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Outline

ä Particle methods for plasma simulation (PIC)

ë explicit time differencing
ë implicit time differencing

ä Our approach: energy and charge-conserving implicit electrostatic PIC

ë “Direct” implicit Vlasov-Ampere formulation
ë Exact energy-conserving formulation
ë Exact charge-conserving particle mover
ë Momentum conservation error control: orbit adaptivity

ä Preconditioning: “Moment”-based acceleration

ä Generalization to electromagnetic PIC: Darwin model
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Introduction
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Particle-in-cell (PIC) methods for kinetic plasma simulation

∂t f + v · ∇ f +
F
m
· ∇v f = 0

ä Lagrangian solution by the method of characteristics:

f (x, v, t) = f0

(
x−

∫ t

0
dtv, v− 1

m

∫ t

0
dtF
)

; x(t = 0) = x0 ; v(t = 0) = v0

ä PIC approach follows characteristics employing macroparticles (volumes in phase space)

f (x, v, t) = ∑p S(x− xp)δ(v− vp).

ẋp = vp

v̇p =
qp

mp
(E + v× B)

∂tB +∇× E = 0

−µ0ε0∂tE +∇× B = µ0j

∇ · B = 0

∇ · E =
e(ni − ne)

ε0

δ(x− xp) −→ S(x− xp) ; Ep = ∑
i

EiS(xi − xp) ; ji = ∑
p

jpS(xi − xp)
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State-of-the-art classical PIC algorithm is explicit1 2

ä Classical explicit PIC approach “leap-frog”s particle positions and velocities:

xn+1
p −xn

p
∆t = vn+1/2

p →4φn+1 = −∑p qpS(xn+1
p − x)/∆x →vn+3/2

p −vn+1/2
p

∆t = an+1
p

ä Limitations:
ë ∆x < λDebye (finite-grid instability), ωpe∆t < 1 or c∆t < ∆x (CFL-type instability).
ë Cannot be used in Darwin model (which eliminates light waves).
ë No discrete energy conservation.
ë Discrete momentum conservation can only be realized in electrostatic case on a uniform grid.

ä As a result, explicit schemes are not well suited for long-term system-scale simulations, even with
super-computers.

1C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulation, McGraw-Hill, New York, 2005.
2R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles, Taylor & Francis Inc., Bristol, UK, 1988.
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What about implicit PIC?

ä Implicit PIC holds the promise of overcoming the difficulties and inefficiencies of explicit methods
for long-term system-scale simulations

ä Exploration of implicit PIC started in the 1980s

ë Moment implicit method 3 4

ë Direct implicit method 5

ä Early approaches used linearized, semi-implicit formulations:

ë Lack of nonlinear convergence
ë Inconsistencies between particles and moments
ë Inaccuracies! →Plasma self-heating/cooling 6

3Mason, R. J. (1981)
4Brackbill, J. U., and Forslund, D. W. (1982)
5Friedman, A., Langdon, A. B. and Cohen, B. I.(1981)
6Cohen, B. I., Langdon, A. B., Hewett, D. W., and Procassini, R. J. (1989)
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Our approach to implicit PIC

Electrostatic example:

xn+1
p − xn

p

∆t
=

vn+1
p + vn

p

2
vn+1

p − vn
p

∆t
= ap(

xn+1
p + xn

p

2
)

4φn+1 = −∑p qpS(xn+1
p − x)/∆x

Nonlinearly converged, fully implicit PIC algorithm

ä Implicit PIC can eliminate CFL-type instability and the finite-grid instability.

ä Can conserve total energy and local charge exactly in a discrete setting (crucial for long term
accuracy).

ä Can be easily extended to electromagnetic model ( Darwin, or Maxwell).

What is the nature of the resulting fully-coupled algebraic system?
Is it practical to invert?
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Jacobian-Free Newton-Krylov Methods7

ä A large set of nonlinear equations (in the residual form, Newton-Raphson method):

A~xn+1 =~b⇒ ~G(~xn+1) =~0 ⇒ ∂~G
∂~x

∣∣∣
k

δ~xk = −~G(~xk)

ä Jacobian
(

J = ∂~G
∂~x

)
linear systems are solved by a Krylov subspace method (GMRES):

ë Only requires matrix-vector products to proceed. Jacobian-vector product can be computed
Jacobian-free (CRITICAL):(

∂~G
∂~x

)
k

~y = lim
ε→0

~G(~xk + ε~y)− ~G(~xk)

ε

ë Krylov methods can be easily preconditioned: P−1
k ∼ J−1

k(
∂~G
∂~x

)
k

P−1
k (Pkδ~x) = −~Gk

7Knoll, D. A., and Keyes, D. E. (2004)
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Particle enslavement (nonlinear elimination)

ä Full residual G({x, v}p, {Φ}g) = 0 is impractical by GMRES method (too much memory
requirement for ~x = K~a where K = span{~b, A~b, A2~b...} and ~a is some appropriate vector).

ä Alternative: nonlinearly eliminate particle quantities (from dependent variables):
ë Formally, particle equations of motion are functionals of the electrostatic potential:

xn+1
p = xp[Φn+1] ; vn+1

p = vp[Φn+1]

G(xp
n+1, vp

n+1, Φn+1) = G(x[Φn+1], v[Φn+1], Φn+1) = G̃(Φn+1)

Nonlinear residual can be unambiguously formulated only in terms of electrostatic potential.

ä JFNK storage requirements are dramatically decreased, making it tractable:

ë Solver storage requirements ∝ Ng, comparable to a fluid simulation
ë Particle quantities ⇒ auxiliary variables: only a single copy of particle population

needs to be maintained in memory throughout the nonlinear iteration

ä Moment precondioning becomes suitable.
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Fully implicit electrostatic PIC
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Energy-conserving Vlasov-Ampère (1D) formulation

ä A time-centered, fully implicit discretization:

ε0
En+1

i − En
i

∆t
+ jn+1/2

i − 〈j〉= 0;

xn+1
p − xn

p

∆t
− vn+1/2

p = 0;

vn+1
p − vn

p

∆t
−

qp

mp
∑

i
En+1/2

i S(xi − xn+1/2
p )= 0;

jn+1/2
i =∑

p
qpvn+1/2

p S(xn+1/2
p − xi).

ä C-N enforces energy conservation to numerical round-off:

∑
mp

2
(vn+1

p + vn
p)(v

n+1
p − vn

p) = −∑
i

ε0(En+1
i − En

i )
En+1

i + En
i

2
⇒ ∑

p

1
2

mpv2
p + ∑

i

1
2

ε0E2
i = const

ë Does not suffer from finite-grid instabilities: ∆x ≮ λD !!

ë Requires that particles and fields are nonlinearly converged.
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Particle orbit integration: a multi-scale problem

ä In applications of interest, field time-scale (∆t) and orbit time-scale (∆τ) can be well separated
ë Fields evolve slowly (dynamical time scale, ∆t = tn+1− tn)
ë Particle orbits may still undergo rapid change (Lagrangian time scale ∆τ = tν+1− tν ≤ ∆t)

ä Particle orbits need to be resolved to avoid large orbit integration errors8

Particle sub-stepping is necessary for orbit integration, and
can be easily implemented in implicit PIC.

ä Field does not change appreciably in ∆t: time-averaged value over long time scale is sufficient

xν+1
p − xν

p

∆τν
=

vν+1
p + vν

p

2

vν+1
p − vν

p

∆τν
= ∑

i

En+1
i + En

i

2︸ ︷︷ ︸
slow

S(xi − xν+1/2
p )

∆t = ∑ ∆τν

8Parker, S. E., Friedman, A., Ray, S. L., and Birdsall, C. K. (1993)
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Energy conservation with orbit averaging

ä Orbit averaging Ampère’s law9:

ε0∂tE + j = 〈j〉 ,
1

∆t

∫ t+∆t

t
dτ[· · · ]⇒ ε0

En+1− En

∆t
+ j̄ =

〈
j̄
〉

ä Orbit-averaged current is found as:

j̄ =
1

∆t

∫ t+∆t

t
dτ j ≈ 1

∆t ∑
p

Nν

∑
ν=1

qpvν+1/2
p S(x− xp)∆τν

ä With these definitions, exact energy conservation is retained:

∑
p

∑
ν

mp

2
(vν+1

p + vν
p)(v

ν+1
p − vν

p) = −∑
i

ε0
En+1− En

∆t
En+1

i + En
i

2

⇒ ∑
p

1
2

mpv2
p + ∑

i

1
2

ε0E2
i = const.

9Cohen, B. I., Freis, R. P. and Thomas, V. (1982)
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Exact charge conservation: charge-conserving particle mover

ρi+1
2
= ∑p qp

Sm(x−x
i+1

2
)

∆x

ji = ∑p qpvp
Sm−1(x−xi)

∆x

S′m(x) = Sm−1(x+∆x
2 )−Sm−1(x−∆x

2 )

∆x


m=1,2
=⇒ [∂tρ +∇ · j = 0]

n+1
2

i+1
2
= 0

ä Exact charge conservation 10

ë Strictly satisfied per particle when it is moving within a cell.
ë When a particle crosses boundary, standard strategy based on current redistribution.
ë In our context, charge conservation is enforced by stopping particles at cell

boundaries, without breaking energy conservation.
ä Local charge conservation is essential to ensure long-term accuracy of numerical algorithm:

ε0
En+1

i −En
i

∆t + j̄n+1/2
i =

〈
j
〉n+1/2

ρn+1
i+1/2−ρn

i+1/2
∆t +

j̄n+1/2
i+1 − j̄n+1/2

i
∆x = 0

⇒
(

Ei+1−Ei
∆x − ρi+1/2

)n+1
=
(

Ei+1−Ei
∆x − ρi+1/2

)n

10BUNEMAN, O. (1968)
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Momentum conservation: adaptive orbit integrator

ä EC/CC PIC algorithm does not enforce momentum conservation exactly.

ë Controlling error in momentum conservation is crucial for long-term accuracy

ä Orbit integration errors can significantly affect momentum conservation: particle tunneling

ä Approach: find ∆τ to control local truncation error. Second
order estimator gives:

∆τ ≤

√√√√12εr
mp

qp

∣∣∣∣dE
dx

∣∣∣∣−1

p

ä Electric field gradient is estimated from cell-based gradient:
∂E
∂x

∣∣
p ≈

Ei+1−Ei
∆x . Provides potential barrier!

ë No sub-step crosses a cell boundary.
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Ion acoustic oscillation (1D1V): accuracy impact of different
energy-conserving movers11

im=implicit, cn=Crank-Nicolson, acc=adaptive charge conserving, sub=fixed-substepping
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11Chen, G., Chacón, L. and Barnes, D. C. (2011)
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Ion acoustic shock wave
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ä Propagating IAW with perturbation level ε = 0.4, with 4000 particles/cell.

ä Realistic mass ratio (mi/me = 2000).
ä Shock wave length scale∼Debye length.
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Ion acoustic shock wave (cont.)12
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12Chacón, L., Chen, G. and Barnes, D. C. (2013)
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Moment preconditioning
for fully implicit PIC
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CPU gain potential of implicit PIC vs. explicit PIC

ä Back-of-the-envelope estimate of CPU gain:

CPU ∼
(

T
∆t

)(
L

∆x

)d

npCsolver ;
Cimp

Cex ∼ NFE
∆timp

∆τimp
;

CPUex

CPUimp
∼
(

∆ximp

∆xex

)d ∆τimp

∆tex

1
NFE

ä Using reasonable estimates:

∆τimp ∼ min
[

0.1
∆ximp

vth
, ∆timp

]
∆timp ∼ 0.1/ωpi

∆texp ∼ 0.1/ωpe

k∆ximp ∼ 0.2

∆xex ∼ λD

CPUex

CPUimp
∼ 1

(kλD)d min
[

1
kλD

,
√

mi

me

]
1

NFE

ä CPU speedup is:
ë Independent of time step!
ë Better for realistic mass ratios!
ë Limited by solver performance NFE (preconditioning!)
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Moment-based acceleration of fully kinetic simulations

ä Particle elimination ⇒ nonlinear residual is formulated in terms of fields/moments ONLY: G(E)
ä Within JFNK, preconditioner ONLY needs to provide field/moment update:

δE ≈ −P−1G

Premise of acceleration: obtain δE from a fluid model using current
particle distribution for closure.

ä We begin with corresponding fluid nonlinear model:

∂tnα = −∇ · Γα

mα

[
∂tΓα +∇ · (

1
nα

ΓαΓα)

]
= qαnαE +∇ ·

(
nα

(
Πα

nα

)
p

)
ε0∂tE = ∑

α

qαΓα
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Moment-based acceleration of fully kinetic simulations (cont.)

ä We formulate approximate linearized fluid equations (neglect linear temperature response):

δnα

∆t
= −∇ · δΓα

mα
δΓα

∆t
≈ qα(δnα E + nα,p δE) +∇ ·

 (
Πα

nα

)
p

δnα


ε0 δE = ∆t

[
∑

α

qαδΓα− G(E)

]

δE can be obtained from Newton state E, Newton residual G(E),
and particle closures Πα,p and nα,p
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Preconditioner performance with ∆t
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ä Number of FE remains constant with ∆t (preconditioning)

ä Overall CPU time of algorithm is independent of ∆t (as predicted!)
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Preconditioner performance with Nx
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ä Number of FE independent of Nx (as expected from plasma freq.)

ä CPU cost grows as N2
x

ë ×Nx due to particles, and ×Nx due to crossings
ë In multi-D: CPU ∝ N × N1/d
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Preconditioner performance: CPU scaling

CPUex

CPUimp
∼ 1

(kλD)d
1

NFE
min

[
1

kλD
,
√

mi

me

]
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Transition occurs at kλD ∼
√
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∼ 0.025, as predicted.
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Generalization to electromagnetic PIC:
Darwin (non-radiative) formulation
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Darwin approximation to Maxwell equations

ä Motivation: To analytically remove light-wave in non-relativistic plasma simulations.13 14

ë If one keeps light wave with exact energy conservation in non-relativistic setting, one gets
enhanced numerical noise due to numerical Cherenkov radiation 15

Figure 1: Fourier phase space for exactly energy conserving PIC (left) and dissipative PIC (right).
13Kaufman, A. N., and Rostler, P. S. (1971)
14Nielson, C. W. and Lewis, H. R. (1976)
15Markidis, S., and Lapenta, G. (2011)
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Darwin model (potential form)

ä We consider potentials φ, A in the Coulomb gauge (∇ ·A = 0) such that:

B = ∇×A.

E = −∇φ− ∂tA.

ä Darwin model projects out the speed of light without enforcing quasineutrality (i.e., allowing for
charge separation effects).

∇2χ = ∇ · j,

−∇2A = µ0 [j−∇χ] ,

χ = ε0∂tφ.

ä In 1D:

ε0∂tEx + jx = 〈jx〉 ,

1
µ0

∂2
x Ay + jy =

〈
jy
〉

,

1
µ0

∂2
x Az + jz = 〈jz〉 .

En+1/2
y,i = −

An+1
y,i − An

y,i

∆t
,

En+1/2
z,i = −

An+1
z,i − An

z,i

∆t
.
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Implicit particle mover

ä Sub-stepping particle equations of motion:

xν+1
p − xν

p

∆τν
= vν+1/2

x ,

vν+1
p − vν

p

∆τν
=

qp

mp

(
Eν+1/2

p (xν+1/2
p ) + vν+1/2

p × Bν+1/2
p (xν+1/2

p )
)

.

ä This in an implicit nonlinear system. We invert it locally using Picard.

ë We use implicit Boris’s push:

v̂p = vν
p + αEν+1/2

p , α =
qp∆τν

mp2

vν+1/2
p =

v̂p + α
[
v̂p × Bν+1/2

p + α(v̂p · Bν+1/2
p )Bν+1/2

p

]
1 +

(
αBp

)2 .

We interpolate the B field such that the (y, z) canonical momentum can be exactly satisfied.
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Verification: Electron Weibel instability

ä Isotropic ions, bi-Maxwellian electrons

mi/me = 1836, Te⊥/Te‖ = 16, Ne,i=128,000, L = 2πc/ωpe, Ng=32.
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Verification: Ion Weibel instability (large T anisotropy)

ä Isotropic electrons, bi-Maxwellian ions

mi/me = 1836, Ti⊥/Ti‖ = 4× 104, Ne,i=128,000, L = 2
3πc/ωpe, Ng=64, γ u 0.1ωpi.
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Kinetic Alfven wave ion-ion streaming instability

ä KAW generated by ion-ion streaming at relatively low (2.5 Alfvén) speed and low plasma beta
(βe=0.1) with a realistic mass ratio (mi/me = 1836).

Ne,i=128,000, L = 4πc/3ωpi, Ng=64, γ u 0.22ωci.

∆x/λD ' 40, ∆tim/∆tex ' 20.
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Summary and conclusions

ä We have demonstrated, for the first time, a fully implicit, fully nonlinear electrostatic PIC
formulation that features:

ë Exact charge conservation (via a novel particle mover strategy).
ë Exact energy conservation (no particle self-heating or self-cooling).
ë Adaptive particle orbit integrator to control errors in momentum conservation.

ä The approach has been shown to be free of CFL and finite-grid numerical instabilities.

ä As a result, the method is able to take time steps many times larger than explicit, and resolutions
many times coarser.

ä Central to our implementation is the concept of particle enslavement.

ä The method has much potential for efficiency gains vs. explicit in long-time-scale applications,
with the CPU speedup scaling as (kλD)−(d+1)/NFE.

ë Minimize the number of nonlinear function evaluations NFE for given ∆t, ∆x ⇒ precondi-
tioning!

ë We have formulated and implemented a very efficient moment-based preconditioner.

ä We have generalized the algorithm to non-radiative electromagnetic regimes (Darwin model),
where, in addition to charge and energy, we also conserve canonical momenta.

ä We have demonstrated potential of the approach via numerical experiments.
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