggler. It achieved a peak output power of 
1 GW for an efficiency of 35% with a tapered wiggler. The parameters 
were: 

Wiggler Amplitude  3.72 kG 
Wiggler Period  9.80 cm 
Wiggler Taper  55% 
Taper Length   1.1 m 
 
Beam Energy   3.5 MeV 
Beam Current   850 A 
Beam Radius   1.0 cm 
Energy Spread  < 2.0% 
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ELF POWER COMPARISON 

WIGGLIN was designed to treat this 
geometry and showed good agreement with 
the measured power using an energy spread 
of 1.5%. This was close to the best “guess” 
that LLNL could provide. WIGGLIN 
reproduced the output power to within an 
embarrassingly small discrepancy with the 
experiment. 0
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LLNL reported observing 1 GW 
after tapering the wiggler 
downward by 55% over a length 
of 1.1 m. 
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ELF TUNING COMPARISON 

This was an amplifier driven by a 
fixed-frequency magnetron, so the 
tuning measurements were done by 
varying the wiggler field. Tuning data 
scanned from the paper at left, and 
the results from WIGGLIN were 
superimposed. 

LLNL’s in-house code (FRED) showed a 
discrepancy of about 7% from the 
measured data which was thought due to 
collective space-charge forces. I believe 
this conclusion was in error and due to 
deficiencies in FRED. WIGGLIN was only 
detuned by < 30 G from the experimental 
peak showing a discrepancy < 1% without 
inclusion of space-charge. 
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MIT 500 GHz SASE FEL EXPERIMENT 

This was a THz SASE FEL in 
a cylindrical drift tube using a 
bifilar helical wiggler. As such, 
A R A C H N E w a s  t h e 
appropriate code, and was 
found to be in good agreement 
with the experiment. 

Experimental Configuration 
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MIT/SASE BEAM ENERGY SPREAD DIAGNOSTIC 

There was no good energy spread diagnostic for this experiment, only an indication 
from gun simulations (EGUN) that the energy spread was no higher than 0.25%. 

Experiment ARACHNE 

ARACHNE was run for a 
range of energy spreads 
corresponding to two different 
wiggler field strengths and 
frequencies, and the growth 
rates were compared. The 
results were consistent with the 
EGUN simulations. 
 
  à Used to obtain spectrum 
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MIT/SASE SPECTRAL COMPARISONS 

ARACHNE reproduced the measured spectrum closely using the 
previously determined energy spread. 

•   These runs were made 
before the polychromatic 
feature was added, so that 
t h e y w e r e m a d e o n e 
frequency at a time. This is 
valid since the FEL did not 
saturate for this case. 
•   Arbitrary units used since 
there was no good estimate 
of the start power. 
•  Absolute powers were also 
consistent as measured and 
simulated (13-18 MW). 
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This was a 35 GHz amplifier that achieved an efficiency of 27% 
without a tapered wiggler; thereby proving: 
 

        -- That you can do everything wrong, and still succeed -- 
                                 (But you shouldn’t count on it) 

MIT REVERSED-FIELD FEL AMPLIFIER 

Configuration: cylindrical drift tube with a helical wiggler and an 
axial guide field. 

               à ARACHNE is the code of choice 
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AXIAL GUIDE FIELD EFFECTS ON THE FEL 

When the guide field and the wiggler field a directed 
in a parallel sense, then there is a magneto-resonance 
when the Larmor period coincides with the wiggler 
period. As this point is neared, the wiggle velocity 
increases as do the FEL gain and efficiency. 
   à all previous FEL experiments dealt with this  
        configuration 

There is no corresponding magneto-resonance 
when the guide field is directed anti-parallel to 
the wiggler. 
 
  à not thought to be an interesting regime for  
       study 

Negative-mass regime where the beam accelerates axially as the total energy 
decreases à enhanced efficiencies seen in simulation (ARACHNE) 

Original Goal of the Experiment 
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MIT REVERSED-FIELD FEL CONFIGURATION 

Hardware: borrowed from several previous FELs 
•  Accelerator – Pulserad 110A used in 500 GHz SASE experiment 
•  Wiggler – Wound for the 500 GHz SASE experiment 
•  Magnetron – Used for the ELF amplifier at LLNL 
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AMPLIFIER PERFORMANCE COMPARISON 
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The experimenters were originally unaware that: 
 (1) they had a left-handed wiggler 
 (2) their beam voltage was 750 keV. They believed their  
       beam voltage was 1.2 MeV. 

 
                   à FEL resonance in Group II orbits at 35 GHz 

• When the polarization of the 
wiggler was realized, they had to 
re-check the calibration of the 
beam voltage. 

•  This process involved feedback 
from ARACHNE, which was 
found to be in close agreement 
with the observed performance. 
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ANTI-RESONANT POWER HOLE 

An unexpected experimental result was that a “power hole” was 
found near the anti-resonance. This behavior was completely 
unexpected since there was not believed to be any unusual orbital 
properties associated with the anti-resonance. The power hole, 
however, was reproduced in ARACHNE. 

The cause of the power 
hole was identified as a 
wiggler-gradient driven 
orbital instability.  
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REVERSED FIELD ORBITAL INSTABILITY 
There is a previously unsuspected anti-resonant driving force due to 
the wiggler inhomogeniety that affects orbits near the edge of the 
beam, and drives them unstable 
 

                           à anti-resonant power hole 

The effects of the orbital 
instabi l i ty are implici t ly 
included in the particle tracking 
algorithm in the MEDUSA 
family of codes 
 
à ADVANTAGE: FIRST 
PRINCIPLES PARTICLE 
TRACKING 
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2nd  HARMONIC EXPERIMENT AT JEFFERSON LAB 

The 2nd harmonic can grow in a planar wiggler FEL by exciting 
asymmetric modes. This is a linear mechanism, and is included in 
MEDUSA. This was studied for the Jefferson Lab FEL by creating 
a misalignment between the beam and the resonator axis. 

Note that this operates 
by a linear harmonic 
generation process. 
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SECOND HARMONIC IN THE JLAB FEL 
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For the best estimate value of the 
beam parameters (60 A, 7.5 mm-
mrad), MEDUSA predicts a small 
signal gain per pass of 0.8%. This 
is close to the measured value of 
0.73% gain per pass. 

Scans for the single-pass gain with 
variations in current and emittance 
were made using MEDUSA since 
there were uncertainties in these 
parameters. This would produce 
an operating window. 
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SIMULATIONS OF THE HGHG EXPERIMENT 

T h e H G H G e x p e r i m e n t  a t 
Brookhaven National Laboratory 
bunched the beam using a seed laser 
at 10.6 microns, enhanced the 
bunching in a chicane, and then 
extracted power in a wiggler tuned to 
5.3 microns. 
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ENHANCED BUNCHING IN THE CHICANE 
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•  A velocity/phase modulation was imposed at 10.6 microns in the 
1st wiggler which was enhanced in the chicane (like optical 
klystron) 

Before the chicane 

After the chicane 
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HGHG/MEDUSA COMPARISONS 
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Simulations of the experiment using MEDUSA showed good 
agreement for the fundamental power (28 MW) and with the 
fractional powers at the 2nd & 3rd harmonics. Sample results for the 
2nd and 3rd harmonics are shown at the left below 

Harmonic    HGHG     MEDUSA 

2       2.0 × 10-4    6.0 × 10-4 

3       0.8 × 10-2    1.0 × 10-2 

Pharmonic/Pfundamental 

The SVEA approximation as implemented in MEDUSA is 
adequate even when the fields grow as rapidly as shown here. 
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OSCILLATOR SIMULATIONS WITH OPC 

We have begun testing MEDUSA/
OPC integration for  the JLab 10-
kW Upgrade oscillator. 

Comparison with the JLab 
experiment shows reasonable 
agreement. The best estimate 
of the average current is 8.6 
mA, and the result is within 9% 
of the observed power. 0.0
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OUTPUT POWER AND PULSE SHAPE 

•   The average output power in 
steady-state is about 12.3 kW for an 
average current of 8.6 mA 
•  JLab reports 14.26 (± 5%) kW  

•  13.5 – 15.0 kW 
•  Simulation is within about 9% of 
the experiment 

•  The output pulse shape is distorted 
due to slippage 

•   Gradual rise in the tail and a 
shape drop at the head 

•  Peak pulse powers in the range of 4 
- 5 GW 
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ELECTROMAGNETIC MODE PATTERNS  

•  Once the steady-state is reached, the 
mode quality is quite good 

•  Mode patterns at right correspond 
to the peak of the output pulse and 
the optimal cavity length 
•  As yet no attempt to determine M2 

•  The mode at the wiggler exit displays 
little evidence of higher order modes 
•   Substantial expansion as the mode 
propagates to the downstream mirror 

•  Transmissive out-coupling 
•  OPC can propagate the mode beyond 
the resonator 
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MODE SIZE ON THE MIRRORS 

•  OPC saves the evolution of the rms 
mode sizes on the upstream and 
downstream mirrors 
•   The downstream mirror is the 
output (transmissive) mirror 
•  Oscillations due to optical guiding 
in the wiggler that distorts the mode 

•  Average rms mode size on each 
mirror is about 10-11 mm in the 
steady-state regime 
•  This is in good agreement with 
the observations at Jefferson 
Laboratory 
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DETUNING EXPERIMENT AT BNL 

Energy 98-102 MeV 

Bunch Charge 350 pC 

Bunch Duration 1-2 psec 

Normalized Emittance 4 mm-mrad 

Energy Spread 0.1% 

Wiggler Period 3.89 cm 

Wiggler Length 10 m 

Wiggler Amplitude 3 kG 

Seed Wavelength 793.5 nm 

Seed Power 4 kW 

Seed Duration 6 psec 

•  It is well-known that detuning the beam energy off resonance can 
increase the extraction efficiency 
•  Experiment to demonstrate this was conducted at the BNL/SDL 
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ENERGY DETUNING – OUPUT COMPARISONS 

Comparison with experimental 
results on-resonance (100.86 
MeV kinetic energy) shows 
good agreement 

As the energy is detuned, 
experiment and simulation 
show expected increases in 
e f f i c i e n c y , w i t h g o o d 
agreement between simulation 
& experiment 
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ENERGY DETUNING - SPECTRA 
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Off-Resonance 

On-Resonance 

•   The spectra found in the 
experiment and in simulation 
for both the resonant and 
detuned beam energies are in 
good agreement 

•   The central wavelength is 
predominantly controlled by 
the seed laser wavelength 
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PROSPECTS FOR START-TO-END SIMULATIONS 

•  In development for x-ray SASE FEL Projects 
•  Multiple codes to handle beam production, transport, and FEL 

•  PARMELA, ELEGANT, ASTRA, TRAFFIC4, etc. 
•  not first principles models 

•  NPS Codes, MEDUSA, FELIX, GINGER, GENESIS 
•  3-D FEL Codes are well-in-hand 
•  some modifications may be needed to address specific physics 

•  harmonics, real beam distributions, etc. 
•  Purpose: Engineering Design Support 
•  Precursor to Engagement Model 

•  Atmospheric Propagation: High Energy Laser Code for 
Atmospheric Propagation (HELCAP) 

•  NRL - 3-D, time-dependent, linear & nonlinear effects 
• Adaptive Optics, Lethality 
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