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EXECUTIVE SUMMARY 
Accurate simulation of matrix diffusion in regional-scale dual-porosity and dual-

permeability media is a critical issue for the DOE Underground Test Area (UGTA) program, 
given the prevalence of fractured geologic media on the Nevada National Security Site (NNSS).  
Contaminant transport through regional-scale fractured media is typically quantified by particle-
tracking based Lagrangian solvers through the inclusion of dual-domain mass transfer algorithms 
that probabilistically determine particle transfer between fractures and unfractured matrix blocks. 
UGTA applications include a wide variety of fracture aperture and spacing, effective diffusion 
coefficients ranging four orders of magnitude, and extreme end member retardation values. 

This report incorporates the current dual-domain mass transfer algorithms into the well-
known particle tracking code RWHet [LaBolle, 2006], and then tests and evaluates the updated 
code. We also develop and test a direct numerical simulation (DNS) approach to replace the 
classical transfer probability method in characterizing particle dynamics across the 
fracture/matrix interface.  The final goal of this work is to implement the algorithm identified as 
most efficient and effective into RWHet, so that an accurate and computationally efficient 
software suite can be built for dual-porosity/dual-permeability applications.  RWHet is a mature 
Lagrangian transport simulator with a substantial user-base that has undergone significant 
development and model validation.  In this report, we also substantially tested the capability of 
RWHet in simulating passive and reactive tracer transport through regional-scale, heterogeneous 
media. 

Four dual-domain mass transfer methodologies were considered in this work. We first 
developed the empirical transfer probability approach proposed by Liu et al. [2000], and coded it 
into RWHet.  The particle transfer probability from one continuum to the other is proportional to 
the ratio of the mass entering the other continuum to the mass in the current continuum.  
Numerical examples show that this method is limited to certain ranges of parameters, due to an 
intrinsic assumption of an equilibrium concentration profile in the matrix blocks in building the 
transfer probability.  Subsequently, this method fails in describing mass transfer for parameter 
combinations that violate this assumption, including small diffusion coefficients (i.e., the free-
water molecular diffusion coefficient ≤0D 1×10-11 meter2/second), relatively large fracture 
spacings B2  (such as 12 ≥B  meter), and/or relatively large matrix retardation coefficients mR  
(i.e., 2≥mR ).  These “outliers” in parameter range are common in UGTA applications.   

To address the above limitations, we then developed a Direct Numerical Simulation 
(DNS)-Reflective method.  The novel DNS-Reflective method can directly track the particle 
dynamics across the fracture/matrix interface using a random walk, without any empirical 
assumptions.  This advantage should make the DNS-Reflective method feasible for a wide range 
of parameters.  Numerical tests of the DNS-Reflective, however, show that the method is 
computationally very demanding, since the time step must be very small to resolve particle 
transfer between fractures and matrix blocks. 

To improve the computational efficiency of the DNS approach, we then adopted 
Roubinet et al.’s method [2009], which uses first passage time distributions to simulate dual-
domain mass transfer.  The DNS-Roubinet method was found to be computationally more 
efficient than the DNS-Reflective method.  It matches the analytical solution for the whole range 
of major parameters (including diffusion coefficient and fracture aperture values that are 
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considered “outliers” for Liu et al.’s transfer probability method [2000]) for a single fracture 
system.  The DNS-Roubinet method, however, has its own disadvantage: for a parallel fracture 
system, the truncation of the first passage time distribution creates apparent errors when the 
fracture spacing is small, and thus it tends to erroneously predict breakthrough curves (BTCs) for 
the parallel fracture system. 

Finally, we adopted the transient range approach proposed by Pan and Bodvarsson 
[2002] in RWHet.  In this method, particle transfer between fractures and matrix blocks can be 
resolved without using very small time steps.  It does not use any truncation of the first passage 
time distribution for particles.  Hence it does not have the limitation identified above for the 
DNS-Reflective method and the DNS-Roubinet method.  Numerical results were checked against 
analytical solutions, and also compared to DCPTV2.0 [Pan, 2002].  This version of RWHet 
(called RWHet-Pan&Bodvarsson in this report) can accurately capture contaminant transport in 
fractured porous media for a full range of parameters without any practical or theoretical 
limitations. 
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1. INTRODUCTION 
Fractured media are ubiquitous.  The lack of analytical solutions for contaminant 

transport through fractured rock masses motivated the development of numerical methods.  
Specific software suites including for example FEHM [Zyvoloski, 2007], SLIM-FAST 
[Maxwell and Tompson, 2006], and DCPT [Pan, 2002] were designed using the particle-
tracking approach to capture solute dynamics through regional-scale fractured media.  
The fully Lagrangian methods are superior to the standard Eulerian solvers in simulating 
transport in regional-scale fractured media, due to computational efficiency [LaBolle et 
al., 1996; Liu et al., 2000], sub-flow-grid scale resolution of concentrations, and the 
construction of a sample path for the underlying stochastic process. 

The Lagrangian solver has been used widely by hydrologists for more than three 
decades.  It was first applied to tracer transport in saturated alluvial formations [Ahlstrom 
et al., 1977; Prickett et al., 1981], and then porous media of all types [Uffink, 1985; 
Kinzelbach, 1988; Cordes et al., 1991; Mahinthakumar and Valocchi, 1992; Tompson, 
1993; Semra et al., 1993; LaBolle et al., 1996, 1998, 2000; LaBolle and Fogg, 2001; 
Weissmann et al., 2002; Maxwell et al., 2007; Green, 2010] and extended to fractured 
rocks with matrix diffusion [Yamashita and Kimura, 1990; Wels et al., 1997; Liu et al., 
2000; Tsang and Tsang, 2001; Roubinet et al., 2009, 2012]. 

We applied/developed four different methods to capture particle transport through 
fracture/matrix media.  These methods include 1) the transfer probability approach 
proposed by Liu et al. [2000], 2) the DNS (direct numerical simulation)-Reflective 
method proposed by this study, 3) the DNS-Roubinet method using the first passage time 
distribution proposed by Roubinet et al. [2009], and 4) the transient activity range method 
proposed by Pan and Bodvarsson [2002].  Each method will be introduced in detail in the 
next sections, followed by numerical tests and comparisons.  The best method is 
identified and implemented into the well-known particle tracking code RWHet [LaBolle, 
2006], and then tested extensively. 

RWHet was selected as the hosting software because 1) it has been demonstrated 
to be an accurate, computationally efficient particle-tracking approach [see for example, 
LaBolle et al., 1996, 1998, 2000; among many others], 2) it has been used widely by 
numerical modelers in the hydrology community, and 3) it can read directly the water 
flux or hydraulic head outputs generated by Eulerian-based flow models, such as 
MODFLOW, or other forms of velocity fields.  We have also extensively tested RWHet 
(see Appendix A), where numerical examples show that RWHet can capture efficiently 
and accurately the transport of both passive and reactive tracers through regional-scale 
heterogeneous media with abrupt interfaces of transport properties (such as velocity and 
dispersion coefficient). 

2.  RWHet COMBINED WITH THE TRANSFER PROBABILITY METHOD 
DEVELOPED BY LIU ET AL. [2000] 

We first applied the original transfer probability method proposed by Liu et al. 
[2000] into RWHet.  In the following (subsection 2.1), we introduce the methodology 
first, and then extensively test the capability of the updated code RWHet in subsections 
2.2 and 2.3. 
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2.1 The transfer probability method 
In the dual-continuum model, the particle transfer probability from one continuum 

to the other can be calculated as the ratio of the mass entering the other continuum during 
the time interval to the mass in the current continuum at the beginning of this time 
interval [Pan et al., 2001, page 8].  Liu et al. [2000, Eqs. (16) and (17)] proposed the 
following two transfer probabilities 
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when the water flow rate from fractures to the matrix within the block (denoted as fmQ  
[m3 s-1]) is positive (i.e., water flows from fractures to the matrix).  Here fmF  [kg s-1] is 
the transport rate (due to both advection and dispersion) from fractures to the matrix; 

mfF  is the transport rate (due to both advection and dispersion) from the matrix to 
fractures; fV  (or mV ) [m3] is the liquid volume within the fracture (or matrix) 
continuum (defined as the grid block volume multiplied by the porosity); fC  (or mC ) 
[kg m-3] is the solute concentration in fractures (or the matrix); fmD  [m2 s-1] is the 
hydrodynamic dispersion coefficient for solute transport between fractures and the 
matrix; A [m2] is the fracture-matrix interface area available for solute transport between 
the continua within the block; S [m] denotes the distance from the fracture-matrix 
interface to the center of the matrix; and λ  is the shape function and 3/1=λ  for the 
layered matrix with a finite thickness (here the term “layered” denotes the shape of  
matrix blocks, see also the same definition used by Crank [1975] and Haggerty et al. 
[2000]). 

The transfer probability defined by (1a) and (1b) can be related to fracture/matrix 
properties.  Here the total water volume in fractures within each grid ( fV ) can be defined 
as 

ff dzdydxV θ)(=    ,                                              (2) 

where dx , dy , and dz  [m] are the size of the grid along X, Y, and Z directions, 
respectively; and fθ  [dimensionless] denotes the fracture porosity (i.e., the ratio of the 
fluid volume within the fractures to the total grid volume). 

Similarly, mV  is 

mfm dzdydxV θθ )()1( −=    ,                                        (3) 

where mθ  [dimensionless] denotes the matrix porosity. 

The contact area between fracture and matrix, A, is defined as: 

dzdy
B
dxA=    ,                                                         (4) 

where B [m] is the (half) fracture spacing. 
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Substituting (2) and (4) into (1a), we obtain the probability for a fracture particle 
to enter the matrix during the time interval t∆ : 
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where mfm RDD =∗ , mR  [dimensionless] is the matrix retardation coefficient, b [m] is the 
(half) fracture aperture, and fR  [dimensionless] is the retardation coefficient in fractures.  
Note here fR  is added in Eq. (5) for the case of sorption, as also shown by Eq. (30) in 
Liu et al. [2000].  Substituting (3) and (4) into (1b), we get the other transfer probability 
(i.e., from the matrix to the adjacent fracture) 

t
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*3      .                                                (6) 

Probability (6) is the same as the one used by Maxwell and Tompson [2006, Eq. 
(B23b)].  The transfer probability from fractures to the matrix, as expressed by (5), 
however, is slightly different from the following one used by Maxwell and Tompson 
[2006, Eq. (B23a)]: 

t
RbS
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m

fm ∆=
*3    .                                                    (7) 

Note that Maxwell and Tompson [2006] did not consider advective flux between fractures 
and the matrix, and mass exchange occurs only because of diffusion into and out of the 
matrix blocks.  In the following we will show that the formula (5) is valid for the case of 
variable retardation coefficients for fractures. 

2.2 Numerical experiments of Liu et al.’s method [2000] 
The above methodology is coded into RWHet.  The resultant code is called 

RWHet3.25_NUFT.f90.  Note here the word “NUFT” is used since a preceding version 
of RWHet reads dual-permeability flow fields generated by the numerical flow code 
NUFT [Nitao, 2001]; however, the algorithm developed below is not restricted to NUFT 
flow fields and valid for both dual-porosity and dual-permeability flow fields from any 
finite-difference flow code.  

Numerical results using RWHet3.25_NUFT.f90 are compared with analytical 
solutions given in Sudicky and Frind [1982].  Almost all parameters are tested, including 
diffusion coefficient (Figure 1 and Figure 2), aperture (Figure 3), longitudinal 
dispersivity within the fractures (Figure 4), matrix retardation coefficient (Figure 5), 
fracture retardation coefficient (Figure 6), and fracture spacing (Figure 7). 
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Figure 1. Numerical tests of RWHet3.25_NUFT.f90: Variable free-water diffusion 
coefficient 0D  – the simulated breakthrough curves in fracture continuum using 
RWHet3.25_NUFT.f90 (symbols) versus analytical solutions (lines).  The unit for 

0D  is meter2/second.  The other model parameters are: velocity V=1m/day, fracture 
dispersivity αL=0 m, fracture aperture 2b=2×10-5 m, fracture spacing 2B=1m, matrix 
porosity θm=0.1, matrix tortuosity τ=0.25, fracture retardation coefficient Rf=1, 
matrix retardation coefficient Rm=1, and the travel distance is 36m. 
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Figure 2. Numerical tests of RWHet3.25_NUFT.f90: A small free-water diffusion coefficient 
0D =1×10-11 meter2/second – the simulated breakthrough curves in fracture 

continuum using RWHet3.25_NUFT.f90 (symbols) versus analytical solutions 
(lines).  (b) is the log-log plot of (a).  The other model parameters are the same as 
those shown in Figure 1. 
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Figure 3. Numerical tests of RWHet3.25_NUFT.f90: Variable aperture 2b (units: meter).  
The other model parameters are: (free-water) diffusion coefficient 0D =1×10-9 m2/s, 
velocity V=1m/day, fracture dispersivity αL=0 m, fracture spacing 2B=1m, matrix 
porosity θm=0.1, matrix tortuosity τ=0.25, fracture retardation coefficient Rf =1, 
matrix retardation coefficient Rm =1, and the travel distance is 36 m. 

 

0 400 800
Time (yr)

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 C
on

ce
nt

ra
tio

n Dispersivity αL=0 (m)
1

 

Figure 4. Numerical tests of RWHet3.25_NUFT.f90: Variable longitudinal dispersivity αL in 
fracture (units: meter).  The other model parameters are: (free-water) diffusion 
coefficient 0D =1×10-9 m2/s, velocity V=1m/day, fracture aperture 2b=2.5×10-5 m, 
fracture spacing 2B=1m, matrix porosity θm=0.1, matrix tortuosity τ=0.25, fracture 
retardation coefficient Rf=1, matrix retardation coefficient Rm=1, and the travel 
distance is 36m. 
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Figure 5. Numerical tests of RWHet3.25_NUFT.f90: Variable matrix retardation coefficient 
Rm.  The other model parameters are: (free-water) diffusion coefficient 0D =1×10-9 
m2/s, velocity V=1m/day, fracture aperture 2b=3×10-5 m, fracture spacing 2B=1m, 
fracture dispersivity αL=0 m, matrix porosity θm=0.1, matrix tortuosity τ=0.25, 
fracture retardation coefficient Rf=1, and the travel distance is 36m. 
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Figure 6. Numerical tests of RWHet3.25_NUFT.f90: Variable fracture retardation coefficient 
Rf.  The other model parameters are: (free-water) diffusion coefficient 0D =1×10-9 
m2/s, velocity V=1m/day, fracture aperture 2b=3×10-5 m, fracture spacing 2B=1m, 
fracture dispersivity αL=0 m, matrix porosity θm=0.1, matrix tortuosity τ=0.25, 
matrix retardation coefficient Rm=1, and the travel distance is 36m. 
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Figure 7. Numerical tests of RWHet3.25_NUFT.f90: Influence of fracture spacing on the 
BTC: analytical solutions (lines) versus particle-tracking results of 
RWHet3.25_NUFT.f90 (symbols).  (b) is the semi-log plot of (a), to show the 
early portion of BTC.  The unit for fracture spacing (actually 2B) is meters.  
The other model parameters are: (free-water) diffusion coefficient 

0D = 9.31×10-11 m2/second, velocity V=1m/day, fracture dispersivity αL=0.01m, 
fracture aperture 2b=1×10-4 m, matrix porosity θm=0.1, matrix tortuosity τ = 0.25, 
fracture retardation coefficient Rf = 1, matrix retardation coefficient Rm = 1, and the 
travel distance is 36 m. 

 

The particle tracking results generally match the analytical solutions for the free-
water diffusion coefficient 0D  between 1×10-8 and 1×10-10 m2/s (Figure 1).  Note that the 
effective diffusion coefficient used above is mDD θτ0

*=  (following the definition by Liu 
et al. [2000], page 711).  If a very small 0D  is used (such as 1×10-11 m2/s) (Figure 2), the 
particle tracking solution tends to overestimate the early breakthrough curve (BTC), 
similar to that observed by Hassan [2002].  Therefore, the transfer probability method 
proposed by Liu et al. [2000] is not applicable for small diffusion coefficients.  
Improvement of the particle tracking approach to account for this deficiency will be 
discussed in Section 3. 

If 0D  is not extremely small, the particle tracking results match the analytical 
solutions for various fracture apertures (Figure 3).  Acceptable matches between 
numerical and analytical solutions are also found for various dispersivities (Figure 4) and 
matrix retardation coefficients (Figure 5).  The fracture retardation coefficient affects the 
dynamics of particle transport (Figure 6), by affecting not only the transport parameters 
(such as the effective velocity, dispersion coefficient, and fracture porosity), but also the 
transfer probability fmP  (see Eq. (5)).  The latter, however, has not been considered by 
previous studies. 

Apparent discrepancy between the numerical and analytical solutions is found for 
a relatively large fracture spacing (Figure 7), which has also been identified by Pan and 
Bodvarsson [2002].  Such discrepancy leads to the correction discussed in Section 3. 
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2.3 Fracture/Matrix properties at the Rainer Mesa site 
Here we use parameters obtained for the Rainer Mesa (RM) site, Nevada, 

fracture/matrix to re-calculate the tracer BTCs for a generic radionuclide.  A diffusion 
value for 3H was selected, which has the largest free water diffusion coefficient.  If the 
transfer probability method proposed by Liu et al. [2000] cannot capture the dynamics of 
3H, then it can also be problematic in simulating the transport of other isotopes, such as 
241Am (the free-water diffusion coefficient D0 = 3.06×10-10 m2/second)  and 90Sr (D0 = 
1.29×10-9 m2/second).  The model parameters for this generic radionuclide are: the free-
water diffusion coefficient D0 = 9.31×10-9 m2/second, fracture retardation coefficient Rf = 
12.95, matrix tortuosity τ = 0.2, matrix porosity mθ  = 0.25, matrix retardation coefficient 
Rm = 24192.9, fracture aperture (2b) = 5×10-4 meter, and fracture spacing (2B) = 10 meter.  
Note that values of Rf and Rm are based on an average sorption coefficient Kd for 241Am in 
zeolitized volcanic tuffs. 

The particle tracking result however is quite different from the analytical solution 
(Figure 8).  RWHet3.25_NUFT.f90 overestimates the BTC at early times: almost all 
particles (2949 out of 2950 particles) exit the model domain at time t ≈ 4 yrs.  The 
remaining particle stays in the model until the end of the modeling period (t=8,000 yrs).  
The analytical solution, however, shows that no particles should exit the model domain 
before t=8,000 yrs. 
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Figure 8. The simulated solution (blue symbols) versus the analytical solution (the red line) 
of tracer breakthrough curves of RWHet3.25_NUFT.f90 for RM site model 
parameters (see the text for the value of each parameter).  In (a), Rm=24192.9.  (b) is 
the log-log plot of (a). 

 

The failure of RWHet3.25_NUFT.f90 with the Liu et al. [2000] may be due to the 
resultant small transfer probabilities (Table 1).  The probability of a fracture particle to 
enter the matrix is as low as 3.2×10-7, which is constant over the entire modeling period.  
In the numerical case we tested, only one particle could enter the matrix (note that all 
2950 particles were at the fracture at the beginning of the simulation), and remained in 
the matrix for an extremely long time (due to the small transfer probability from matrix to 
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fracture, which is 3.3×10-14).  For simplicity, we ignored dispersion within the fracture, 
and hence particles exited the model domain at the same time. 

 
Table 1. Computed transfer probabilities for various matrix retardation coefficients. 

Case Rm Rf fmP  mfP  
1 24192.9 12.95 3.2×10-7 3.3×10-14 
2 5 12.95 1.5×10-3 7.7×10-7 
3 2 12.95 3.8×10-3 4.8×10-6 
4 1 12.95 7.6×10-3 1.9×10-5 

 

The small transfer probabilities are likely attributed to the large matrix retardation 
coefficient Rm.  To explore the influence of Rm on particle tracking in 
RWHet3.25_NUFT.f90, we tested three more cases with smaller Rm (Table 1).  The 
corresponding transfer probabilities increase with the decrease of Rm.  Results (Figure 9) 
also show that the numerical solution approaches the analytical solution gradually. 

The strong influence of Rm on fmP  and mfP  can be seen from the transfer 
probability formulas (5) and (6).  In both (5) and (6), the two factors Rm and S can be 
combined.  In other words, the effect of increasing Rm is functionally equivalent to 
increasing fracture spacing.  The numerical examples in the above subsection show that 
the RWHet3.25_NUFT.f90 will fail for a large value of fracture spacing (Figure 7).  Note 
that the increase of Rm also decreases the diffusion in matrix, and hence delays the motion 
of particles (Figure 5). 

Formulas (5) and (6) also show that the fracture retardation coefficient Rf affects 
only the transfer probability from fracture to matrix fmP .  In (5), the two factors Rf and b 
can be combined, implying that the increase of Rf can be functionally equivalent to the 
increasing of fracture aperture.  The above numerical examples show that the particle 
tracking scheme is robust for a large range of fracture aperture (Figure 2), including the 
value found for the RM site.  It also noteworthy that the increase of Rf will also decrease 
the advection and dispersion for particles in fractures, resulting in a delayed BTC (see for 
example, Figure 6). 

Therefore, the transfer probability method proposed by Liu et al. [2000] can 
capture the particle dynamics in fracture/matrix systems for most conditions, except for: 

1) A small diffusion coefficient (i.e., the free-water diffusion coefficient 
≤0D 1×10-11 meter2/second); 

2) Moderate fracture spacing (such as 12 ≥B  meter); 

3) Most values of retardation coefficient for matrix (i.e., 2≥mR ). 
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Figure 9. The simulated solution using RWHet3.25_NUFT.f90 (blue symbols) versus the 
analytical solution (the red line) of tracer breakthrough curves, where the model 
parameters are the same as Figure 7, except for the matrix retardation coefficient 
Rm.  The right column is the log-log plot of the left column to show the tail at early 
times.  
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3.  THE DIRECT NUMERICAL SIMULATION (DNS) OF 
CONTAMINANT TRANSPORT IN FRACTURED POROUS MEDIA: 
THE DNS-REFLECTIVE METHOD 

The DNS-Reflective method is expected to simulate solute transport throughout 
the entire parameter space.  The core of the DNS-Reflective approach is to accurately and 
efficiently describe the particle dynamics across the interface between the fracture and 
matrix (Figure 10).  Hence, it is a specific particle‐tracking method for modeling solute 
transport in composite media where sharp contrasts exist between velocity, porosity, 
diffusion, dispersion and/or retardation.  These are the same types of conditions that exist 
across a fracture‐matrix interface.  Previously developed particle tracking algorithms (e.g., 
LaBolle et al. [1996, 2000], LaBolle and Zhang [2006], and Bechtold et al. [2011]), 
several of which are already included in RWHet, can be applied to track particles across a 
fracture‐matrix interface. 

b
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f
f
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Figure 10. Conceptual model of a single fracture-matrix system.  In the figure, D denotes the 
molecular diffusion coefficient, θ denotes the porosity, and R is the retardation 
coefficient.  The suffix “f” denotes fracture, and “m” denotes matrix.  The dashed 
line denotes the discrete interface between the fracture and the matrix.  

 

The DNS-Reflective approach contains the following three major steps: 

Step 1 – Calculate the independent transport components for each particle. 
Standard particle tracking schemes can be used to calculate the advective and 

dispersive displacement of each particle during each jumping event: 
dtDwdtxvtxdttx x++=+ )()()(                                          (8a) 

dtDwtzdttz z+=+ )()(                                                       (8b) 
where w  is a uniform random number with mean zero and variance 1.  The core of this 
step is to define the appropriate time step dt used in (8). To limit the jump size of a single 
particle during one step to be less than the (half) aperture b, dt should be defined as: 
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fRD
bdt

/
1

6 0

2







≤        ,                                                 (9) 

where D0 is the free-water diffusion coefficient and fR  is the fracture retardation 
coefficient. 

If there is an advective flux from fracture to matrix, dt should be smaller than (9), 
so that the particle moves at least twice before encountering the fracture/matrix interface.  
It is also noteworthy that additional transport components can be added conveniently to 
particle trajectories, including advection in the matrix. 

 
Step 2 – Apply the one-side reflection scheme to capture the particle dynamics across the 
fracture/matrix interface. 

The one-side reflection scheme proposed recently by Bechtold et al. [2011] is 
selected for this step.  This scheme corrects the standard reflection method by splitting 
the time step nonlinearly for particles across the discrete interface.  It also increases 
significantly the computational efficiency by transforming the reflection barrier method 
from a two-side into a one-side reflection scheme. 

Note that in the one-side reflection scheme, the particle can jump “freely” from 
matrix to fracture, due to the one-side reflection probability defined below: 

fff

mmm
mf RD

RD
P

/

/
1

θ

θ
−=→       ,                                        (10a) 

0=→ fmP                         ,                                             (10b) 

if 

mmmfff RDRD // θθ >                         .                   (11) 

Here mfP →  is the reflection probability from fracture to matrix, and fmP →  is the 
reflection probability from matrix to fracture (note that a zero reflection probability 
means that no particles can be reflected at the interface, or in other words, each particle 
can move “freely” if it starts in matrix).  When the two retardation coefficients mR  and 

fR  equal 1, (10) reduces to the formula proposed by Bechtold et al. [2011].  A uniform 
[0 1] random number U is generated and compared to the above probabilities.  If the 
particle is located in the fracture and U > mfP → , then the particle can cross the 
fracture/matrix interface during the current time step.  When the particle is located in the 
matrix, it can move freely in either direction.  This scheme is coded and verified, with 
some examples shown in Figure 11. 
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Figure 11. DNS-Reflective method: Numerical examples of the one-side reflection scheme: 
the simulated results (symbols) versus the analytical solute concentration 
distributions (lines, from Carslaw and Jaeger [1959]) at t=5 for a composite media 
with discrete diffusion coefficients and effective porosity.  The vertical green line 
indicates the location of the “reflective” boundary.  An instantaneous point source 
is located at x=48.  For simplicity, D shown in the figure is dimensionless (note the 
purpose of this experiment is to explore the applicability of the Lagrangian scheme 
to capture particle dynamics across an abrupt interface). 

 
Step 3 – Split the time step dt for each particle spent in the fracture and the matrix 
domain, and then repeat the above steps until reaching the final simulation time. 

There are two loop cycles of the above 3-step scheme.  The outer iteration is for 
time, and the inner iteration is for the number (i.e., sequence) of particles. 

We systematically test the above 3-step DNS-Reflective method.  Results (Figure 
12) show that the DNS-Reflective solutions generally match the analytical solutions to a 
single fracture within an infinite matrix [Tang et al., 1981], if the time step dt is properly 
defined.  For example, for case 6 shown by Table 2 and Figure 12(f), Eq. (9) shows that 

2.50≤dt  day.  In the DNS-Reflective simulations, we test three time steps: 2101 −×  day, 
3101 −×  day, and  4101 −×  day.  Because the three time steps are much less than 50.2 day, 

the three simulated breakthrough curves are almost identical to the analytical solutions. 

For case 2, the minimum time step defined by Eq. (9) is 55.02 10dt −≤ ×  day 
(Table 2).  In the four time steps tested in the DNS-Reflective simulations (Figure 12(b)), 
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only the smallest one (i.e., 5105.2 −×  day) meets the criterion of Eq. (9) and hence it can 
generate the similar result as the analytical solution. 
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Figure 12. DNS-Reflective method: Influence of (half) aperture b (left figures) and the free-

water diffusion coefficient D0 (right figures) on the breakthrough curve for the 
fracture at depth z=0.666 m: the DNS-Reflective solutions (lines) versus the 
analytical solutions (symbols, Tang et al. [1981]).  The (half) aperture is b= 5×10-3 
m (a), 5×10-4 m (b) (Note that the fracture aperture at Rainier Mesa is 2b = 5×10-4 
m), and 5×10-5 m (c), respectively.  D0 is 1.6×10-5 m2/s (d), 1.6×10-8 m2/s (e), and 
1.6×10-11 m2/s (f), respectively.  At Rainier Mesa, the range of free water diffusion 
coefficient is from 3.06×10-10 m2/s (for isotope 241Am) to 9.31×10-9 m2/s (for 
isotope 3H).  In the legend, “dt” denotes the time step used in the particle tracking.  
The other model parameters are: matrix porosity θm=0.01, tortuosity τ =0.1, matrix 
retardation coefficient Rm=1, fracture retardation coefficient Rf=1, and the 
longitudinal dispersivity in fracture αL=0.5 m (the transverse dispersivity is 0).  In 
all cases, 10,000 particles are released at the beginning of the simulation. 
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Table 2. The six numerical cases shown in Figure 12 and the time step for particle tracking.  
In the legend, T1 = (b/6)2 / D0, and T2 = (b/4)2 / D0. 

Case Figure Aperture b (m) D* (m2/s) T1 (day) T2 (day) 
1 Figure 2(a) 5×10-3 1.6×10-5 5.02×10-3 1.13×10-2 
2 Figure 2(b) 5×10-4 1.6×10-5 5.02×10-5 1.13×10-4 
3 Figure 2(c) 5×10-5 1.6×10-5 5.02×10-7 1.13×10-6 
4 Figure 2(d) 5×10-4 1.6×10-5 5.02×10-5 1.13×10-4 
5 Figure 2(e) 5×10-4 1.6×10-8 5.02×10-2 1.13×10-1 
6 Figure 2(f) 5×10-4 1.6×10-11 5.02×101 1.13×102 

 

A single snapshot of particle positions at a specific time is also shown in Figure 
13.  Advective transport in the fracture is downward with particle transfer across the 
fracture/matrix interface, which is shown by the red, vertical dashed line in Figure 13.  
Obviously, if the fracture aperture is small, the particles inside the fracture cannot make a 
large horizontal jump during one step of motion.  This limits the computational efficiency 
of the numerical method. 
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Figure 13. A snapshot (particle clouds) simulated by the DNS-Reflective method in a single 

fracture with downward transport and fracture-matrix particle transfer. 
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In addition, we found that numerical experiments also imply that the minimum 
time step defined by (9) can be increased slightly by: 

fRD
bdt

/
1

4

2

∗





≤          .                                                (12) 

Numerical solutions generated by the minimum time step defined by (9) are still close to 
the analytical solutions. 

To draw an intermediate conclusion, the efficiency and accuracy of the DNS-
Reflective approach depends on the time step and the number of particles.  A smaller 
diffusion coefficient results in a larger time step dt, and therefore, the DNS-Reflective 
method can be more computationally efficient.  This behavior makes the method superior 
to the transfer probability approach discussed above.  As shown in Figure 12 (e) and (f), 
the DNS–Reflective method is efficient since the time step dt > 10-3 day for all isotopes at 
the Rainier Mesa site (such as 241Am, 90Sr, 3H). 

On the other hand, the DNS-Reflective method is time consuming for a small 
fracture aperture, since the time step size must be small enough for particles to jump at 
least once within the fracture.  In addition, if the free-water diffusion coefficient D0

 is 
large, the DNS–Reflective method is less computationally efficient because a smaller 
time step dt is also needed. 

To increase the computational efficiency of the particle-tracking approach, the 
time step should be increased.  To release the limitation of the small time step for the case 
of a small fracture-spacing and a large free-water diffusion coefficient, we will apply the 
DNS-Roubinet method in the next section. 

4.  THE DNS-ROUBINET METHOD 
The core of Roubinet et al.’s [2009] method is the use of first-passage time 

distributions to compute the time each particle spends in the matrix, which leads to time 
steps considerably greater than the DNS-Reflective method.  This should increase the 
computational efficiency of the DNS method significantly.  In the following we briefly 
introduce the DNS-Roubinet method and the treatment in the programming. 

The total time for a random-walking particle spent in a fracture/matrix system fmt  
with an infinite matrix is given in terms of the time in the fracture ft  as 









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
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=<

f

mmf
fm tTb

Dt
TtP

θ
erf)(          ,                                     (13) 

where “erf” denotes the error function; T is the reference time; mθ  and mD  represent the 
porosity and dispersion coefficient in the matrix, respectively (the same as Eq. (10)); and 
b is the (half) fracture aperture (the same as above).  Note here the time spent in the 
fracture, ft , can be pre-assigned as the time step. 

The inverse in terms of a uniform random deviate yields the following formula, 
using (13): 
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where “erf-1” denotes the inverse error function; and U is a (0 1) uniform random number.  
The time in the matrix is therefore tm=tfm-tf.   

In a system of parallel fractures, the first passage time from fracture to fracture is 
given as 
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Solving for T yields: 
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In this system, tfm = tf + min(tm,t2S); tm = tfm - tf. 
The particle-tracking numerical algorithm is: 

(1) Loop over time and particles; 
(2) Compute the advective travel time ft  in a cell (note this value can be pre-defined); 

(3) Compute the diffusion time difft  based on the analytical solution given by Tang et al. 
[1981], where the surrounding matrix is taken into account; 

(4) Compute the first passage time St 2 , which is the time for the particle to reach the next 
fracture. 

(5) If Sdiff tt 2> , truncate difft  to St 2  (i.e., if the particle reaches another fracture then it 
did not need to diffuse as long); otherwise keep difft  unchanged; 

(6) Sum times; 
(7) End loops when all particles exit the system. 
At the end the simulation, report the total times for all particles.  These can be binned to 
yield a breakthrough curve. 

The DNS-Roubinet method has been tested extensively against analytical 
solutions developed by Tang et al. [1981] and Sudicky and Frind [1982].  A few 
numerical tests are shown below (Figures 14 through 16).  Figure 14 shows that the DNS-
Roubinet method works well for a wide range of fracture aperture and diffusion 
coefficient, for a single fracture system. 

The DNS-Roubinet method has its own disadvantage: For the parallel fracture 
system, the truncation of first passage time distribution creates apparent errors when the 
fracture spacing is small.  Hence the DNS method works very well for the single fracture 
system, but it tends to erroneously predict BTCs for the parallel fracture system. 
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Figure 14. DNS-Roubinet solutions (symbols) versus the analytical solutions (lines) [Tang et 

al., 1981] for a single fracture with variable fracture aperture b (a) and diffusion 
coefficient D0 (b). 

 

Figure 15 shows that, similar to what we found in Figure 14, here the DNS-
Roubinet method works well for a single fracture system at various travel distances L 
(along the fracture). 

Figure 16 shows that the DNS-Roubinet method underestimates the analytic 
breakthrough at early times, and overestimates the breakthrough at late times, for the 
parallel fracture system. 

Therefore, the DNS-Roubinet method is computationally more efficient than the 
DNS-Reflective method.  It matches the analytical solution for the whole range of 
dispersion coefficients and fracture aperture for a single fracture system. 
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Figure 15. DNS-Roubinet solutions of the tracer breakthrough curves (symbols) versus the 

analytical solutions (lines) [Tang et al., 1981] for single fracture at various depths 
(denoted as “L” in the legend) in the fracture.  See also Figure 5 in Tang et al. 
[1981]. 
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Figure 16. DNS-Roubinet solutions of the tracer breakthrough curves (symbols) versus the 

analytical solutions (lines) [Sudicky and Frind, 1982] for parallel fracture at various 
depths in the fracture.  See also Figure 7 in Sudicky and Frind [1982]. 

 

5. THE TRANSIENT RANGE APPROACH PROPOSED BY PAN AND 
BODVARSSON [2002] 

When the effective diffusion coefficient D* is small, the fracture spacing B is 
large, and/or the matrix retardation coefficient is large, the transfer probability from 
fracture to matrix (defined by (5)) can be very small, underestimating the mass of 
particles entering into the matrix at early simulation times.  This results in the 
overestimation of solute mass in fractures and erroneous early breakthroughs (Figure 7).  
Hence the modification of (5) is needed.  The transient activity range approach developed 
by Pan and Bodvarsson [2002] is intended to solve this problem. 

5.1 Methodology of Pan and Bodvarsson [2002] 
The concept of “transient activity range” proposed by Pan and Bodvarsson [2002] 

can capture the dynamic feature of the particle transfer probability.  The transfer 
probabilities are defined as [see Eq. (1) in Pan and Bodvarsson, 2002] 

[ ])/exp(1 f
fmf

fm
fm t

FQ
F

P τ∆−−
+

=    ,                                            (17a) 

[ ])/exp(1 m
mfm

mf
mf t

FQ
F

P τ∆−−
+

=  ,                                             (17b) 

where F and Q describe the strength of advection-dispersion process through the fracture-
matrix interface and the interfaces to adjacent grid cells in the same continuum, 
respectively (the subscripts show the direction of the flux) [Pan and Bodvarsson, 2002]: 
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Parameters fmA  and iA  in (18) are the area of the fracture-matrix interface within 
the grid and the interface area to the i-th adjacent grid, respectively.  Parameters fmq  and 

iq  in (18) are the water flux through the fracture-matrix interface within the grid and the 
interface to the i-th adjacent grid, respectively.  Parameters mD , fiD  and miD  in (18) are 
effective dispersion coefficient of the matrix, the fracture continuum at the interface to 
the i-th adjacent grid, and the matrix continuum at the interface to the i-th adjacent grid, 
respectively.  iS  is the distance between the center of the cell and the i-th adjacent cell, 
and )( pfm tS  is the effective characteristic distance of the fracture-matrix system.  In 
addition, the parameters fτ  and mτ  in (17) denote the characteristic times of the fracture 
and matrix continuum, respectively [Pan and Bodvarsson, 2002]: 

ffm

ff
f QF
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τ   ,                                                      (19b) 

where V and R denote the volume of water and the retardation factor, respectively, for 
fractures and matrix. 

In the above definitions, two variables vary with time, including the matrix 
volume )( pm tV  and the effective characteristic distance )( pfm tS  [Pan and Bodvarsson, 
2002]: 

B
tB

VtV p
mpm

)(
)(

*
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B
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StS p
fmpfm

)(
)(

*

=   ,                                                  (20b) 

where fmS  denotes the characteristic length of the fracture-matrix system (e.g., 1/6 of the 
fracture spacing for a parallel fracture system as suggested by Liu et al. [2000]); and pt  is 
the time elapsed since a pulse injected into the fractures (e.g., the age of each particle, if 
the instantaneous injection of particle source is at time zero).  )(*

ptB  is the activity range 

( BtB p ≤≤ )(0 * ) [Pan and Bodvarsson, 2002]: 

( )BRtDtB mpmp ,/44min)(* =   .                                        (21) 
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5.2 Numerical examples of RWHet-Pan&Bodvarsson 
The transient activity range approach proposed by Pan and Bodvarsson [2002] 

was implemented into RWHet.  The updated RWHet is named “RWHet-
Pan&Bodvarsson”.  We tested this code extensively.  The numerical results can be 
compared to the code DCPTV2.0 [Pan, 2002] where the transient activity range approach 
was originally developed. 

The following section text describes five of these tests. 

 
5.2.1. Test 1: 3H with variable free-water diffusion coefficient D0 and fracture spacing 
2B. 

Test 1 (Figures 17~20) considers a wide range of free-water diffusion coefficient 
D0, varying from 2.40 ×10-11 m2/second to 9.31 ×10-9 m2/second.  The fracture spacing 
2B varies from 0.1m to 10m.  Here the end member 0.1m is slightly smaller than the 
smallest fracture spacing at the RM site. 

The following conclusions are drawn from Test 1: 

1) When the fracture spacing is as small as 2B ≤ 0.5m, VfRf=1.13.  When 2B > 0.5m, 
VfRf=1.0.  Here VfRf is an effective factor that controls the water volume in 
fractures in the code RWHet-Pan&Bodvarsson – scaling the parameter VfRf is 
equivalent to changing the time step of the mass transfer algorithm. We found that 
it was necessary to adjust time step of the algorithm to maintain accuracy under 
the specific condition of small fracture spacing. 

2) RWHet-Pan&Bodvarsson works slightly better than DCPTV2.0 if the free-water 
diffusion coefficient D0 is relatively large. For the small D0 (<9.31×10-11 
m2/second) with a spacing 2B=0.5m, RWHet with VfRf=1.13 generates a slightly 
earlier arrival. 

3) RWHet-Pan&Bodvarsson is valid for a wide range of D0. 
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Figure 17. The RWHet-Pan&Bodvarsson solutions (symbols) versus the analytical solution 

(black line) and the solution of DCPTV2.0 (green line).  This figure shows the 
influence of the free-water molecular diffusion coefficient D0 on BTC.  The right 
plot is the semi-log version of the left plot. R=1, aperture 2b=2×10-5 m, and spacing 
2B=0.1m. 
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Figure 18. Tests of RWHet-Pan&Bodvarsson: Influence of the free-water molecular diffusion 

coefficient D0 on BTC.  The bottom plot is the semi-log version of the top plot. 
R=1, aperture 2b=2×10-5 m, and spacing 2B=0.5m. 
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Figure 19. Tests of RWHet-Pan&Bodvarsson: (3H with various D) Influence of the free-water 

molecular diffusion coefficient D0 on BTC.  The right plot is the semi-log version 
of the left plot. R=1, aperture 2b=2×10-5 m, and spacing 2B=10 m.   
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Figure 20. Tests of RWHet-Pan&Bodvarsson: The smallest D0 (=2.40×10-11 m2/second) (free-
water diffusion coefficient) for 3H: R=1, aperture 2b=2×10-5 m, and spacing 
2B=0.1m (top plots) or 0.5m (bottom plots).  In all plots, the DCPTV2.0 solution is 
almost identical to the analytical solution, showing that the DCPTV2.0 works well 
for a small D0.  The right plot is the semi-log version of the left plot, to show the 
early time behavior of BTC.  

 
5.2.2 Test 2: Variable fracture spacing 2B (from 0.1m to 20m) 

In Test 2, we check the influence of fracture spacing (Figures 21 and 22) on BTC. 
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Figure 21. Tests of RWHet-Pan&Bodvarsson: Influence of the fracture spacing on BTC.  The 
right plot is the log-log version of the left plot. Rf = 1, Rm = 30, aperture 2b=2×10-5 
m, and the free-water diffusion coefficient D0 =2.50×10-11 m2/second.   
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Figure 22. Tests of RWHet-Pan&Bodvarsson: Influence of the fracture spacing on BTC.  The 
right plot is the log-log version of the left plot. Rf = 1, Rm = 30, aperture 2b=2×10-5 
m, and the free-water diffusion coefficient D0=2.50×10-11 m2/second.  

 

Test-2 (Figure 21 and Figure 22) reveals the following results: 

1) When the fracture spacing is as small as 2B ≤ 0.5m, VfRf=1.13.  When 2B > 0.5m, 
VfRf=1.0. 

2) RWHet-Pan&Bodvarsson is valid for a large range of fracture spacing. 
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5.2.3. Test 3: Variable retardation coefficients. 
This test checks the applicability of RWHet-Pan&Bodvarsson for various 

retardation coefficients (Figure 23). 
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Figure 23. Tests of RWHet-Pan&Bodvarsson: Influence of the retardation coefficient on BTC.  

The bottom plot is the log-log version of the top plot. In (a) and (c), Rf = Rm =1.  In 
(b) and (d), Rf =11.59, and Rm =24193.0 (retardation based on kd values for 241Am 
from volcanic tuff units). The other parameters are: fracture spacing 2B=2 m, 
aperture 2b= 2.0×10-5m, and the free-water diffusion coefficient D0=3.06×10-10 
m2/second (for 241Am).    

Test-3 (Figure 23) has the following conclusions: 
1) RWHet-Pan&Bodvarsson is valid for a very wide range of retardation coefficients. 
2) Here the fracture spacing 2B> 0.5m, so that VfRf=1.0 is selected. 
 

5.2.4. Test 4: Variable fracture aperture 2b (from 2b=2×10-5 m to 2b=1×10-3 m) 

Here we test the variation of fracture aperture.  The solution of DCPTV2.0 is not 
listed for this case, due to inadequate documentation on how to adjust the fracture 
aperture in the User’s Manual of DCPTV2.0. 
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Figure 24. Tests of RWHet-Pan&Bodvarsson: Influence of the fracture aperture on BTC.  The 

right plot is the log-log version of the left plot. Rf =1, Rm=1, fracture spacing 2B=2 
m, and the free-water diffusion coefficient D0=4.80×10-10 m2/second. 

 

Test-4 (Figure 24) shows: 

1) RWHet-Pan&Bodvarsson is valid for a large range of fracture aperture. 

2) In the experiments, the fracture spacing is 2B =2m > 0.5m, and therefore 
VfRf=1.0. 
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5.2.5. Test 5 

In this test, we apply the updated RWHet-Pan&Bodvarsson to simulate the 
previous numerical experiments that cannot be captured by the earlier version 
RWHet3.25_NUFT.f90 (see Figure 7 and Figure 9).  Results (Figure 25 and Figure 26) 
show that RWHet-Pan&&Bodvarsson improves RWHet3.25_NUFT.f90 and matches the 
analytical solution. 
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Figure 25. Tests of RWHet-Pan&Bodvarsson: Updated version of Figure 7: The simulated 
solution (blue symbols) versus the analytical solution (the red line) of tracer 
breakthrough curves, where the model parameters are the same as Figure 7.  The 
right column is the semi-log plot of the left column, to show the tail at early times.  
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(b) Rm = 2 (e) Log-log plot of (b)

0 2000 4000 6000 8000
Time (yr)

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 C
on

ce
nt

ra
tio

n (a) Rm = 5 (d) Log-log plot of (a)

0 2000 4000 6000 8000
Time (yr)

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 C
on

ce
nt

ra
tio

n

(c) Rm = 1 (f) Log-log plot of (c)
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Figure 26. Tests of RWHet-Pan&Bodvarsson: Updated version of Figure 9: The numerical 
solution (blue symbols) versus the analytical solution (the red line) of tracer 
breakthrough curves, where the model parameters are the same as Figure 9, except 
for the matrix retardation coefficient Rm.  The right column is the log-log plot of the 
left column, to show the tail at early times.  

 

In summary, Pan and Bodvarsson’s [2002] method was tested for single fracture 
and parallel fracture systems and shown to be both computationally efficient and perform 
well over a wide range of diffusion coefficients (3 orders of magnitude), fracture spacings 
(0.1 to 20 meters), fracture aperture (3 orders of magnitude), retardation coefficients (4 
orders of magnitude in Rm), and velocities (4 orders of magnitude, see Figure 27). Thus, it 
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is our conclusion that the Pan and Bodvarsson [2002] approach is suitable for UGTA 
applications as it has been tested over the full parameter range considered likely for the 
Nevada National Security Site. 
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Figure 27. Tests of RWHet-Pan&Bodvarsson: (non-sorbing radionuclide subject with a 4 order 

magnitude in velocity V) show that the VfRf correction is insensitive to velocity.  
The right plot is the semi-log version of the left plot.  Retardation coefficient R=1, 
aperture 2b=2×10-5 m, the free-water molecular diffusion coefficient D0=9.31×10-11 
meter2/second, and fracture spacing 2B=0.1 m. 



 

 33 

6. CONCLUSIONS 
We applied and evaluated four different numerical methods to simulate 

contaminant transport through fractured porous media using a fully Lagrangian solver.  
The code RWHet was updated by adding additional components to account for the 
particle tracking though fracture and matrix continua with mass transfer. 

We first developed the Lagrangian methods based on the transfer probability 
approach proposed by Liu et al. [2000], and coded it into RWHet.  Numerical examples 
show that this method is limited to certain ranges of parameters (for example, the free-
water molecular diffusion coefficient D0 must be relatively large), due to the intrinsic 
assumption in building the transfer probability. 

To address the above limitations, we then developed a direct numerical simulation 
reflective (DNS-Reflective) method.  The novel DNS-Reflective method can track 
directly the particle dynamics across the fracture/matrix interface, without any empirical 
assumptions.  This advantage should make the DNS-Reflective method feasible for a 
wide range of parameters.  Numerical tests of the DNS-Reflective, however, show that 
the method is computationally very demanding, since the time step must be very small 
for particles to experience both the fracture and matrix. 

To improve the computational efficiency, we then adopted Roubinet et al.’s 
method [2009], which uses the first passage time distributions to simulate dual-domain 
mass transfer.  The DNS-Roubinet method was found to be computationally efficient, but 
it fails to capture solute transport through a parallel fracture system with small fracture 
spacing. 

Finally, we adopted the transient range approach proposed by Pan and 
Bodvarsson [2002] in RWHet.  Numerical results were checked against analytical 
solutions, and also compared to DCPTV2.0 [Pan, 2002].  This version of RWHet (called 
RWHet-Pan&Bodvarsson) can capture contaminant transport in fractured porous media 
for a full range of transport parameters.  This is the most effective and efficient solution 
since 1) the time step needs not to be very small to resolve particle transfer between 
fractures and matrix blocks, and 2) it does not truncate the first passage time distribution 
(note the truncation can create apparent errors when the fracture spacing is small). 
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APPENDIX A: VALIDATION OF RWHet 
The goal of this appendix is to test RWHet [LaBolle, 2006].  Six examples are 

selected carefully and described in detail in the following sections. 

We first check RWHet solutions against simple cases where the analytical 
solutions are available.  This leads to Example 1, which is also the commonly used 
example for checking the applicability of a Lagrangian solver [Zheng and Wang, 1999; 
LaBolle, 2006]. 

Example 2 and Example 3 calculate particle motions in two-dimensional (2-d) 
homogenous boxes, where the flow field may be divergent and/or convergent.  The two 
examples were also used by Zheng [1992] and Zheng and Wang [1999] to test the 
applicability of the particle tracking component in the code MT3D.  LaBolle [2006] also 
compared the analytical solutions to RWHet solutions.  Here we extend the RWHet 
simulation in LaBolle [2006] by evaluating the evolution of particle trajectories in the 
divergent/convergent flow fields, which can further check the capability of RWHet in 
capturing the flow path in heterogeneous media. 

Example 4 and Example 5 calculate particle motions in two-dimensional 
heterogeneous boxes with increasing complexity of medium heterogeneity.  The correct 
interpolation of particle velocities in a composite medium is the core of a typical 
Lagrangian solver.  Example 4 was first built by Zheng [1992] and used also by Zheng 
and Wang [1999] to check the capability of MT3D in simulating contaminant transport 
through a composite heterogeneous medium.  Here we extend their work by evaluating 
the response of streamlines to the convergent/divergent flow fields with various 
injecting/pumping rates.  Example 5 contains a high-resolution hydrofacies model.  
RWHet is used to simulate particle dynamics across discrete interfaces of both velocity 
and dispersion coefficient.  The similar modeling approach as Example 5, including the 
modeling of subsurface heterogeneity and solute transport, had also been applied and 
validated by LaBolle and Fogg [2001] and Green et al. [2010]. 

Example 6 is the Verification Test 3 used by Painter [2011] for the new code  
Walkabout.  This example provides the direct comparison between Walkabout and 
RWHet. 

A.1. Validation of RWHet using one-dimensional transport tests: Advection, 
dispersion, sorption and decay (Example 1) 

Example 1 - Similar to Zheng and Wang [1999], we first test the capability of 
RWHet in capturing tracer transport in a one-dimensional (1-d) homogeneous medium, 
where the analytical solution is available.  Figure 28 shows four cases, involving 
advection (Case 1), dispersion (Case 2), sorption (Case 3) and decay (Case 4).  In all 
cases, the numerical model consists of 101 columns, 1 row and 1 layer of uniform cells.  
The cell width is 10×10 feet along the row and column directions, and the layer thickness 
is 1 foot.  The effective porosity is 0.25.  In the legend, V is the groundwater seepage 
velocity, D is the dispersion coefficient (i.e., the combined effect of molecular diffusion 
and mechanical dispersion), R denotes the retardation coefficient, and γ is the decay rate 
constant.  In all cases, a constant concentration (C=1) is defined at the first upstream cell, 
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representing a continuous source at the inlet.  The resultant RWHet solution is the 
concentration at each cell, using the same spatial discretization.  The analytical solution 
was provided by Van Genuchten and Alves [1982, with the code “ODAST”]. 
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(a) Case 1: Advection only
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(b) Case 2: Advection and dispersion
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Figure 28. Example 1 - Comparison of the tracer snapshot at time t = 2000 days using RWHet 
(symbols) and the analytical solutions (red lines).  Adopted from Zheng and Wang 
[1999, page 7-3].  The average difference between the numerical solution and the 
analytical solution is 2.02×10-3 (a), 3.17×10-3 (b), 5.47×10-3 (c), and -3.72×10-3 (d), 
respectively. 

 

We first used the USGS code MODFLOW [Harbaugh and McDonald, 1996] to 
calculate the steady-state flow, and then used the output flux data as the input file to run 
RWHet.  The particle tracking result from RWHet generally matches the analytical 
solution for all the cases shown in Figure 28.  In Case 1, RWHet solutions contain 
apparent noises (Figure 28(a)).  This is the well-known numerical oscillation behavior in 
the Lagrangian solver, which can be alleviated by increasing the number of released 
particles (note that the number of particles used in this simulation is 1000).  The 
normalized concentration exceeds one at some cells.  Particles are merged at these 
positions, resulting in a particle number density larger than the average (which is one).  
For the other three cases, RWHet solutions generally catch the plume snapshots (Figure 
28(b), (c), (d)). 
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A.2.  Two-dimensional homogeneous box: Transport in a radial flow field 
(Examples 2 and 3) 

Example 2 – This example considers the two-dimensional transport of solute 
injected from a fully penetrating well [Zheng, 1992, Chapter 7.3].  The injection rate at 
the well is 100 ft3/day, resulting in a divergent flow field.  The initial and boundary 
conditions for the transport model are: 

0)0,( =rC    ,                                                               (1a) 
0,1),( >= ttrC w                                                     (1b) 

0,0 >=
∂
∂

∞→
t

r
C

r
                                                   (1c) 

where wr  is the well radius.  This transport model has an approximate analytical solution 
[Moench and Ogata, 1981; Javandel et. al., 1984]. 

Zheng [1992] selected a finite model domain discretized as 31 columns, 31 rows, 
and 1 layer, where the grid size is 10×10×1 ft along x/y/z directions, respectively.  The 
effective porosity is 0.3.  Both the longitudinal and transverse dispersivities are 10 ft.  
The injection well is located in the middle of the model domain, i.e., at column 16, row 
16 and layer 1. 

MODFLOW was first used to simulate the steady-state flow field.  The contour of 
the simulated hydraulic head consists of concentric circles (Figure 29(a)), as expected.  In 
the center of the model domain, the contour however exhibits a slightly irregular shape, 
probably due to the small area of the circle relative to the grid size.  RWHet was then 
used to calculate the streamlines (Figure 29(b)), which show the divergence of the flow 
field.  The simulated particle clouds at various times (Figure 29(c)) also expand as 
concentric circles, as expected. 

RWHet was finally applied to solve the transport model (1).  The simulated plume 
snapshot generally matches the analytical solution (Figure 30(b)).  The symmetric 
distribution of plumes around the injection well is also apparent (Figure 30(a)). 
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Figure 29. Example 2 - (a) shows the contour of hydraulic heads calculated by MODFLOW.  
(c) shows RWHet solutions of particle plumes at various times.  The streamlines are 
shown in (b).  The meshes at the background represent the actual model meshes (31 
columns × 31 rows).  The pumping well is located at the middle grid of each figure. 
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Figure 30. Example 2 - Two-dimensional transport in a radial flow field.  (a) is the RWHet 
simulation of the 2-d snapshot at time t = 27 days.  (b) shows the comparison of the 
tracer snapshot along the X-axis using RWHet (symbols) and the analytical 
solutions (line).  Adopted from Zheng and Wang [1999].  The average difference 
between the numerical solution and the analytical solution is -4.57×10-3. 
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Example 3 – This example involves solute transport in a 2-d strongly 
diverging/converging and transient flow field.  It contains an injection/pumping cycle for 
a fully penetrating well in a confined aquifer.  The details of this example can be seen in 
Zheng and Wang [1999].  The numerical model consists of 31 columns, 31 rows and 1 
layer, with cell size 900×900×20 ft along the column, row, and layer, respectively.  The 
injection cycle (with the volumetric injection rate 1 ft3/second) is from t = 0 ~ 2.5 yrs at 
the well located in the middle of the model domain (i.e., column 16 and row 16), 
followed by a pumping cycle with the same rate from 2.5 to 10 yrs.  The effective 
porosity is 0.3.  The analytical solution of the concentration change at the 
injection/pumping well was given by Gelhar and Collins [1971].  Results (Figure 31) 
show that RWHet solutions generally match the analytical solution. 
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Figure 31. Example 3 - Concentration profiles (i.e., normalized concentration over time) at the 
well during an injection/pumping cycle.  The symbols are the numerical solutions 
from RWHet, and the solid line denotes the analytical solution for solute transport 
in a strongly diverging/converging flow field.  Adopted from Zheng and Wang 
[1999].  The average difference between the numerical solution and the analytical 
solution is 6.88×10-4. 

 
Figure 32 shows the particle locations at various times (simulated by RWHet) and 

the corresponding hydraulic head contour (solved by MODFLOW) at each cycle.  The 
“circles” in Figure 32(a) and 32(b) are not smooth, due to the coarse-resolution model 
grid (dx=dy=900 ft) and the irregular shape of the simulated head contour.  Such behavior 
is different from Example 2 (Figure 29), where the relatively fine-resolution (dx=dy=10 
ft) model grid results in a fine-resolution flow field and regular particle cloud.  Note that 
RWHet efficiently captures the discrepancy of flow fields between Example 2 and 
Example 3, by interpolating the MODFLOW velocities correctly to obtain the velocity 
for each particle.  This verifies further the reliability of RWHet. 
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Figure 32. Example 3 – Particle positions (due to the advection-only transport) at various 
times during the injection cycle (a) and the pumping cycle (b).  The hydraulic head 
at each cycle is also shown in (c) and (d).    The meshes shown in (a) ~ (d) represent 
the actual model meshes. 
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A.3. Two-dimensional heterogeneous box: Advection-only transport (Examples 4 
and 5) 

We considered two boxes with a difference degree of “heterogeneity” (i.e., a 
progression of complexity).  The first one (Example 4) was adopted from Zheng and 
Wang [1999, Chapter 7.9 – A two-dimensional application example], where a low-
permeable block is embedded in a relatively high-permeable material.  The second case 
(Example 5) contains a more complex structure of hydraulic conductivity distributions, 
representing a high-resolution, “strongly” heterogeneous medium with abrupt interfaces 
of distinct deposits observed in the field.  The two cases have quite different grid 
resolutions, and they can be used to test the capability of a Lagrangian solver in capturing 
the influence of sharp-contrasts in velocity on particle dynamics.  This section discusses 
the advection-only transport.  The influence of dispersion will be discussed in the 
following. 
 
A.3.1. Example 4 

The flow and transport model setup was described in detail by Zheng [1992].  For 
the convenience of readers, here we introduce them briefly.  This example involves flow 
and transport in a 2-d heterogeneous aquifer, where the analytical solutions are not 
available.  The flow model configuration is shown in Figure 33(a).  Water is injected in to 
the aquifer through a fully penetrating well at the north (near the upstream boundary), 
and a pumping well is located at the south.  Between these two wells, there is a low-
permeability zone. 

RWHet was used to evaluate how the streamline changes with the injection and 
pumping rates in the heterogeneous aquifer.  When the injection and pumping rates are 
relatively small (i.e., Figure 33(b)), neither the flow fields (solved by MODFLOW) nor 
the streamlines are affected apparently.  With the increase of injection and pumping rates, 
the divergence near the injection well and the convergence near the pumping well are 
enhanced for both flow and transport (Figure 33(c), (d)). 
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Figure 33. Example 4 - (a) Configuration of the flow model in a heterogeneous aquifer with 

wells.  (b), (c) and (d) show the simulated streamlines (black lines) using RWHet, 
due to various injection and pumping rates.  In (b), the injection rate is 0.001 
m3/second and the pumping rate is 0.0189 m3/s.  In (d), the injection rate is 0.0926 
m3/s and the pumping rate is 1.16 m3/s.  In (c), the injection rate is 0.315 m3/s and 
the pumping rate is 1.89 m3/s.  In (b), (c) and (d), the blue lines denote the contours 
of hydraulic head (meter).  Modified from Zheng and Wang [1999]. 
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A.3.2. Example 5  

This example shows the streamline (and its statistics) across a “strongly” heterogeneous 
media with random distributed hydraulic conductivities (Figure 34). 
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Figure 34. Example 5 - Particle tracking through a heterogeneous medium. (a) The distribution 

of hydrofacies generated by T-PROGS [Carle, 1999].  (b) The simulated contour of 
hydraulic head using MODFLOW and the streamlines (blue lines) calculated by 
RWHet.  (c) lists the detail in the green box shown in (a) and (b).  In the images, the 
darker cell has a smaller hydraulic conductivity.  
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The well-known code T-PROGS [Carle, 1999] was first used to generate the 
heterogeneous medium (Figure 33(a)), where the 2-d Markov Chain model was adopted 
from Carle [1996] and LaBolle and Fogg [2001].  The 3-d cell size of 10, 10 and 10 m in 
the depositional strike (Y-axis), depositional dip (X-axis), and vertical directions was 
selected.  The overall dimensions of the simulated region are 6010×4010×10 m (y/x/z), 
with 601×401×1=241,001 cells.  The same model and grid size were used in the flow and 
transport models. 
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Figure 35. Example 5 - Statistics of particle tracking simulation (advection-only) using 

RWHet.  (a) and (b) show the mean and variance of displacement for the 9 particles 
along the longitudinal direction (i.e., Y-axis shown in Figure 34).  (c) and (d) are the 
same statistics along the horizontal direction (i.e., X-axis shown in Figure 34). 

 

Figure 34 shows the simulated streamlines using RWHet.  Figure 35 shows the 
statistics of particle trajectories (due to the advection-only transport). 
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A.4. Two-dimensional heterogeneous box: Advection & dispersion (Examples 4 
and 5) 

We first add dispersion in the transport process for Example 4 (Figure 36).  The 
transport model set up is shown in Figure 36a. 
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Figure 36. Example 4 - Distribution of solute concentration at time t = 36.5 days as solved by 

RWHet.  See also Zheng [1992, page 7-18] for a similar tracer snapshot as the one 
shown in (b).  The flow field for (b), (c) and (d) is the same as Figure 32 (b), (c), 
and (d), respectively. 
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  The effective porosity is 0.3.  The longitudinal and transverse dispersivity are 6 
m and 1 m, respectively.  The influence of molecular diffusion is neglected (for the 
comparison with MT3D in Zheng [1992]).  A continuous source with a constant 
concentration C=1 is located at the injection well.  The simulated plume snapshot for 
each flow field using RWHet is shown in Figure 36(b), 36(c), and 36(d). 

We then add dispersion in the transport process for Example 5 (Figure 37).  The 
effective porosity is 0.3.  The longitudinal and transverse dispersivity are 4 m and 0.4 m, 
respectively.  The molecular diffusion coefficient is 5.2×10-4 m2/day.  A continuous 
source with a constant concentration C=1 is located near the upstream boundary.  The 
simulated plume snapshots at various times using RWHet are shown in Figure 37. 
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Figure 37. Example 5 - Time evolution of solute particles (snapshots) through the strong 
heterogeneous flow field (same as Figure 34). 
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A.5. Walkabout Verification Test 3 (Example 6) 
Example 6 – This example is analogous to the Verification Test 3 in Painter 

[2011, Figure 10], a 2-d flow and transport through a composite medium.  The model 
domain is 100×100×100 m, with a structured (uniform) grid size 2×2×10 m for each 
column, row and layer.  The whole domain has a hydraulic conductivity (K) 6.49×10-2 
m/day, except for two regions (shown by the shaded areas in Figure 38(b)) with a lower 
K =6.49×10-7  m/day.  In the flow model, the left and right boundaries are constant-head 
boundaries, with hydraulic head of 90 and 70 meters, respectively.  The top and bottom 
boundaries are no flow boundaries.  In the transport model, all boundaries are reflective 
(i.e., no flux) boundaries except for the right one, which is an absorbing boundary.  The 
effective porosity is 0.3. 

Trajectories calculated by RWHet are shown in Figure 38(a).  Figure 38(b) shows the 
Walkabout results [Painter, 2011, Figure 10].  RWHet results generally match the trend 
of the Walkabout streamlines. 
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Figure 38. Example 6 - Left: The contour of the hydraulic heads simulated by MODFLOW 

(black lines) and the streamlines calculated by RWHet (red lines).  Note here we 
have 9 streamlines, while Painter [2011, Figure 10] (the right figure) showed only 8 
of them (without the middle one).  Right: Copy from Painter [User’s Manual for 
Walkabout Version 1.0, 2011, Figure 10, page 14] – Results of Verification Test 3. 
Shown are horizontal projections of streamlines calculated by SPTR (solid blue) 
and Walkabout (red dashed). 

 

All of the above six examples show that RWHet captures the streamlines and 
solute transport reliably in 1-d and multiple dimensions. 
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