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EXECUTIVE SUMMARY

Accurate simulation of matrix diffusion in regional-scale dual-porosity and dual-
permeability media is a critical issue for the DOE Underground Test Area (UGTA) program,
given the prevalence of fractured geologic media on the Nevada National Security Site (NNSS).
Contaminant transport through regional-scale fractured media is typically quantified by particle-
tracking based Lagrangian solvers through the inclusion of dual-domain mass transfer algorithms
that probabilistically determine particle transfer between fractures and unfractured matrix blocks.
UGTA applications include a wide variety of fracture aperture and spacing, effective diffusion
coefficients ranging four orders of magnitude, and extreme end member retardation values.

This report incorporates the current dual-domain mass transfer algorithms into the well-
known particle tracking code RWHet [LaBolle, 2006], and then tests and evaluates the updated
code. We also develop and test a direct numerical simulation (DNS) approach to replace the
classical transfer probability method in characterizing particle dynamics across the
fracture/matrix interface. The final goal of this work is to implement the algorithm identified as
most efficient and effective into RWHet, so that an accurate and computationally efficient
software suite can be built for dual-porosity/dual-permeability applications. RWHet is a mature
Lagrangian transport simulator with a substantial user-base that has undergone significant
development and model validation. In this report, we also substantially tested the capability of
RWHet in simulating passive and reactive tracer transport through regional-scale, heterogeneous
media.

Four dual-domain mass transfer methodologies were considered in this work. We first
developed the empirical transfer probability approach proposed by Liu et al. [2000], and coded it
into RWHet. The particle transfer probability from one continuum to the other is proportional to
the ratio of the mass entering the other continuum to the mass in the current continuum.
Numerical examples show that this method is limited to certain ranges of parameters, due to an
intrinsic assumption of an equilibrium concentration profile in the matrix blocks in building the
transfer probability. Subsequently, this method fails in describing mass transfer for parameter
combinations that violate this assumption, including small diffusion coefficients (i.e., the free-
water molecular diffusion coefficient D, < 1x10™ meter®/second), relatively large fracture

spacings 2B (such as 2B>1 meter), and/or relatively large matrix retardation coefficients R,
(i.e., R, >2). These “outliers” in parameter range are common in UGTA applications.

To address the above limitations, we then developed a Direct Numerical Simulation
(DNS)-Reflective method. The novel DNS-Reflective method can directly track the particle
dynamics across the fracture/matrix interface using a random walk, without any empirical
assumptions. This advantage should make the DNS-Reflective method feasible for a wide range
of parameters. Numerical tests of the DNS-Reflective, however, show that the method is
computationally very demanding, since the time step must be very small to resolve particle
transfer between fractures and matrix blocks.

To improve the computational efficiency of the DNS approach, we then adopted
Roubinet et al.”’s method [2009], which uses first passage time distributions to simulate dual-
domain mass transfer. The DNS-Roubinet method was found to be computationally more
efficient than the DNS-Reflective method. It matches the analytical solution for the whole range
of major parameters (including diffusion coefficient and fracture aperture values that are



considered “outliers” for Liu et al.’s transfer probability method [2000]) for a single fracture
system. The DNS-Roubinet method, however, has its own disadvantage: for a parallel fracture
system, the truncation of the first passage time distribution creates apparent errors when the
fracture spacing is small, and thus it tends to erroneously predict breakthrough curves (BTCs) for
the parallel fracture system.

Finally, we adopted the transient range approach proposed by Pan and Bodvarsson
[2002] in RWHet. In this method, particle transfer between fractures and matrix blocks can be
resolved without using very small time steps. It does not use any truncation of the first passage
time distribution for particles. Hence it does not have the limitation identified above for the
DNS-Reflective method and the DNS-Roubinet method. Numerical results were checked against
analytical solutions, and also compared to DCPTV2.0 [Pan, 2002]. This version of RWHet
(called RWHet-Pan&Bodvarsson in this report) can accurately capture contaminant transport in
fractured porous media for a full range of parameters without any practical or theoretical
limitations.
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1. INTRODUCTION

Fractured media are ubiquitous. The lack of analytical solutions for contaminant
transport through fractured rock masses motivated the development of numerical methods.
Specific software suites including for example FEHM [Zyvoloski, 2007], SLIM-FAST
[Maxwell and Tompson, 2006], and DCPT [Pan, 2002] were designed using the particle-
tracking approach to capture solute dynamics through regional-scale fractured media.

The fully Lagrangian methods are superior to the standard Eulerian solvers in simulating
transport in regional-scale fractured media, due to computational efficiency [LaBolle et
al., 1996; Liu et al., 2000], sub-flow-grid scale resolution of concentrations, and the
construction of a sample path for the underlying stochastic process.

The Lagrangian solver has been used widely by hydrologists for more than three
decades. It was first applied to tracer transport in saturated alluvial formations [Ahlstrom
et al., 1977; Prickett et al., 1981], and then porous media of all types [Uffink, 1985;
Kinzelbach, 1988; Cordes et al., 1991; Mahinthakumar and Valocchi, 1992; Tompson,
1993; Semra et al., 1993; LaBolle et al., 1996, 1998, 2000; LaBolle and Fogg, 2001;
Weissmann et al., 2002; Maxwell et al., 2007; Green, 2010] and extended to fractured
rocks with matrix diffusion [Yamashita and Kimura, 1990; Wels et al., 1997; Liu et al.,
2000; Tsang and Tsang, 2001; Roubinet et al., 2009, 2012].

We applied/developed four different methods to capture particle transport through
fracture/matrix media. These methods include 1) the transfer probability approach
proposed by Liu et al. [2000], 2) the DNS (direct numerical simulation)-Reflective
method proposed by this study, 3) the DNS-Roubinet method using the first passage time
distribution proposed by Roubinet et al. [2009], and 4) the transient activity range method
proposed by Pan and Bodvarsson [2002]. Each method will be introduced in detail in the
next sections, followed by numerical tests and comparisons. The best method is
identified and implemented into the well-known particle tracking code RWHet [LaBolle,
2006], and then tested extensively.

RWHet was selected as the hosting software because 1) it has been demonstrated
to be an accurate, computationally efficient particle-tracking approach [see for example,
LaBolle et al., 1996, 1998, 2000; among many others], 2) it has been used widely by
numerical modelers in the hydrology community, and 3) it can read directly the water
flux or hydraulic head outputs generated by Eulerian-based flow models, such as
MODFLOW, or other forms of velocity fields. We have also extensively tested RWHet
(see Appendix A), where numerical examples show that RWHet can capture efficiently
and accurately the transport of both passive and reactive tracers through regional-scale
heterogeneous media with abrupt interfaces of transport properties (such as velocity and
dispersion coefficient).

2. RWHet COMBINED WITH THE TRANSFER PROBABILITY METHOD
DEVELOPED BY LIU ET AL. [2000]

We first applied the original transfer probability method proposed by Liu et al.
[2000] into RWHet. In the following (subsection 2.1), we introduce the methodology
first, and then extensively test the capability of the updated code RWHet in subsections
2.2 and 2.3.



2.1  The transfer probability method

In the dual-continuum model, the particle transfer probability from one continuum
to the other can be calculated as the ratio of the mass entering the other continuum during
the time interval to the mass in the current continuum at the beginning of this time
interval [Pan et al., 2001, page 8]. Liu et al. [2000, Egs. (16) and (17)] proposed the
following two transfer probabilities

F ¢, At 2D A
o= fm _ Qfm+ fm At (18.)
V:C; |V; V;{@-A)S
F ¢ At 2D A

"MV C. V. (-A)S
when the water flow rate from fractures to the matrix within the block (denoted as Q
[m® s™]) is positive (i.e., water flows from fractures to the matrix). Here F .. [kg s™] is

the transport rate (due to both advection and dispersion) from fractures to the matrix;
F ¢ IS the transport rate (due to both advection and dispersion) from the matrix to

fractures; V, (or V., ) [m°] is the liquid volume within the fracture (or matrix)
continuum (defined as the grid block volume multiplied by the porosity); C (or C.,)
[kg m™] is the solute concentration in fractures (or the matrix); D, [m? s] is the

hydrodynamic dispersion coefficient for solute transport between fractures and the
matrix; A [m?] is the fracture-matrix interface area available for solute transport between
the continua within the block; S [m] denotes the distance from the fracture-matrix
interface to the center of the matrix; and A is the shape function and 1=1/3 for the
layered matrix with a finite thickness (here the term “layered” denotes the shape of
matrix blocks, see also the same definition used by Crank [1975] and Haggerty et al.
[2000]).

The transfer probability defined by (1a) and (1b) can be related to fracture/matrix
properties. Here the total water volume in fractures within each grid (V ; ) can be defined

as
V¢ =(dxdydz)6o; (2)
where dx, dy, and dz [m] are the size of the grid along X, Y, and Z directions,
respectively; and & ; [dimensionless] denotes the fracture porosity (i.e., the ratio of the
fluid volume within the fractures to the total grid volume).
Similarly, v, is

Vi =(-0¢)(dxdydz)0,, (3)

where @, [dimensionless] denotes the matrix porosity.

The contact area between fracture and matrix, A, is defined as:

A= d—; dydz 4)

where B [m] is the (half) fracture spacing.



Substituting (2) and (4) into (1a), we obtain the probability for a fracture particle
to enter the matrix during the time interval At:
Qim 3D"

P.= + At (5)
(dxdydz)bR,/B SbR, R,

where D*=D 4, R,,, R, [dimensionless] is the matrix retardation coefficient, b [m] is the
(half) fracture aperture, and R ; [dimensionless] is the retardation coefficient in fractures.
Note here R is added in Eq. (5) for the case of sorption, as also shown by Eqg. (30) in

Liu et al. [2000]. Substituting (3) and (4) into (1b), we get the other transfer probability
(i.e., from the matrix to the adjacent fracture)
3D"
=———At . 6
mf Sz R,i Hm ( )
Probability (6) is the same as the one used by Maxwell and Tompson [2006, Eq.
(B23b)]. The transfer probability from fractures to the matrix, as expressed by (5),
however, is slightly different from the following one used by Maxwell and Tompson
[2006, Eq. (B23a)]:

*

_ 3D

™ ShR,
Note that Maxwell and Tompson [2006] did not consider advective flux between fractures
and the matrix, and mass exchange occurs only because of diffusion into and out of the

matrix blocks. In the following we will show that the formula (5) is valid for the case of
variable retardation coefficients for fractures.

At . (7)

2.2 Numerical experiments of Liu et al.’s method [2000]

The above methodology is coded into RWHet. The resultant code is called
RWHet3.25 NUFT.f90. Note here the word “NUFT” is used since a preceding version
of RWHet reads dual-permeability flow fields generated by the numerical flow code
NUFT [Nitao, 2001]; however, the algorithm developed below is not restricted to NUFT
flow fields and valid for both dual-porosity and dual-permeability flow fields from any
finite-difference flow code.

Numerical results using RWHet3.25 NUFT.f90 are compared with analytical
solutions given in Sudicky and Frind [1982]. Almost all parameters are tested, including
diffusion coefficient (Figure 1 and Figure 2), aperture (Figure 3), longitudinal
dispersivity within the fractures (Figure 4), matrix retardation coefficient (Figure 5),
fracture retardation coefficient (Figure 6), and fracture spacing (Figure 7).
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Figure 1. Numerical tests of RWHet3.25 _NUFT.f90: Variable free-water diffusion
coefficient D — the simulated breakthrough curves in fracture continuum using
RWHet3.25_NUFT.f90 (symbols) versus analytical solutions (lines). The unit for
Dy is meter?/second. The other model parameters are: velocity V=1m/day, fracture
dispersivity &, =0 m, fracture aperture 2b=2x10" m, fracture spacing 2B=1m, matrix
porosity 6,=0.1, matrix tortuosity z=0.25, fracture retardation coefficient R=1,
matrix retardation coefficient R,=1, and the travel distance is 36m.
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Figure 2. Numerical tests of RWHet3.25_NUFT.f90: A small free-water diffusion coefficient

D, =1x10™" meter*/second — the simulated breakthrough curves in fracture
continuum using RWHet3.25_NUFT.f90 (symbols) versus analytical solutions
(lines). (b) is the log-log plot of (a). The other model parameters are the same as
those shown in Figure 1.
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Figure 3. Numerical tests of RWHet3.25 NUFT.f90: Variable aperture 2b (units: meter).
The other model parameters are: (free-water) diffusion coefficient D,=1x10" m’/s,
velocity V=1m/day, fracture dispersivity « =0 m, fracture spacing 2B=1m, matrix
porosity 6,=0.1, matrix tortuosity z=0.25, fracture retardation coefficient R¢ =1,
matrix retardation coefficient R, =1, and the travel distance is 36 m.
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Figure 4. Numerical tests of RWHet3.25 NUFT.f90: Variable longitudinal dispersivity ay in
fracture (units: meter). The other model parameters are: (free-water) diffusion
coefficient D,=1x10"° m’s, velocity V=1m/day, fracture aperture 2b=2.5x10 m,
fracture spacing 2B=1m, matrix porosity 6,=0.1, matrix tortuosity =0.25, fracture
retardation coefficient Ri=1, matrix retardation coefficient R,=1, and the travel
distance is 36m.
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Figure 5. Numerical tests of RWHet3.25_NUFT.f90: Variable matrix retardation coefficient
Rm. The other model parameters are: (free-water) diffusion coefficient D =1x10°
m?/s, velocity V=1m/day, fracture aperture 2b=3x10° m, fracture spacing 2B=1m,
fracture dispersivity ;=0 m, matrix porosity #,=0.1, matrix tortuosity z=0.25,
fracture retardation coefficient Ri=1, and the travel distance is 36m.
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Figure 6. Numerical tests of RWHet3.25_NUFT.f90: Variable fracture retardation coefficient
Rr. The other model parameters are: (free-water) diffusion coefficient D,=1x10"
m?/s, velocity V=1m/day, fracture aperture 2b=3x10° m, fracture spacing 2B=1m,
fracture dispersivity ;=0 m, matrix porosity #,=0.1, matrix tortuosity z=0.25,
matrix retardation coefficient R,=1, and the travel distance is 36m.
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Figure 7. Numerical tests of RWHet3.25 NUFT.f90: Influence of fracture spacing on the
BTC: analytical solutions (lines) versus particle-tracking results of
RWHet3.25_NUFT.f90 (symbols). (b) is the semi-log plot of (a), to show the
early portion of BTC. The unit for fracture spacing (actually 2B) is meters.

The other model parameters are: (free-water) diffusion coefficient

D, = 9.31x10™" m*second, velocity V=1m/day, fracture dispersivity ¢ =0.01m,
fracture aperture 2b=1x10" m, matrix porosity 6,=0.1, matrix tortuosity z = 0.25,
fracture retardation coefficient R;= 1, matrix retardation coefficient R,,= 1, and the
travel distance is 36 m.

The particle tracking results generally match the analytical solutions for the free-
water diffusion coefficient D, between 1x10® and 1x10™° m?/s (Figure 1). Note that the

effective diffusion coefficient used above is D"=D, z 6,, (following the definition by Liu
et al. [2000], page 711). If a very small D, is used (such as 1x10™** m%s) (Figure 2), the
particle tracking solution tends to overestimate the early breakthrough curve (BTC),
similar to that observed by Hassan [2002]. Therefore, the transfer probability method
proposed by Liu et al. [2000] is not applicable for small diffusion coefficients.
Improvement of the particle tracking approach to account for this deficiency will be
discussed in Section 3.

If D, is not extremely small, the particle tracking results match the analytical
solutions for various fracture apertures (Figure 3). Acceptable matches between
numerical and analytical solutions are also found for various dispersivities (Figure 4) and
matrix retardation coefficients (Figure 5). The fracture retardation coefficient affects the
dynamics of particle transport (Figure 6), by affecting not only the transport parameters
(such as the effective velocity, dispersion coefficient, and fracture porosity), but also the
transfer probability P, (see Eqg. (5)). The latter, however, has not been considered by

previous studies.
Apparent discrepancy between the numerical and analytical solutions is found for

a relatively large fracture spacing (Figure 7), which has also been identified by Pan and
Bodvarsson [2002]. Such discrepancy leads to the correction discussed in Section 3.



2.3 Fracture/Matrix properties at the Rainer Mesa site

Here we use parameters obtained for the Rainer Mesa (RM) site, Nevada,
fracture/matrix to re-calculate the tracer BTCs for a generic radionuclide. A diffusion
value for *H was selected, which has the largest free water diffusion coefficient. If the
transfer probability method proposed by Liu et al. [2000] cannot capture the dynamics of
3H, then it can also be problematic in simulating the transport of other isotopes, such as
2 Am (the free-water diffusion coefficient Do = 3.06x10™° m?%/second) and *Sr (Dg =
1.29x10°° m?/second). The model parameters for this generic radionuclide are: the free-
water diffusion coefficient Do = 9.31x10”° m?/second, fracture retardation coefficient Rf =
12.95, matrix tortuosity T = 0.2, matrix porosity &, = 0.25, matrix retardation coefficient
Rm = 24192.9, fracture aperture (2b) = 5x10™ meter, and fracture spacing (2B) = 10 meter.
Note that values of Rrand Ry, are based on an average sorption coefficient Kq for ***Am in
zeolitized volcanic tuffs.

The particle tracking result however is quite different from the analytical solution
(Figure 8). RWHet3.25 _NUFT.f90 overestimates the BTC at early times: almost all
particles (2949 out of 2950 particles) exit the model domain at time t = 4 yrs. The
remaining particle stays in the model until the end of the modeling period (t=8,000 yrs).
The analytical solution, however, shows that no particles should exit the model domain
before t=8,000 yrs.
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Figure 8. The simulated solution (blue symbols) versus the analytical solution (the red line)
of tracer breakthrough curves of RWHet3.25 NUFT.f90 for RM site model
parameters (see the text for the value of each parameter). In (a), R,=24192.9. (b) is
the log-log plot of (a).

The failure of RWHet3.25 NUFT.f90 with the Liu et al. [2000] may be due to the
resultant small transfer probabilities (Table 1). The probability of a fracture particle to
enter the matrix is as low as 3.2x10”, which is constant over the entire modeling period.
In the numerical case we tested, only one particle could enter the matrix (note that all
2950 particles were at the fracture at the beginning of the simulation), and remained in
the matrix for an extremely long time (due to the small transfer probability from matrix to



fracture, which is 3.3x10™). For simplicity, we ignored dispersion within the fracture,
and hence particles exited the model domain at the same time.

Table 1. Computed transfer probabilities for various matrix retardation coefficients.
Case Rum Ry Pim P
1 24192.9 12.95 3.2x10” 3.3x107%
2 5 12.95 1.5x10° 7.7x107
3 2 12.95 3.8x10° 4.8x10®
4 1 12.95 7.6x10° 1.9x10°

The small transfer probabilities are likely attributed to the large matrix retardation
coefficient Ry,. To explore the influence of Ry, on particle tracking in
RWHet3.25 NUFT.f90, we tested three more cases with smaller Ry, (Table 1). The
corresponding transfer probabilities increase with the decrease of Ry,. Results (Figure 9)
also show that the numerical solution approaches the analytical solution gradually.

The strong influence of Ry on P, and P can be seen from the transfer

probability formulas (5) and (6). In both (5) and (6), the two factors R, and S can be
combined. In other words, the effect of increasing Ry, is functionally equivalent to
increasing fracture spacing. The numerical examples in the above subsection show that
the RWHet3.25_NUFT.f90 will fail for a large value of fracture spacing (Figure 7). Note
that the increase of Ry, also decreases the diffusion in matrix, and hence delays the motion
of particles (Figure 5).

Formulas (5) and (6) also show that the fracture retardation coefficient R; affects
only the transfer probability from fracture to matrix P, . In (5), the two factors Rs and b

can be combined, implying that the increase of R; can be functionally equivalent to the
increasing of fracture aperture. The above numerical examples show that the particle
tracking scheme is robust for a large range of fracture aperture (Figure 2), including the
value found for the RM site. It also noteworthy that the increase of Ry will also decrease
the advection and dispersion for particles in fractures, resulting in a delayed BTC (see for
example, Figure 6).

Therefore, the transfer probability method proposed by Liu et al. [2000] can
capture the particle dynamics in fracture/matrix systems for most conditions, except for:

1) A small diffusion coefficient (i.e., the free-water diffusion coefficient
D, <1x10™ meter’/second);

2) Moderate fracture spacing (such as 2B>1 meter);

3) Most values of retardation coefficient for matrix (i.e.,R, >2).
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The simulated solution using RWHet3.25 NUFT.f90 (blue symbols) versus the

analytical solution (the red line) of tracer breakthrough curves, where the model
parameters are the same as Figure 7, except for the matrix retardation coefficient
Rm. The right column is the log-log plot of the left column to show the tail at early

times.
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3. THE DIRECT NUMERICAL SIMULATION (DNS) OF
CONTAMINANT TRANSPORT IN FRACTURED POROUS MEDIA:
THE DNS-REFLECTIVE METHOD

The DNS-Reflective method is expected to simulate solute transport throughout
the entire parameter space. The core of the DNS-Reflective approach is to accurately and
efficiently describe the particle dynamics across the interface between the fracture and
matrix (Figure 10). Hence, it is a specific particle-tracking method for modeling solute
transport in composite media where sharp contrasts exist between velocity, porosity,
diffusion, dispersion and/or retardation. These are the same types of conditions that exist
across a fracture-matrix interface. Previously developed particle tracking algorithms (e.qg.,
LaBolle et al. [1996, 2000], LaBolle and Zhang [2006], and Bechtold et al. [2011]),
several of which are already included in RWHet, can be applied to track particles across a
fracture-matrix interface.

Fracture Matrix
B
D D
Of 0 g
Rs lV | Rm
. [
Z ol
[ ] [ ]
[ ] I [
e * |
Interface
. 1 }
1

Figure 10.  Conceptual model of a single fracture-matrix system. In the figure, D denotes the
molecular diffusion coefficient, &denotes the porosity, and R is the retardation
coefficient. The suffix “f” denotes fracture, and “m” denotes matrix. The dashed
line denotes the discrete interface between the fracture and the matrix.

The DNS-Reflective approach contains the following three major steps:
Step 1 — Calculate the independent transport components for each particle.

Standard particle tracking schemes can be used to calculate the advective and
dispersive displacement of each particle during each jumping event:

X(t + dt) = x(t) + v(x)dt + w,/D, dt (8a)
z(t +dt) = z(t) + w,/D, dt (8b)

where w is a uniform random number with mean zero and variance 1. The core of this
step is to define the appropriate time step dt used in (8). To limit the jump size of a single
particle during one step to be less than the (half) aperture b, dt should be defined as:

11
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dts(ﬁj L | )
6) Dy/R;

where Dy is the free-water diffusion coefficient and R; is the fracture retardation
coefficient.

If there is an advective flux from fracture to matrix, dt should be smaller than (9),
so that the particle moves at least twice before encountering the fracture/matrix interface.
It is also noteworthy that additional transport components can be added conveniently to
particle trajectories, including advection in the matrix.

Step 2 — Apply the one-side reflection scheme to capture the particle dynamics across the
fracture/matrix interface.

The one-side reflection scheme proposed recently by Bechtold et al. [2011] is
selected for this step. This scheme corrects the standard reflection method by splitting
the time step nonlinearly for particles across the discrete interface. It also increases
significantly the computational efficiency by transforming the reflection barrier method
from a two-side into a one-side reflection scheme.

Note that in the one-side reflection scheme, the particle can jump “freely” from
matrix to fracture, due to the one-side reflection probability defined below:

0y\Dm/Rp
Pf_,mzl—ef— 5oR. (10a)
Po,i=0 , (10b)
if
0¢\D¢/R¢ >0pDpn/Ryy : (11)

Here P;_, is the reflection probability from fracture to matrix, and P,_; is the

reflection probability from matrix to fracture (note that a zero reflection probability
means that no particles can be reflected at the interface, or in other words, each particle
can move “freely” if it starts in matrix). When the two retardation coefficients R, and
R; equal 1, (10) reduces to the formula proposed by Bechtold et al. [2011]. A uniform

[0 1] random number U is generated and compared to the above probabilities. If the
particle is located in the fracture and U > P;_ ., then the particle can cross the

fracture/matrix interface during the current time step. When the particle is located in the
matrix, it can move freely in either direction. This scheme is coded and verified, with
some examples shown in Figure 11.

12
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Figure 11. DNS-Reflective method: Numerical examples of the one-side reflection scheme:
the simulated results (symbols) versus the analytical solute concentration
distributions (lines, from Carslaw and Jaeger [1959]) at t=5 for a composite media
with discrete diffusion coefficients and effective porosity. The vertical green line
indicates the location of the “reflective” boundary. An instantaneous point source
is located at x=48. For simplicity, D shown in the figure is dimensionless (note the
purpose of this experiment is to explore the applicability of the Lagrangian scheme
to capture particle dynamics across an abrupt interface).

Step 3 — Split the time step dt for each particle spent in the fracture and the matrix
domain, and then repeat the above steps until reaching the final simulation time.

There are two loop cycles of the above 3-step scheme. The outer iteration is for
time, and the inner iteration is for the number (i.e., sequence) of particles.

We systematically test the above 3-step DNS-Reflective method. Results (Figure
12) show that the DNS-Reflective solutions generally match the analytical solutions to a
single fracture within an infinite matrix [Tang et al., 1981], if the time step dt is properly
defined. For example, for case 6 shown by Table 2 and Figure 12(f), Eq. (9) shows that
dt <50.2 day. Inthe DNS-Reflective simulations, we test three time steps: 1x1072 day,

1x1072 day, and 1x107* day. Because the three time steps are much less than 50.2 day,
the three simulated breakthrough curves are almost identical to the analytical solutions.

For case 2, the minimum time step defined by Eq. (9) is dt <5.02x10™ day
(Table 2). In the four time steps tested in the DNS-Reflective simulations (Figure 12(b)),
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only the smallest one (i.e., 2.5x10™° day) meets the criterion of Eq. (9) and hence it can
generate the similar result as the analytical solution.
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Figure 12.  DNS-Reflective method: Influence of (half) aperture b (left figures) and the free-

water diffusion coefficient Dy (right figures) on the breakthrough curve for the
fracture at depth z=0.666 m: the DNS-Reflective solutions (lines) versus the
analytical solutions (symbols, Tang et al. [1981]). The (half) aperture is b= 5x107
m (a), 5x10™ m (b) (Note that the fracture aperture at Rainier Mesa is 2b = 5x10™
m), and 5x10° m (c), respectively. Dy is 1.6x10° m?/s (d), 1.6x10® m%s (e), and
1.6x10™ m%s (f), respectively. At Rainier Mesa, the range of free water diffusion
coefficient is from 3.06x10™° m%s (for isotope **Am) to 9.31x10° m?/s (for
isotope *H). In the legend, “dt” denotes the time step used in the particle tracking.
The other model parameters are: matrix porosity £,=0.01, tortuosity  =0.1, matrix
retardation coefficient R,=1, fracture retardation coefficient R=1, and the
longitudinal dispersivity in fracture o, =0.5 m (the transverse dispersivity is 0). In
all cases, 10,000 particles are released at the beginning of the simulation.
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Table 2. The six numerical cases shown in Figure 12 and the time step for particle tracking.
In the legend, T, = (b/6)* / Dy, and T, = (b/4)* / D,.

Case  Figure Apertureb (m) D" (m%s) T, (day) T, (day)
1 Figure 2(a) 5x10° 1.6x10° 5.02x10° 1.13x107
2 Figure 2(b) 5x10™ 1.6x10° 5.02x10° 1.13x10™
3 Figure 2(c) 5x107 1.6x10° 5.02x10” 1.13x10°
4 Figure 2(d) 5x10™ 1.6x10° 5.02x10° 1.13x10™
5 Figure 2(e) 5x10™ 1.6x10°® 5.02x1072 1.13x10™
6 Figure 2(f) 5x10™ 1.6x10™ 5.02x10" 1.13x10?

A single snapshot of particle positions at a specific time is also shown in Figure
13. Advective transport in the fracture is downward with particle transfer across the
fracture/matrix interface, which is shown by the red, vertical dashed line in Figure 13.
Obviously, if the fracture aperture is small, the particles inside the fracture cannot make a
large horizontal jump during one step of motion. This limits the computational efficiency
of the numerical method.

The initial particle source

Figure 13. A snapshot (particle clouds) simulated by the DNS-Reflective method in a single
fracture with downward transport and fracture-matrix particle transfer.
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In addition, we found that numerical experiments also imply that the minimum
time step defined by (9) can be increased slightly by:

2
dt S(Ej L | (12)
4) D*IR,

Numerical solutions generated by the minimum time step defined by (9) are still close to
the analytical solutions.

To draw an intermediate conclusion, the efficiency and accuracy of the DNS-
Reflective approach depends on the time step and the number of particles. A smaller
diffusion coefficient results in a larger time step dt, and therefore, the DNS-Reflective
method can be more computationally efficient. This behavior makes the method superior
to the transfer probability approach discussed above. As shown in Figure 12 (e) and (f),
the DNS—Reflective method is efficient since the time step dt > 107 day for all isotopes at
the Rainier Mesa site (such as ***Am, %Sr, *H).

On the other hand, the DNS-Reflective method is time consuming for a small
fracture aperture, since the time step size must be small enough for particles to jump at
least once within the fracture. In addition, if the free-water diffusion coefficient Dy is
large, the DNS-Reflective method is less computationally efficient because a smaller
time step dt is also needed.

To increase the computational efficiency of the particle-tracking approach, the
time step should be increased. To release the limitation of the small time step for the case
of a small fracture-spacing and a large free-water diffusion coefficient, we will apply the
DNS-Roubinet method in the next section.

4. THE DNS-ROUBINET METHOD

The core of Roubinet et al.’s [2009] method is the use of first-passage time
distributions to compute the time each particle spends in the matrix, which leads to time
steps considerably greater than the DNS-Reflective method. This should increase the
computational efficiency of the DNS method significantly. In the following we briefly
introduce the DNS-Roubinet method and the treatment in the programming.

The total time for a random-walking particle spent in a fracture/matrix system t 5,
with an infinite matrix is given in terms of the time in the fracture t; as

Pt, <T)= erf[MJ : (13)
b, T -t

STt

where “erf” denotes the error function; T is the reference time; 6,, and D,, represent the

porosity and dispersion coefficient in the matrix, respectively (the same as Eq. (10)); and
b is the (half) fracture aperture (the same as above). Note here the time spent in the
fracture, t;, can be pre-assigned as the time step.

The inverse in terms of a uniform random deviate yields the following formula,
using (13):
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tf :tf + | — y (14)
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where “erf!” denotes the inverse error function; and U is a (0 1) uniform random number.
The time in the matrix is therefore tn=tsy-t:.

In a system of parallel fractures, the first passage time from fracture to fracture is
given as

~ ~ S
P(tzssT)_ZP(XTZZS)_erf( 5 T] . (15)

m

Solving for T yields:

tys=

{\/ﬁ egf ' )] | 16)

In this system, tq, = ts + min(ty,tzs); tm = tim - tr.
The particle-tracking numerical algorithm is:
(1) Loop over time and particles;
(2) Compute the advective travel time t; in a cell (note this value can be pre-defined);

(3) Compute the diffusion time tg; based on the analytical solution given by Tang et al.

[1981], where the surrounding matrix is taken into account;

(4) Compute the first passage time t,¢, which is the time for the particle to reach the next
fracture.

(5) If tgq>t,s, truncate ty; to t,g (i.e., if the particle reaches another fracture then it

did not need to diffuse as long); otherwise keep t,; unchanged;

(6) Sum times;
(7) End loops when all particles exit the system.

At the end the simulation, report the total times for all particles. These can be binned to
yield a breakthrough curve.

The DNS-Roubinet method has been tested extensively against analytical
solutions developed by Tang et al. [1981] and Sudicky and Frind [1982]. A few
numerical tests are shown below (Figures 14 through 16). Figure 14 shows that the DNS-
Roubinet method works well for a wide range of fracture aperture and diffusion
coefficient, for a single fracture system.

The DNS-Roubinet method has its own disadvantage: For the parallel fracture
system, the truncation of first passage time distribution creates apparent errors when the
fracture spacing is small. Hence the DNS method works very well for the single fracture
system, but it tends to erroneously predict BTCs for the parallel fracture system.
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Figure 14.  DNS-Roubinet solutions (symbols) versus the analytical solutions (lines) [Tang et

al., 1981] for a single fracture with variable fracture aperture b (a) and diffusion

coefficient Dy (b).

Figure 15 shows that, similar to what we found in Figure 14, here the DNS-
Roubinet method works well for a single fracture system at various travel distances L
(along the fracture).

Figure 16 shows that the DNS-Roubinet method underestimates the analytic
breakthrough at early times, and overestimates the breakthrough at late times, for the
parallel fracture system.

Therefore, the DNS-Roubinet method is computationally more efficient than the
DNS-Reflective method. It matches the analytical solution for the whole range of
dispersion coefficients and fracture aperture for a single fracture system.
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Figure 15.  DNS-Roubinet solutions of the tracer breakthrough curves (symbols) versus the
analytical solutions (lines) [Tang et al., 1981] for single fracture at various depths
(denoted as “L” in the legend) in the fracture. See also Figure 5 in Tang et al.
[1981].
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Figure 16. DNS-Roubinet solutions of the tracer breakthrough curves (symbols) versus the
analytical solutions (lines) [Sudicky and Frind, 1982] for parallel fracture at various
depths in the fracture. See also Figure 7 in Sudicky and Frind [1982].

5. THE TRANSIENT RANGE APPROACH PROPOSED BY PAN AND
BODVARSSON [2002]

When the effective diffusion coefficient D* is small, the fracture spacing B is
large, and/or the matrix retardation coefficient is large, the transfer probability from
fracture to matrix (defined by (5)) can be very small, underestimating the mass of
particles entering into the matrix at early simulation times. This results in the
overestimation of solute mass in fractures and erroneous early breakthroughs (Figure 7).
Hence the modification of (5) is needed. The transient activity range approach developed
by Pan and Bodvarsson [2002] is intended to solve this problem.

51 Methodology of Pan and Bodvarsson [2002]

The concept of “transient activity range” proposed by Pan and Bodvarsson [2002]
can capture the dynamic feature of the particle transfer probability. The transfer
probabilities are defined as [see EqQ. (1) in Pan and Bodvarsson, 2002]

P = _Fm h—exp(-at/cy)] (17a)
Q f +F fm

P =F—mf[1— exp(-At/z,)] , (17b)
Qm+F mf

where F and Q describe the strength of advection-dispersion process through the fracture-
matrix interface and the interfaces to adjacent grid cells in the same continuum,
respectively (the subscripts show the direction of the flux) [Pan and Bodvarsson, 2002]:

Dm Afm

F m=max(q fm Agm.0) + —— (18a)
S fm(t p)
D. A

F i = Max(~0 g Ay ,0) + — (18b)

S fm(t p) ’
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N

Qf=2{max(qf A; 0) + Dg A‘} , (18c)

i=1 i

N Dmi A
Qm=2{max(qm A; ,0) +5—|} : (18d)

i-1
Parameters A, and A, in (18) are the area of the fracture-matrix interface within
the grid and the interface area to the i-th adjacent grid, respectively. Parameters g, and

g; in (18) are the water flux through the fracture-matrix interface within the grid and the
interface to the i-th adjacent grid, respectively. Parameters D, Dy and D, in (18) are
effective dispersion coefficient of the matrix, the fracture continuum at the interface to

the i-th adjacent grid, and the matrix continuum at the interface to the i-th adjacent grid,
respectively. S; is the distance between the center of the cell and the i-th adjacent cell,

and S ¢, (t,) is the effective characteristic distance of the fracture-matrix system. In
addition, the parameters z; and z, in (17) denote the characteristic times of the fracture

and matrix continuum, respectively [Pan and Bodvarsson, 2002]:
Vi Ry

- 19a

TTE fm+Q ¢ (192)
Vi) R

L oL 19h

"= o, (19b)

where V and R denote the volume of water and the retardation factor, respectively, for
fractures and matrix.

In the above definitions, two variables vary with time, including the matrix
volume V (t ;) and the effective characteristic distance S ¢,(t,) [Pan and Bodvarsson,

2002]:

*

Vonlty)=V ° E(:") , (20a)
B” (t
S fmltp)=S fm% , (20b)

where S, denotes the characteristic length of the fracture-matrix system (e.g., 1/6 of the
fracture spacing for a parallel fracture system as suggested by Liu et al. [2000]); and t, is
the time elapsed since a pulse injected into the fractures (e.g., the age of each particle, if
the instantaneous injection of particle source is at time zero). B’ (t p) IS the activity range

(0<B™(t ») < B) [Pan and Bodvarsson, 2002]:

B*(tp)=min(4 [4D, t, /R, B) : (21)
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5.2 Numerical examples of RWHet-Pan&Bodvarsson

The transient activity range approach proposed by Pan and Bodvarsson [2002]
was implemented into RWHet. The updated RWHet is named “RWHet-
Pan&Bodvarsson”. We tested this code extensively. The numerical results can be
compared to the code DCPTV2.0 [Pan, 2002] where the transient activity range approach
was originally developed.

The following section text describes five of these tests.

5.2.1. Test 1: °*H with variable free-water diffusion coefficient Dy and fracture spacing
2B.

Test 1 (Figures 17~20) considers a wide range of free-water diffusion coefficient
Do, varying from 2.40 x10™ m%second to 9.31 x10”° m?/second. The fracture spacing
2B varies from 0.1m to 10m. Here the end member 0.1m is slightly smaller than the
smallest fracture spacing at the RM site.

The following conclusions are drawn from Test 1.

1) When the fracture spacing is as small as 2B < 0.5m, VfRf=1.13. When 2B > 0.5m,
VIRf=1.0. Here VIRf is an effective factor that controls the water volume in
fractures in the code RWHet-Pan&Bodvarsson — scaling the parameter VIRf is
equivalent to changing the time step of the mass transfer algorithm. We found that
it was necessary to adjust time step of the algorithm to maintain accuracy under
the specific condition of small fracture spacing.

2) RWHet-Pan&Bodvarsson works slightly better than DCPTV2.0 if the free-water
diffusion coefficient Do is relatively large. For the small Dy (<9.31x10™*
m?/second) with a spacing 2B=0.5m, RWHet with VVfRf=1.13 generates a slightly
earlier arrival.

3) RWHet-Pan&Bodvarsson is valid for a wide range of Dy.
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The RWHet-Pan&Bodvarsson solutions (symbols) versus the analytical solution

(black line) and the solution of DCPTV2.0 (green line). This figure shows the
influence of the free-water molecular diffusion coefficient Do on BTC. The right
plot is the semi-log version of the left plot. R=1, aperture 2b=2x10" m, and spacing

2B=0.1m.
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Tests of RWHet-Pan&Bodvarsson: Influence of the free-water molecular diffusion
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Tests of RWHet-Pan&Bodvarsson: The smallest Dy (=2.40x10™"* m?/second) (free-
water diffusion coefficient) for *H: R=1, aperture 2b=2x10"° m, and spacing

2B=0.1m (top plots) or 0.5m (bottom plots). In all plots, the DCPTV2.0 solution is
almost identical to the analytical solution, showing that the DCPTV2.0 works well
for a small D,. The right plot is the semi-log version of the left plot, to show the

early time behavior of BTC.

5.2.2 Test 2: Variable fracture spacing 2B (from 0.1m to 20m)

In Test 2, we check the influence of fracture spacing (Figures 21 and 22) on BTC.
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Tests of RWHet-Pan&Bodvarsson: Influence of the fracture spacing on BTC. The
right plot is the log-log version of the left plot. R; = 1, R,, = 30, aperture 2b=2x107

m, and the free-water diffusion coefficient D, =2.50x10** m¥/second.
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Figure 22.  Tests of RWHet-Pan&Bodvarsson: Influence of the fracture spacing on BTC. The
right plot is the log-log version of the left plot. R;= 1, R,,= 30, aperture 2b=2x10"°
m, and the free-water diffusion coefficient D;=2.50x10"** m%/second.

Test-2 (Figure 21 and Figure 22) reveals the following results:
1) When the fracture spacing is as small as 2B < 0.5m, VfRf=1.13. When 2B > 0.5m,

VIRf=1.0.
2) RWHet-Pan&Bodvarsson is valid for a large range of fracture spacing.
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5.2.3. Test 3: Variable retardation coefficients.

This test checks the applicability of RWHet-Pan&Bodvarsson for various
retardation coefficients (Figure 23).
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Figure 23.  Tests of RWHet-Pan&Bodvarsson: Influence of the retardation coefficient on BTC.
The bottom plot is the log-log version of the top plot. In (a) and (c), R = R, =1. In
(b) and (d), R; =11.59, and R,, =24193.0 (retardation based on kg values for **Am
from volcanic tuff units). The other parameters are: fracture spacing 2B=2 m,
aperture 2b= 2.0x10°m, and the free-water diffusion coefficient D,=3.06x10™°
m?/second (for **'Am).

Test-3 (Figure 23) has the following conclusions:
1) RWHet-Pan&Bodvarsson is valid for a very wide range of retardation coefficients.
2) Here the fracture spacing 2B> 0.5m, so that VfRf=1.0 is selected.

5.2.4. Test 4: Variable fracture aperture 2b (from 2b=2x10" m to 2b=1x10"° m)

Here we test the variation of fracture aperture. The solution of DCPTV2.0 is not
listed for this case, due to inadequate documentation on how to adjust the fracture
aperture in the User’s Manual of DCPTV2.0.
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Figure 24.
m, and the free-water diffusion coefficient Dy=4.80x10™*° m*/second.

Test-4 (Figure 24) shows:
1) RWHet-Pan&Bodvarsson is valid for a large range of fracture aperture.

2) In the experiments, the fracture spacing is 2B =2m > 0.5m, and therefore

VIRf=1.0.
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5.2.5. Test5

In this test, we apply the updated RWHet-Pan&Bodvarsson to simulate the
previous numerical experiments that cannot be captured by the earlier version
RWHet3.25 NUFT.f90 (see Figure 7 and Figure 9). Results (Figure 25 and Figure 26)
show that RWHet-Pan&&Bodvarsson improves RWHet3.25 NUFT.f90 and matches the
analytical solution.
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Figure 25.  Tests of RWHet-Pan&Bodvarsson: Updated version of Figure 7: The simulated
solution (blue symbols) versus the analytical solution (the red line) of tracer
breakthrough curves, where the model parameters are the same as Figure 7. The
right column is the semi-log plot of the left column, to show the tail at early times.
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Figure 26.  Tests of RWHet-Pan&Bodvarsson: Updated version of Figure 9: The numerical
solution (blue symbols) versus the analytical solution (the red line) of tracer
breakthrough curves, where the model parameters are the same as Figure 9, except
for the matrix retardation coefficient R,. The right column is the log-log plot of the
left column, to show the tail at early times.

In summary, Pan and Bodvarsson’s [2002] method was tested for single fracture
and parallel fracture systems and shown to be both computationally efficient and perform
well over a wide range of diffusion coefficients (3 orders of magnitude), fracture spacings
(0.1 to 20 meters), fracture aperture (3 orders of magnitude), retardation coefficients (4
orders of magnitude in Ry), and velocities (4 orders of magnitude, see Figure 27). Thus, it
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is our conclusion that the Pan and Bodvarsson [2002] approach is suitable for UGTA
applications as it has been tested over the full parameter range considered likely for the

Nevada National Security Site.
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Figure 27.
magnitude in velocity V) show that the VIRT correction is insensitive to velocity.
The right plot is the semi-log version of the left plot. Retardation coefficient R=1,
aperture 2b=2x10"° m, the free-water molecular diffusion coefficient D,=9.31x10™

meter?/second, and fracture spacing 2B=0.1 m.
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6. CONCLUSIONS

We applied and evaluated four different numerical methods to simulate
contaminant transport through fractured porous media using a fully Lagrangian solver.
The code RWHet was updated by adding additional components to account for the
particle tracking though fracture and matrix continua with mass transfer.

We first developed the Lagrangian methods based on the transfer probability
approach proposed by Liu et al. [2000], and coded it into RWHet. Numerical examples
show that this method is limited to certain ranges of parameters (for example, the free-
water molecular diffusion coefficient Dy must be relatively large), due to the intrinsic
assumption in building the transfer probability.

To address the above limitations, we then developed a direct numerical simulation
reflective (DNS-Reflective) method. The novel DNS-Reflective method can track
directly the particle dynamics across the fracture/matrix interface, without any empirical
assumptions. This advantage should make the DNS-Reflective method feasible for a
wide range of parameters. Numerical tests of the DNS-Reflective, however, show that
the method is computationally very demanding, since the time step must be very small
for particles to experience both the fracture and matrix.

To improve the computational efficiency, we then adopted Roubinet et al.’s
method [2009], which uses the first passage time distributions to simulate dual-domain
mass transfer. The DNS-Roubinet method was found to be computationally efficient, but
it fails to capture solute transport through a parallel fracture system with small fracture
spacing.

Finally, we adopted the transient range approach proposed by Pan and
Bodvarsson [2002] in RWHet. Numerical results were checked against analytical
solutions, and also compared to DCPTV2.0 [Pan, 2002]. This version of RWHet (called
RWHet-Pan&Bodvarsson) can capture contaminant transport in fractured porous media
for a full range of transport parameters. This is the most effective and efficient solution
since 1) the time step needs not to be very small to resolve particle transfer between
fractures and matrix blocks, and 2) it does not truncate the first passage time distribution
(note the truncation can create apparent errors when the fracture spacing is small).
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APPENDIX A: VALIDATION OF RWHet

The goal of this appendix is to test RWHet [LaBolle, 2006]. Six examples are
selected carefully and described in detail in the following sections.

We first check RWHet solutions against simple cases where the analytical
solutions are available. This leads to Example 1, which is also the commonly used
example for checking the applicability of a Lagrangian solver [Zheng and Wang, 1999;
LaBolle, 2006].

Example 2 and Example 3 calculate particle motions in two-dimensional (2-d)
homogenous boxes, where the flow field may be divergent and/or convergent. The two
examples were also used by Zheng [1992] and Zheng and Wang [1999] to test the
applicability of the particle tracking component in the code MT3D. LaBolle [2006] also
compared the analytical solutions to RWHet solutions. Here we extend the RWHet
simulation in LaBolle [2006] by evaluating the evolution of particle trajectories in the
divergent/convergent flow fields, which can further check the capability of RWHet in
capturing the flow path in heterogeneous media.

Example 4 and Example 5 calculate particle motions in two-dimensional
heterogeneous boxes with increasing complexity of medium heterogeneity. The correct
interpolation of particle velocities in a composite medium is the core of a typical
Lagrangian solver. Example 4 was first built by Zheng [1992] and used also by Zheng
and Wang [1999] to check the capability of MT3D in simulating contaminant transport
through a composite heterogeneous medium. Here we extend their work by evaluating
the response of streamlines to the convergent/divergent flow fields with various
injecting/pumping rates. Example 5 contains a high-resolution hydrofacies model.
RWHet is used to simulate particle dynamics across discrete interfaces of both velocity
and dispersion coefficient. The similar modeling approach as Example 5, including the
modeling of subsurface heterogeneity and solute transport, had also been applied and
validated by LaBolle and Fogg [2001] and Green et al. [2010].

Example 6 is the Verification Test 3 used by Painter [2011] for the new code
Walkabout. This example provides the direct comparison between Walkabout and
RWHet.

A.1l. Validation of RWHet using one-dimensional transport tests: Advection,
dispersion, sorption and decay (Example 1)

Example 1 - Similar to Zheng and Wang [1999], we first test the capability of
RWHet in capturing tracer transport in a one-dimensional (1-d) homogeneous medium,
where the analytical solution is available. Figure 28 shows four cases, involving
advection (Case 1), dispersion (Case 2), sorption (Case 3) and decay (Case 4). Inall
cases, the numerical model consists of 101 columns, 1 row and 1 layer of uniform cells.
The cell width is 10x10 feet along the row and column directions, and the layer thickness
is 1 foot. The effective porosity is 0.25. In the legend, V is the groundwater seepage
velocity, D is the dispersion coefficient (i.e., the combined effect of molecular diffusion
and mechanical dispersion), R denotes the retardation coefficient, and vy is the decay rate
constant. In all cases, a constant concentration (C=1) is defined at the first upstream cell,
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representing a continuous source at the inlet. The resultant RWHet solution is the
concentration at each cell, using the same spatial discretization. The analytical solution
was provided by Van Genuchten and Alves [1982, with the code “ODAST”].
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Figure 28. Example 1 - Comparison of the tracer snapshot at time t = 2000 days using RWHet

(symbols) and the analytical solutions (red lines). Adopted from Zheng and Wang
[1999, page 7-3]. The average difference between the numerical solution and the
analytical solution is 2.02x10° (a), 3.17x107 (b), 5.47x10° (c), and -3.72x10° (d),

respectively.

We first used the USGS code MODFLOW [Harbaugh and McDonald, 1996] to
calculate the steady-state flow, and then used the output flux data as the input file to run
RWHet. The particle tracking result from RWHet generally matches the analytical
solution for all the cases shown in Figure 28. In Case 1, RWHet solutions contain
apparent noises (Figure 28(a)). This is the well-known numerical oscillation behavior in
the Lagrangian solver, which can be alleviated by increasing the number of released
particles (note that the number of particles used in this simulation is 1000). The
normalized concentration exceeds one at some cells. Particles are merged at these
positions, resulting in a particle number density larger than the average (which is one).
For the other three cases, RWHet solutions generally catch the plume snapshots (Figure

28(b), (c), (d)).
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A.2. Two-dimensional homogeneous box: Transport in a radial flow field
(Examples 2 and 3)

Example 2 — This example considers the two-dimensional transport of solute
injected from a fully penetrating well [Zheng, 1992, Chapter 7.3]. The injection rate at
the well is 100 ft*/day, resulting in a divergent flow field. The initial and boundary
conditions for the transport model are:

C(r,0)=0 , (1a)
Cryt)=1, t>0 (1b)
oC

Er%wzo, t>0 (1C)

where r, is the well radius. This transport model has an approximate analytical solution
[Moench and Ogata, 1981; Javandel et. al., 1984].

Zheng [1992] selected a finite model domain discretized as 31 columns, 31 rows,
and 1 layer, where the grid size is 10x10x1 ft along x/y/z directions, respectively. The
effective porosity is 0.3. Both the longitudinal and transverse dispersivities are 10 ft.
The injection well is located in the middle of the model domain, i.e., at column 16, row
16 and layer 1.

MODFLOW was first used to simulate the steady-state flow field. The contour of
the simulated hydraulic head consists of concentric circles (Figure 29(a)), as expected. In
the center of the model domain, the contour however exhibits a slightly irregular shape,
probably due to the small area of the circle relative to the grid size. RWHet was then
used to calculate the streamlines (Figure 29(b)), which show the divergence of the flow
field. The simulated particle clouds at various times (Figure 29(c)) also expand as
concentric circles, as expected.

RWHet was finally applied to solve the transport model (1). The simulated plume
snapshot generally matches the analytical solution (Figure 30(b)). The symmetric
distribution of plumes around the injection well is also apparent (Figure 30(a)).
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Example 2 - (a) shows the contour of hydraulic heads calculated by MODFLOW.

(c) shows RWHet solutions of particle plumes at various times. The streamlines are
shown in (b). The meshes at the background represent the actual model meshes (31
columns x 31 rows). The pumping well is located at the middle grid of each figure.
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Figure 30.
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Example 2 - Two-dimensional transport in a radial flow field. (a) is the RWHet
simulation of the 2-d snapshot at time t = 27 days. (b) shows the comparison of the
tracer snapshot along the X-axis using RWHet (symbols) and the analytical
solutions (line). Adopted from Zheng and Wang [1999]. The average difference
between the numerical solution and the analytical solution is -4.57x107.
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Example 3 — This example involves solute transport in a 2-d strongly
diverging/converging and transient flow field. It contains an injection/pumping cycle for
a fully penetrating well in a confined aquifer. The details of this example can be seen in
Zheng and Wang [1999]. The numerical model consists of 31 columns, 31 rows and 1
layer, with cell size 900x900x20 ft along the column, row, and layer, respectively. The
injection cycle (with the volumetric injection rate 1 ft*/second) is from t = 0 ~ 2.5 yrs at
the well located in the middle of the model domain (i.e., column 16 and row 16),
followed by a pumping cycle with the same rate from 2.5 to 10 yrs. The effective
porosity is 0.3. The analytical solution of the concentration change at the
injection/pumping well was given by Gelhar and Collins [1971]. Results (Figure 31)
show that RWHet solutions generally match the analytical solution.

1.2
1
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0.6+

0.49 cycle cycle
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Figure 31.  Example 3 - Concentration profiles (i.e., normalized concentration over time) at the
well during an injection/pumping cycle. The symbols are the numerical solutions
from RWHet, and the solid line denotes the analytical solution for solute transport
in a strongly diverging/converging flow field. Adopted from Zheng and Wang
[1999]. The average difference between the numerical solution and the analytical
solution is 6.88x10™.

Figure 32 shows the particle locations at various times (simulated by RWHet) and
the corresponding hydraulic head contour (solved by MODFLOW) at each cycle. The
“circles” in Figure 32(a) and 32(b) are not smooth, due to the coarse-resolution model
grid (dx=dy=900 ft) and the irregular shape of the simulated head contour. Such behavior
is different from Example 2 (Figure 29), where the relatively fine-resolution (dx=dy=10
ft) model grid results in a fine-resolution flow field and regular particle cloud. Note that
RWHet efficiently captures the discrepancy of flow fields between Example 2 and
Example 3, by interpolating the MODFLOW velocities correctly to obtain the velocity
for each particle. This verifies further the reliability of RWHet.
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Example 3 — Particle positions (due to the advection-only transport) at various

times during the injection cycle (a) and the pumping cycle (b). The hydraulic head

at each cycle is also shown in (c) and (d).

the actual model meshes.

44

The meshes shown in (a) ~ (d) represent



A.3. Two-dimensional heterogeneous box: Advection-only transport (Examples 4
and 5)

We considered two boxes with a difference degree of “heterogeneity” (i.e., a
progression of complexity). The first one (Example 4) was adopted from Zheng and
Wang [1999, Chapter 7.9 — A two-dimensional application example], where a low-
permeable block is embedded in a relatively high-permeable material. The second case
(Example 5) contains a more complex structure of hydraulic conductivity distributions,
representing a high-resolution, “strongly” heterogeneous medium with abrupt interfaces
of distinct deposits observed in the field. The two cases have quite different grid
resolutions, and they can be used to test the capability of a Lagrangian solver in capturing
the influence of sharp-contrasts in velocity on particle dynamics. This section discusses
the advection-only transport. The influence of dispersion will be discussed in the
following.

A.3.1. Example 4

The flow and transport model setup was described in detail by Zheng [1992]. For
the convenience of readers, here we introduce them briefly. This example involves flow
and transport in a 2-d heterogeneous aquifer, where the analytical solutions are not
available. The flow model configuration is shown in Figure 33(a). Water is injected in to
the aquifer through a fully penetrating well at the north (near the upstream boundary),
and a pumping well is located at the south. Between these two wells, there is a low-
permeability zone.

RWHet was used to evaluate how the streamline changes with the injection and
pumping rates in the heterogeneous aquifer. When the injection and pumping rates are
relatively small (i.e., Figure 33(b)), neither the flow fields (solved by MODFLOW) nor
the streamlines are affected apparently. With the increase of injection and pumping rates,
the divergence near the injection well and the convergence near the pumping well are
enhanced for both flow and transport (Figure 33(c), (d)).
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Example 4 - (a) Configuration of the flow model in a heterogeneous aquifer with

wells. (b), (c) and (d) show the simulated streamlines (black lines) using RWHet,
due to various injection and pumping rates. In (b), the injection rate is 0.001
m?*/second and the pumping rate is 0.0189 m*/s. In (d), the injection rate is 0.0926
m?*/s and the pumping rate is 1.16 m%s. In (c), the injection rate is 0.315 m%s and
the pumping rate is 1.89 m%s. In (b), (c) and (d), the blue lines denote the contours
of hydraulic head (meter). Modified from Zheng and Wang [1999].
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A.3.2. Example 5

This example shows the streamline (and its statistics) across a “strongly” heterogeneous
media with random distributed hydraulic conductivities (Figure 34).

Streamline (the blue line)

—al Ve ™ )
1700 1800 1900 2000 2100 2200
X(m)

Figure 34.  Example 5 - Particle tracking through a heterogeneous medium. (a) The distribution
of hydrofacies generated by T-PROGS [Carle, 1999]. (b) The simulated contour of
hydraulic head using MODFLOW and the streamlines (blue lines) calculated by
RWHet. (c) lists the detail in the green box shown in (a) and (b). In the images, the
darker cell has a smaller hydraulic conductivity.
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The well-known code T-PROGS [Carle, 1999] wa

s first used to generate the

heterogeneous medium (Figure 33(a)), where the 2-d Markov Chain model was adopted
from Carle [1996] and LaBolle and Fogg [2001]. The 3-d cell size of 10, 10 and 10 m in

the depositional strike (Y-axis), depositional dip (X-axis),

and vertical directions was

selected. The overall dimensions of the simulated region are 6010x4010x10 m (y/x/z),
with 601x401x1=241,001 cells. The same model and grid size were used in the flow and

transport models.
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Figure 35.  Example 5 - Statistics of particle tracking simulation (advection-only) using
RWHet. (a) and (b) show the mean and variance of displacement for the 9 particles
along the longitudinal direction (i.e., Y-axis shown in Figure 34). (c) and (d) are the

same statistics along the horizontal direction (i.e.,

X-axis shown in Figure 34).

Figure 34 shows the simulated streamlines using RWHet. Figure 35 shows the

statistics of particle trajectories (due to the advection-only
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A.4. Two-dimensional heterogeneous box: Advection & dispersion (Examples 4

and 5)

We first add dispersion in the transport process for Example 4 (Figure 36). The
transport model set up is shown in Figure 36a.

1900 No-flux boundary (transport model) 1900
@) o-flux oun‘ ary(r‘anspo ‘ e)‘ (b)
1700 Continuous source with 1700
constant concentration (=1)
°
1500 | | 1
13005 2 1
5 =
§ 1100 8 2| g0
£ E X g
> 9002 "é g
Extraction well
700 @ (remove tracer)
500
300
100 Absorbing boundary (transport model) |
100 300 500 700 900 1100 1300 1500 0 700 900 1100 1300 1500
X (meter) X (meter)
1900
C
( ) (d)
1700
1500
1300
1‘5 1100 S 1100
g @
£ £
> >

100

Figure 36.
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Example 4 - Distribution of solute concentration at time t = 36.5 days as solved by
RWHet. See also Zheng [1992, page 7-18] for a similar tracer snapshot as the one
shown in (b). The flow field for (b), (c) and (d) is the same as Figure 32 (b), (c),
and (d), respectively.
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The effective porosity is 0.3. The longitudinal and transverse dispersivity are 6
m and 1 m, respectively. The influence of molecular diffusion is neglected (for the
comparison with MT3D in Zheng [1992]). A continuous source with a constant
concentration C=1 is located at the injection well. The simulated plume snapshot for
each flow field using RWHet is shown in Figure 36(b), 36(c), and 36(d).

We then add dispersion in the transport process for Example 5 (Figure 37). The
effective porosity is 0.3. The longitudinal and transverse dispersivity are 4 m and 0.4 m,
respectively. The molecular diffusion coefficient is 5.2x10™ m?/day. A continuous
source with a constant concentration C=1 is located near the upstream boundary. The
simulated plume snapshots at various times using RWHet are shown in Figure 37.

T=10yrs T=20yrs T=30 yrs

X (m)

Figure 37.  Example 5 - Time evolution of solute particles (snapshots) through the strong
heterogeneous flow field (same as Figure 34).
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A.5. Walkabout Verification Test 3 (Example 6)

Example 6 — This example is analogous to the Verification Test 3 in Painter
[2011, Figure 10], a 2-d flow and transport through a composite medium. The model
domain is 100x100x100 m, with a structured (uniform) grid size 2x2x10 m for each
column, row and layer. The whole domain has a hydraulic conductivity (K) 6.49x107
m/day, except for two regions (shown by the shaded areas in Figure 38(b)) with a lower
K =6.49x10" m/day. In the flow model, the left and right boundaries are constant-head
boundaries, with hydraulic head of 90 and 70 meters, respectively. The top and bottom
boundaries are no flow boundaries. In the transport model, all boundaries are reflective
(i.e., no flux) boundaries except for the right one, which is an absorbing boundary. The
effective porosity is 0.3.

Trajectories calculated by RWHet are shown in Figure 38(a). Figure 38(b) shows the
Walkabout results [Painter, 2011, Figure 10]. RWHet results generally match the trend
of the Walkabout streamlines.

Figure 38.  Example 6 - Left: The contour of the hydraulic heads simulated by MODFLOW
(black lines) and the streamlines calculated by RWHet (red lines). Note here we
have 9 streamlines, while Painter [2011, Figure 10] (the right figure) showed only 8
of them (without the middle one). Right: Copy from Painter [User’s Manual for
Walkabout Version 1.0, 2011, Figure 10, page 14] — Results of Verification Test 3.
Shown are horizontal projections of streamlines calculated by SPTR (solid blue)
and Walkabout (red dashed).

All of the above six examples show that RWHet captures the streamlines and
solute transport reliably in 1-d and multiple dimensions.

51



	Executive Summary
	List of Figures
	List of Tables
	List of Acronyms
	1. Introduction
	2.  RWHet combined with the transfer probability method developed by Liu et al. [2000]
	2.1 The transfer probability method
	2.2 Numerical experiments of Liu et al.’s method [2000]
	2.3 Fracture/Matrix properties at the Rainer Mesa site

	3.  The direct numerical simulation (DNS) of contaminant transport in fractured porous media: the DNS-Reflective method
	4.  The DNS-Roubinet method
	5. The transient range approach proposed by Pan and Bodvarsson [2002]
	5.1 Methodology of Pan and Bodvarsson [2002]
	5.2 Numerical examples of RWHet-Pan&Bodvarsson
	5.2.1. Test 1: 3H with variable free-water diffusion coefficient D0 and fracture spacing 2B.
	5.2.2 Test 2: Variable fracture spacing 2B (from 0.1m to 20m)
	5.2.4. Test 4: Variable fracture aperture 2b (from 2b=2×10-5 m to 2b=1×10-3 m)
	5.2.5. Test 5


	6. Conclusions
	References
	Appendix A: Validation of RWHet
	A.1. Validation of RWHet using one-dimensional transport tests: Advection, dispersion, sorption and decay (Example 1)
	A.2.  Two-dimensional homogeneous box: Transport in a radial flow field (Examples 2 and 3)
	A.3. Two-dimensional heterogeneous box: Advection-only transport (Examples 4 and 5)
	A.3.1. Example 4
	A.3.2. Example 5

	A.4. Two-dimensional heterogeneous box: Advection & dispersion (Examples 4 and 5)
	A.5. Walkabout Verification Test 3 (Example 6)


