skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Final scientific report for DOE award title: Improving the Representation of Ice Sedimentation Rates in Global Climate Models

Technical Report ·
DOI:https://doi.org/10.2172/1091952· OSTI ID:1091952
 [1]
  1. Desert Research Institute, Reno, NV (United States)

It is well known that cirrus clouds play a major role in regulating the earth’s climate, but the details of how this works are just beginning to be understood. This project targeted the main property of cirrus clouds that influence climate processes; the ice fall speed. That is, this project improves the representation of the mass-weighted ice particle fall velocity, Vm, in climate models, used to predict future climate on global and regional scales. Prior to 2007, the dominant sizes of ice particles in cirrus clouds were poorly understood, making it virtually impossible to predict how cirrus clouds interact with sunlight and thermal radiation. Due to several studies investigating the performance of optical probes used to measure the ice particle size distribution (PSD), as well as the remote sensing results from our last ARM project, it is now well established that the anomalously high concentrations of small ice crystals often reported prior to 2007 were measurement artifacts. Advances in the design and data processing of optical probes have greatly reduced these ice artifacts that resulted from the shattering of ice particles on the probe tips and/or inlet tube, and PSD measurements from one of these improved probes (the 2-dimensional Stereo or 2D-S probe) are utilized in this project to parameterize Vm for climate models. Our original plan in the proposal was to parameterize the ice PSD (in terms of temperature and ice water content) and ice particle mass and projected area (in terms of mass- and area-dimensional power laws or m-D/A-D expressions) since these are the microphysical properties that determine Vm, and then proceed to calculate Vm from these parameterized properties. But the 2D-S probe directly measures ice particle projected area and indirectly estimates ice particle mass for each size bin. It soon became apparent that the original plan would introduce more uncertainty in the Vm calculations than simply using the 2D-S measurements to directly calculate Vm. By calculating Vm directly from the measured PSD, ice particle projected area and estimated mass, more accurate estimates of Vm are obtained. These Vm values were then parameterized for climate models by relating them to (1) sampling temperature and ice water content (IWC) and (2) the effective diameter (De) of the ice PSD. Parameterization (1) is appropriate for climate models having single-moment microphysical schemes whereas (2) is appropriate for double-moment microphysical schemes and yields more accurate Vm estimates. These parameterizations were developed for tropical cirrus clouds, Arctic cirrus, mid-latitude synoptic cirrus and mid-latitude anvil cirrus clouds based on field campaigns in these regions. An important but unexpected result of this research was the discovery of microphysical evidence indicating the mechanisms by which ice crystals are produced in cirrus clouds. This evidence, derived from PSD measurements, indicates that homogeneous freezing ice nucleation dominates in mid-latitude synoptic cirrus clouds, whereas heterogeneous ice nucleation processes dominate in mid-latitude anvil cirrus. Based on these findings, De was parameterized in terms of temperature (T) for conditions dominated by (1) homo- and (2) heterogeneous ice nucleation. From this, an experiment was designed for global climate models (GCMs). The net radiative forcing from cirrus clouds may be affected by the means ice is produced (homo- or heterogeneously), and this net forcing contributes to climate sensitivity (i.e. the change in mean global surface temperature resulting from a doubling of CO2). The objective of this GCM experiment was to determine how a change in ice nucleation mode affects the predicted global radiation balance. In the first simulation (Run 1), the De-T relationship for homogeneous nucleation is used at all latitudes, while in the second simulation (Run 2), the De-T relationship for heterogeneous nucleation is used at all latitudes. For both runs, Vm is calculated from De. Two GCMs were used; the Community Atmosphere Model version 5 (CAM5) and a European GCM known as ECHAM5 (thanks to our European colleagues who collaborated with us). Similar results were obtained from both GCMs in the Northern Hemisphere mid-latitudes, with a net cooling of ~ 1.0 W m-2 due to heterogeneous nucleation, relative to Run 1. The mean global net cooling was 2.4 W m-2 for the ECHAM5 GCM while CAM5 produced a mean global net cooling of about 0.8 W m-2. This dependence of the radiation balance on nucleation mode is substantial when one considers the direct radiative forcing from a CO2 doubling is 4 W m-2. The differences between GCMs in mean global net cooling estimates may demonstrate a need for improving the representation of cirrus clouds in GCMs, including the coupling between microphysical and radiative properties. Unfortunately, after completing this GCM experiment, we learned from the company that provided the 2D-S microphysical data that the data was corrupted due to a computer program coding problem. Therefore the microphysical data had to be reprocessed and reanalyzed, and the GCM experiments were redone under our current ASR project but using an improved experimental design.

Research Organization:
Desert Research Institute, Reno, NV (United States)
Sponsoring Organization:
USDOE; USDOE CI Office of Environment and Science (CI-40)
Contributing Organization:
ETH Zurich, Zurich, (Switzerland); SPEC Inc., Boulder, CO (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
DOE Contract Number:
FG02-06ER64201; EPS-0814372
OSTI ID:
1091952
Report Number(s):
DOE/06ER64201
Country of Publication:
United States
Language:
English