
Adaptive Anisotropic Meshing For Steady

Convection-Dominated Problems

Hoa Nguyen a Max Gunzburger b,1 Lili Ju c,2 John Burkardt d

aMathematics Department, Tulane University, New Orleans, LA 70118, USA
bDepartment of Scientific Computing, Florida State University, Tallahassee, FL

32306-4120, USA
cDepartment of Mathematics, University of South Carolina, Columbia, SC 29208,

USA
dInterdisciplinary Center for Applied Mathematics, Virginia Tech, Blacksburg, VA

24061, USA

Abstract

Obtaining accurate solutions for convection-diffusion equations is challenging due
to the presence of layers when convection dominates the diffusion. To solve this
problem, we design an adaptive meshing algorithm which optimizes the alignment
of anisotropic meshes with the numerical solution. Three main ingredients are used.
First, the streamline upwind Petrov-Galerkin method is used to produce a stabilized
solution. Second, an adapted metric tensor is computed from the approximate solu-
tion. Third, optimized anisotropic meshes are generated from the computed metric
tensor by an anisotropic centroidal Voronoi tessellation algorithm. Our algorithm is
tested on a variety of two-dimensional examples and the results shows that the algo-
rithm is robust in detecting layers and efficient in avoiding non-physical oscillations
in the numerical approximation.

Key words: anisotropic mesh generation, metric tensor, convection-dominated
problem, stabilized method

Email addresses: hnguye4@tulane.ed (Hoa Nguyen), gunzburg@fsu.edu (Max
Gunzburger), ju@math.sc.edu (Lili Ju), burkardt@vt.edu (John Burkardt).
1 Supported in part by DOE Office of Science Climate Change Prediction Pro-
gram through grant number DE-FG02-07ER64432 and in part by National Science
Foundation under grant number DMS-0308845.
2 Supported in part by DOE Office of Science Climate Change Prediction Program
through grant number DE-FG02-07ER64431 and in part by the National Science
Foundation under grant number DMS-0609575.

Preprint submitted to Elsevier 10 May 2009

1 Introduction

We are interested in constructing numerical methods for solving partial differ-
ential equations whose solutions contain steep boundary and interior layers. In
these layers, the solution varies much more quickly in some directions than it
does in others. However, it is not always known a priori where these layers are
located or in which directions the solution varies most quickly. A numerical
method should detect the layers automatically and be robust and efficient in
resolving the layers without causing non-physical oscillations in the numerical
approximations. In this paper, we consider, as a model problem, the singularly
perturbed convection-diffusion equation in two dimensions:−a4u+ v · ∇u = f in Ω

u = g on Γ,
(1)

where Ω ⊂ <2 is a bounded polygonal domain with boundary Γ, 0 < a ≤ 1
is a given constant diffusion coefficient, v(x) ∈ [W 1,∞(Ω)]2 is a given convec-

tive/velocity field, f(x) ∈ L2(Ω) is a given source function, and g ∈ H
1
2 (Γ)

is a given boundary function. We use standard notations for Sobolev spaces;
see, e.g., [1]. The boundary Γ can be divided into three parts:

inflow boundary Γ− = {x ∈ Γ : v · n < 0}
characteristic boundary Γ0 = {x ∈ Γ : v · n = 0}
outflow boundary Γ+ = {x ∈ Γ : v · n > 0},

where n denotes the unit outward normal vector to Γ.

Problem (1) models the transport of a quantity u through diffusion and convec-
tion processes. It arises in many science and engineering problems including
pollutant or heat transport in a flowing fluid, in which case u denotes the
concentration of the pollutant or the temperature, respectively. Several other
examples of the application of (1) are given in [30]. In addition, (1) also serves
as a prototype for a wider class of problems in which diffusion and convection
processes play a central role. In fact, in [30], the problem (1) is identified as
the most widespread fundamental sub-problem in science and engineering.

Solving (1) becomes challenging when convection dominates diffusion, i.e.,
when a � ‖v‖. In such cases, the solution usually exhibits very thin lay-
ers across which the derivatives of the solution are large. The layers can be
classified into four main types.

• Regular boundary layers – appear at the outflow boundary Γ+ where the
velocity field v is not parallel to Γ.

2

• Parabolic boundary layers – appear at the characteristic boundary Γ0 where
the velocity field v is parallel to Γ.
• Corner boundary layers – appear in the neighborhood of a corner of the

domain Ω where two boundary layers intersect.
• Interior layers – appear due to discontinuities in the boundary data at the

inflow boundary Γ−; the discontinuities are propagated across the domain
along the vector lines of the velocity field v.

When convection dominates diffusion, the solution of (1) has two parts, a
smooth one and a rapidly varying one; the latter part describes the type of
the boundary layer [15]. Regular boundary layers have width of O(a); this is
due to the significant difference between solutions of (1) and of the reduced
equation ((1) with a = 0) at points near the outflow boundary. On the other
hand, parabolic boundary layers are thicker in that they have width of O(

√
a).

Interior layers have properties similar to the parabolic boundary ones in that
they also have width of O(

√
a).

In cases where the solution contains steep layers, standard Galerkin finite el-
ement methods or central finite volume methods yield inaccurate oscillatory
results unless the mesh is fine enough (relative to the ratio a

‖v‖). In one di-

mension, it has been proved [30] that for linear finite elements on a uniform

grid, non-physical oscillations occur when the mesh Peclet number Pe = ‖v‖h
2a

is greater than unity. This situation, however, is still not fully understood in
two or more dimensions [13,34]. The difficulties are partly due to the many
partial differential equation issues related to the smoothness of the solution,
the compatibility of the data, and the geometry of the domain.

One common approach to solving equation (1) is to use a stabilizing scheme to
enhance the stability of a standard methods. Popular methods include upwind-
ing [18], Galerkin least-squares [22], and streamline upwind Petrov-Galerkin
(SUPG) [3] methods. If a simulation is effected using uniform meshes, a lot
of computational work is required but, in some cases, oscillations still appear
near the layers [24]. As a result, nonuniform meshes such as those referred to
as Bakhvalov and Shishkin type meshes [15] have been developed to adapt
to the layers and improve the numerical approximation. However, the con-
struction of the B- and S-meshes requires a priori knowledge of the locations
and structures of the layers. In practice, it is impossible to know about all the
non-smooth behavior of the solution. Hence, methods that adaptively generate
meshes to capture the layers are very substantial interest.

In adaptive mesh generation, a posteriori error estimators are used to detect
regions of large error for subsequent mesh refinement [2,23,38]. The refined
meshes can be isotropic (regularly-shaped elements) or anisotropic (stretched
elements). However, despite the advantage of reducing the computational cost,
there are problems with using an a posteriori error estimator for equations of

3

the type (1). First, it is difficult to achieve both the upper and lower bounds
predicted by the error estimator; moreover, the error estimator gives no indi-
cation of the quality of the mesh. Consequently, non-physical oscillations still
exist and convergence rates are low.

Most recent efforts directed at constructing adaptive anisotropic meshes are
based on a stabilized scheme and some mesh modification strategy [31]. Such
efforts are still in the very early stages of development. According to the survey
article [36], there has been no adaptive anisotropic mesh generation method
for the two-dimensional convection-diffusion equations that comes with a guar-
anteed bound for the error in the computed solution.

The method introduced in this paper attempts, in the context of convection-
dominated problems, to robustly, efficiently, and automatically detect layers
and produce accurate approximate solutions that do not exhibit non-physical
oscillations. The construction of the method is based on three observations.

• A good choice of stabilized method can lead to small discretization errors
and rapid convergence.
• An optimized anisotropic meshing scheme can reduce the computational

cost and improve the accuracy of the solution by not only placing more
nodes in layer regions, but by also distributing them in such a way that
mesh elements are stretched along the layers.
• The stabilized method and the optimized meshing scheme can be tied to-

gether by a metric tensor that can be determined from the approximate
solution of the stabilized method and then used to generate the mesh.

This motivates us to efficiently construct an adaptive algorithm that involves
three main ingredients: a good stabilized method, a reliable metric tensor, and
an optimized meshing scheme. The resulting algorithm effectively and robustly
solves (1) on a general domain and automatically deals with different types of
layers present in a solution. Here, we briefly discuss the choices we make for
the three ingredients.

Stabilized scheme – Standard Galerkin methods are unstable for convection-
diffusion equation when convection dominates diffusion. We choose to use
the streamline upwind Petrov-Galerkin (SUPG) method [3]. Even though the
SUPG is not monotone (i.e., it does not satify a discrete maximum principle),
it is globally stable and has good higher-order accuracy in regions where the
solution is smooth. Furthermore, the SUPG method is easy to implement and
does not require higher-order or complicated weighting functions. SUPG adds
extra diffusion to a standard discretization, but only along the streamlines,
i.e., along directions parallel to v. However, finding the optimal stabilization
terms to completely diminish non-physical oscillations is still an open problem.
Therefore, in practice, it might be impossible to achieve optimal convergence

4

rates (i.e., second-order convergence for the L2-error and first-order conver-
gence for the H1 error when using linear elements) if the solution possesses
steep layers. A recent trend is to improve the convergence rate by adapting
the mesh using approximate solutions of the stabilized scheme [8].

Metric tensor – Adaptive anisotropic mesh refinement has the advantage of
improving the accuracy of the solution (particularly in layer regions) while re-
ducing computation cost relative to methods using isotropic meshes. A suitable
anisotropic mesh has to satisfy two principles: alignment and equi-distribution.
Alignment guarantees that mesh elements are aligned with the geometry of the
solution and can have large aspect ratio. Equidistribution forces the estimated
error to be distributed uniformly over the mesh elements. These two principles
are important in mesh adaptation to control the size, shape, and orientation
of mesh elements. In our adaptive algorithm, we use a metric tensor to serve
as a guide to align the mesh with the anisotropy of the computed solution.
Metric tensors that are useful for anisotropic g rid generation are discussed in,
e.g., [4–6,11,10,20]. We use a metric tensor developed in [20], mainly because
it is derived by minimizing the upper bound of the interpolation error on a
mesh satisfying the equi-distribution and alignment conditions. The metric
tensor is determined from the approximate solution (more to the point, from
the Hessian matrix of the computed solution) obtained on a mesh and is then
used to define a metric from which a new mesh can be constructed.

Anisotropic mesh generator – Several anisotropic mesh generators in two di-
mensions are available for research purposes. Two examples are the BL2D
[29] and the BAMG [17] packages that create two-dimensional isotropic or
anisotropic meshes and can be integrated into an adaptive process. Anisotropic
mesh generators in three dimension are obviously more complex and are usu-
ally found only in commercial software. We study our own mesh optimization
method so that we instead need software that determines a triangulation of a
set of points directly from the metric tensor, without any internal optimiza-
tion; we use the Simmetrix [35] software package for this purpose. For the
mesh optimization process, we use anisotropic centroidal Voronoi tessellations
(ACVT) [11,12,33]. Given a metric tensor, ACVT distributes the nodes by
minimizing a cost function so as to improve element quality and reduce sizing
distortion. The nodes are the mass centers (centroids) of associated Voronoi
regions with respect to the metric determined from a metric tensor. The pro-
cess of moving the initial nodes to the optimal positions is effected by the
generalized Lloyd iteration method. ACVT with an input of the metric tensor
returns high-quality meshes to solve convection-dominated problems.

Our study is based on constructing an optimal adaptive strategy that can
automatically refine, stretch, and orient the mesh elements so that the ap-
proximate solution of (1) can be computed more efficiently and accurately.
The rest of the paper is organized as follows. The model problem is intro-

5

duced and discretized by the SUPG scheme in Section 2. In Section 3, we
discuss the metric tensor we use; see[20] for its derivation. Section 4 contains
some theoretical and algorithmic discussions about ACVTs. In Section 5, the
adaptive algorithm is presented. In Sections 6 and 7, we present the results of
computational experiments with known and unknown exact solutions, respec-
tively. Possible extensions are discussed in Section 8.

2 The streamline upwind Petrov-Galerkin method (SUPG)

For a nonnegative integer s, let Hs(Ω) denote the Sobolev space of functions
having square integrable derivatives of order up to s; note thatH0(Ω) = L2(Ω).
Let H1

0 (Ω) = {φ ∈ H1(Ω) : φ = 0 on Γ}. The standard Galerkin variational
formulation of (1) is given by: find u ∈ H1(Ω) such that u = g on Γ and

B(u, v) = F (v) ∀ v ∈ H1
0 (Ω), (2)

where B(u, v) = a(∇u,∇v) + (v · ∇u, v)

F (v) = (f, v)

with (u, v) =
∫

Ω uvdxdy. For convection-dominated problems (a � ‖v‖), dis-
cretizations of (2) using practical grid sizes are not able to capture steep layers
without introducing non-physical oscillations. To improve stability, the SUPG
method was introduced in [3].

Assume that T is a triangulation of Ω. Let Vh ⊂ H1(Ω) denote the space of
continuous, piecewise linear functions with respect to T . Let V0,h = Vh∩H1

0 (Ω)
and gh ∈ Vh|Γ be a piecewise linear function approximation of g which may be
determined by interpolating the given function g. Then, the SUPG variational
formulation of problem (1) is given by: find uh ∈ Vh ⊂ H1(Ω) such that uh = gh
on Γ and

Bδ(uh, vh) = Fδ(vh) ∀ vh ∈ V0,h, (3)

where
Bδ(uh, vh) = B(uh, vh) +

∑
T∈T

δT (−a4uh + v · ∇uh,v · ∇vh)T

Fδ(vh) = F (vh) +
∑
T∈T δT (f,v · ∇vh)T

with δT ∈ L∞(Ω) a non-negative stabilization parameter. Comparing (2) and
(3), we see that the SUPG method is a modified version of the standard
Galerkin method for which more diffusion is added in the streamline direction
to deal with the instability caused by the convective field. Note that (3) is

6

a consistent discretization of (1) since the additional stabilization terms van-
ish for the exact solution of (1); thus, the SUPG method is referred to as a
consistently stabilized method.

Many heuristic choices for the parameter δT have been proposed; for a re-
view, see [25]. However, finding the optimal choice that does the best job of
diminishing non-physical oscillations is still an open problem.

In one dimension and with constant data, the SUPG solution with continuous
piecewise linear finite elements on a uniform mesh is nodally exact [7] if

δT =
hT

2‖v‖L2(T)

(
coth(PeT)− 1

PeT

)
,

where PeT =
‖v‖L2(T)hT

2|a| is the mesh Peclet number and hT is the element

length. In [3], it was suggested that the stabilization parameters can be ap-
proximated by

δT =
hT

2‖v‖L2(T)

max
{

0, 1− 1

PeT

}
(4)

or

δT =
hT

2‖v‖L2(T)

min
{

1,
P eT

3

}
. (5)

For our computational experiments, we choose hT as the length of the longest
edge of the element T projected onto the convective field v.

The formulation (4) of the stabilization parameter means that if the mesh

size is not “fine” enough (for PeT > 1 we have that hT > 2|a|
‖v‖), then extra

diffusion is added in the direction of the streamwise direction. So, δT > 0
if PeT > 1, i.e., for the convection-dominated case. Otherwise, the standard
Galerkin method is used, i.e., δT = 0 in the diffusion-dominated case. The
formulation (5) for the stabilization parameter shows that δT > 0 for both the
convection-dominated and diffusion-dominated cases:

δT =

 c1hT if PeT > 3

c2
h2

T

a
if PeT ≤ 3,

(6)

where c1 and c2 are appropriate positive constants. From our experiments, we
have observed that, when the mesh Peclet number is large, i.e., for convection-
dominated problems, numerical solutions obtained using the stabilization pa-
rameter (5) are more stable.

Using the Lax-Milgram theorem, the existence and uniqueness of the solution
of the SUPG variational formulation (3) can be proved because it can be shown
that

7

• the bilinear form Bδ(·, ·) is coercive and continuous with respect to the

streamline diffusion norm ‖w‖sd = (a‖∇w‖2 + δ‖v · ∇w‖2)
1
2 , where ‖ · ‖

denotes the L2(Ω)-norm;
• the linear functional Fδ(·) is continuous with respect to the streamline dif-

fusion norm ‖ · ‖sd.

For the standard Galerkin method, B(vh, vh) = a(∇vh,∇vh) + (v · ∇vh, vh) so
that the coercivity of B(·, ·) becomes compromised as a → 0. For the SUPG
method, coercivity does not degrade when a→ 0. Similarly, the error bounds
also suggest that the standard Galerkin discretization will fail to produce
accurate solutions in the convection-dominated case. The error bound for the
standard Galerkin method is given by the following result [14].

Theorem 1 If piecewise-linear approximations are used on a shape regular
triangulation of Ω, then, there exists a constant C, asymptotically as a → 0
proportional to the mesh Peclet number Pe = ‖v‖∞h

a
, such that

‖∇(u− uh)‖ ≤ Ch‖u‖2,

where h is the length of the longest element edge and ‖ · ‖2 denotes the H2(Ω)
norm.

The error bound for the SUPG method is given by the following result [14].

Theorem 2 If piecewise-linear approximations are used on a uniform mesh
with h > 2a, then there exists a constant C, bounded independently of a, such
that

‖u− uh‖sd ≤ Ch
3
2‖u‖2.

The derivation of this bound takes advantage of the fact that the coefficient
a is of order h.

L2(Ω)-norm bounds for the errors for the SUPG method are shown, in [26,32],

to be of O(h
3
2) on general quasi-uniform meshes when linear or bilinear ele-

ments are used. The apparent loss of a half-order rate of convergence in the
L2-norm for the SUPG method illustrates the difficulty of solving convection-
dominated problems. Because the optimal value of the stabilization parameter
is unknown, it might be impossible to achieve the optimal convergence rate,
i.e., second-order convergence for L2-error and first-order convergence for H1-
error, when the solution possesses steep layers. Attempts have been made (see,
e.g., [8]) to improve the convergence rate through mesh adaptation.

8

3 Metric Tensor for Anisotropic Mesh Generation

In the convection-dominated case, (1) has layered solutions that exhibit small
variation in some directions but rapid changes in other directions. Therefore, it
is natural to use a small mesh size in directions of rapid changes and a larger
mesh size in directions of small variations. Consequently, in an anisotropic
mesh, stretched elements are created along thin layers of the solution. In this
way, it is possible to capture the important features of the solution with a
much lower number of anisotropic elements compared with the number of
elements for an isotropic mesh. To obtain full control of the shape, size, and
orientation of anisotropic elements, a metric tensor is required.

In [19–21], general formulas were developed for metric tensors based on er-
ror estimates for polynomial preserving interpolation on simplicial elements.
Because the error estimates were redefined in terms of mesh qualities, e.g.,
geometry, alignment, equi-distribution, and adaptation, the metric tensor re-
flects the overall quality of the mesh with respect to the approximate solution.
We choose a metric tensor given in [21] that, specialized to our needs, can be
defined as follows.

Given a function v defined on Ω, let H(v) denote its Hessian matrix and let
H(·) = Qdiag(λ1, λ2)QT denote its eigen-decomposition so that Q is the or-
thogonal matrix consisting of the eigenvectors and λi, i = 1, 2, are the eigen-
values of H(v). Let H+(·) = Q diag(|λ1|, |λ2|) QT . The adaptation function
(this and other terminology used here is adopted from [21]) is defined by

ρ =
∥∥∥∥I +

1

α
H+(v)

∥∥∥∥ 1
2
(

det(I +
1

α
H+(v)

) 1
4

.

The intensity parameter α is defined implicitly through the equation

σ =
∫

Ω
ρ(x) dx =

|Ω|
1− β

,

where |Ω| denotes the volume of Ω and β roughly indicates the percentage of
mesh points concentrated in the regions of large ρ. In [21], it is recommended
that β be chosen in the range 0.5 to 0.8. Then, the metric tensor is given by
(see [21, equation (4.10)])

M(x) =
ρN

σ

(
det(I +

1

α
H+(v))

)− 1
2
(

I +
1

α
H+(v)

)
, (7)

where the integer N is the number of “target” elements; see Section 5 for
how N is chosen. Note that M(x) is normalized so that it satisfies the unitary
volume condition ∫

T

√
det(M(x)) dx = 1 ∀T, (8)

9

where T denotes an element in the mesh.

Due to the regularized form with an intensity parameter α, the metric tensor
(7) is a positive definite matrix that can be used to generate an anisotropic
mesh satisfying the equi-distribution and alignment conditions. A regularized
form of the metric tensor for isotropic meshes is given by [21, equation (4.8)]:

M(x) =
N

σ

(
1 +

1

α
‖H(v)‖p

)
I, (9)

where ‖ · ‖p denotes the Lp matrix norm. In our computational experiments,
the metric tensors (9) and (7) are used to generate isotropic and anisotropic
meshes, respectively. The results of the comparisons agree with the expectation
that, in the convection-dominated problem, anisotropic meshes are preferred.

In [4–6], metric tensors similar to that in (7) are discussed; the difference is
that the conclude that different exponents may be desirable. It would certainly
be valuable to test and compare the effectiveness of metric tensors of the form
(7) but with different exponents.

The metric tensor can be given a geometric interpretation. In two-dimensions,
the metric tensor is a positive definite 2× 2 matrix which we have denoted by
M. Let x be a point in Ω. Then, M(x) = ET (x)U(x)E(x), where

E(x) =

 cos θ(x) sin θ(x)

− sin θ(x) cos θ(x)

 U(x) =

µ1(x) 0

0 µ2(x)

 .
This is interpreted to mean that the metric tensor M(x) has transformed
a unit circle (around the point x) into an ellipse. Assuming that the mesh
is quasi-uniform under the metric M(x), the eigenvalues and eigenvectors of
M(x) can be used to determine the element aspect ratio and mesh alignment
direction for anisotropic mesh generation. The magnitudes of the axes of the

ellipse are given by 1/
√
µ1(x) and 1/

√
µ2(x). Figure 1 shows an example of

how the metric tensor rotates and stretches the coordinate axes.

4 Anisotropic Centroidal Voronoi Tessellations (ACVT)

As discussed above, standard Galerkin finite element methods on a uniform
mesh produce inaccurate numerical solutions of singularly perturbed problems.
As a result, several different types of nonuniform meshes have been developed.
The simplest nonuniform mesh is a piecewise-uniform one which consists of a
fine mesh in boundary layer regions, a coarse mesh outside the boundary layer,

10

T

T

(1/µ1)1/2

(1/µ2)1/2

e2

e2

e1

e1

θ

Fig. 1. Geometric meaning of the application of the metric tensor; e1 and e2 are the
columns of ET .

and a transition mesh connecting the two. B- and S-meshes (for Bakhvalov and
Shishkin) are well-known examples of this type of mesh. Such meshes require
knowledge about the structure of the layers. Furthermore, it is essential to
properly construct the transition mesh. Due to the above issues, we use the
ACVT algorithm [11,27,28,9] as a mesh generator because of its optimality
and robustness. The following algorithms and theorems are taken from [11].

4.1 The optimality property

Assume that Ω ⊂ <2 is a compact set with continuous boundary ∂Ω. Given
a metric tensor (a positive definite matrix) M(x) and a set of distinct points
{zi}ki=1 belonging to Ω, the anisotropic Voronoi region (AVR) of a generator
zi in Ω is defined by

Vi(zi) = {x ∈ Ω : dx(x, zi) < dx(x, zj) for j = 1, . . . , k, j 6= i },

where dx(x,p) =
√
→
xp

T
M(x)

→
xp is a directional distance and

→
xp denotes the

vector pointing from p to x. The set {Vi}ki=1 is referred to as an anisotropic
Voronoi tessellation (AVT) of Ω; the set {zi}ki=1 is the set of generators of the
anisotropic Voronoi tessellation. There are two types of AVR’s: interior AVR’s
for which V i ∩ ∂Ω = ∅ and boundary AVR’s for which V i ∩ ∂Ω 6= ∅.

Given a metric tensor M(x), the anisotropic center of mass (centroid) of the

11

AVR V (zi) is given by

z∗i =
(∫

V (zi)
M dx

)−1 ∫
V (zi)

Mx dx. (10)

Each AVR Vi(zi) and its associated generator zi define the anisotropic distor-
tion value Fi(zi) given by

Fi(zi) =
∫
Vi(zi)

d2
x(x, zi) dx.

The total distortion if given by

F ({zi}ki=1) =
k∑
i=1

Fi(zi) =
k∑
i=1

∫
Vi(zi)

d2
x(x, zi) dx. (11)

Proposition 1 [11] A necessary condition for F to be minimized is that, for
each i = 1, . . . , k, the generator zi of the AVR Vi is itself the centroid z∗i of Vi.

Whenever we have that zi = z∗i for all i, we refer to the AVT as being a
centroidal anisotropic Voronoi tessellation (ACVT). According to Proposition
1, ACVT’s can be characterized geometrically by the condition zi = z∗i for
i = 1, . . . , k or analytically as minimizers of the total distortion function (11).

4.2 Approximation of AVR’s and computation of mass centers

To approximate the AVR’s of a given set of distinct points {zi}ki=1 ⊂ Ω with
respect to a given metric tensor M, we use the triangle and neighbor informa-
tion provided by the anisotropic constrained Delaunay triangulation (ADT)
of those points with respect to the given metric tensor. To this end, we use the
software package Simmetrix [35]. The outputs are a set of node points {zi}k

′
i=1,

their triangulation T , and the neighbor information for the set of points.
For notational purposes, we denote the Simmetrix input-output relation as
({zi}k

′
i=1, T ,N) = SIM(Ω,M, {zi}ki=1), where T denotes the triangulation of

the point set {zi}k
′
i=1 and N denotes the neighbor information for T , i.e., for

each zi, the points that are connected to it by edges of the triangulation. Note
that the number of output points may be different from the number of input
points because, depending on the particular properties of the given metric
tensor, Simmetrix may change the number of points in order to produce a
high-quality ADT.

With the help of the ADT, given an interior vertex p of the triangulation T ,
we define the following sets.

• The set Tp of triangles in the ADT having p as a common vertex.

12

• The set T ∗p of triangles that share the edges of the triangles in Tp but do
not contain p.
• The testing region Ωp = Tp ∪ T ∗p which is the union of the triangles in the

ADT that contain the AVR Vp corresponding to p.
• The set of testing vertices Vp consisting of the vertices in Ωp, except for p

itself.

Then, the procedure to construct the approximate AVR V̂p corresponding to p
is given as follows; see [11] for more details. See Figure 2 for a visual illustration
of the discretization used to approximate the AVR.

p

ai

bi

ci

qj

qlj

Fig. 2. The discretization used to approximate the AVR in Algorithm 1.

Algorithm 1 Given a region Ω ⊂ <2, a metric tensor M, and a set of points
{zi}ki=1, determine the ADT ({zi}k

′
i=1, T ,N) = SIM(Ω,M, {zi}ki=1). For each

point p ∈ {zi}k
′
i=1, find Tp and T ∗p and order their triangles in counter-clockwise

(CCW) order. Let Np denote the number of triangles in Tp. Determine the
testing region Ωp and the set of testing vertices Vp. Denote by V̂p the set of
vertices of the approximate AVR V̂p. Initially, V̂p = ∅.

For i = 1 to Np, do the following:

• Denote the ith triangle of Tp and T ∗p by Ti and T ∗i , respectively; near the
boundary of Ω, T ∗i might not exist.

• Let {p, ai,bi} denote the CCW-ordered vertices of Ti and {bi, ai, ci} the
CCW-ordered vertices of T ∗i .

• Divide the edge aibi into Ne equal sub-edges and order the endpoints of the
sub-edges as {qj}Ne

j=0 with q0 = ai.
• For j = 0 to Ne − 1, do the following.
· Divide each of the segments pqj and qjci into MD equal sub-segments.
· Connect pqj and ciqj, forming the polygonal segment pqjci.
· Order the endpoints of the 2MD sub-segments of the polygonal segment

pqjci as {q`j}2MD
`=0 with q0j = p, qMD,j = qj, and q2MD,j = ci.

· For ` = 1 to 2MD − 1, do the following.

13

For q ∈ Vp, compare the distances dq`j
(q`j,p) and dq`j

(q`j,q).
If there exists q̂ ∈ Vp such that dq`j

(q`j,p) > dq`j
(q`j, q̂), then

set V̂p = V̂p ∪ q`j
exit the `-index loop and move to the next polygonal segment of
the j-index loop.

end if
end for {`}

end for {j}

end for {i}

Connect the points in V̂p which are already in CCW-order to obtain the closed
polygon V̂p. Then, V̂p is regarded as an approximation of the AVR Vp corre-
sponding the point p ∈ {zi}k

′
i=1.

In our computational experiments, Ne and MD are set to 4. Our experiments
show that these values provide good accuracy without unnecessarily increasing
computation time. Since the AVR Vp is approximated by N̂p = NpNe triangles

of the form ∆i = ∆pq∗iq
∗
i+1, q∗i ∈ V̂p, i = 1, . . . , N̂p, the center of mass (10)

of Vp can be approximated using the same triangles:

z∗i ≈
(N̂p∑
i=1

|∆i|
√

det(Mi) Mi

)−1 N̂p∑
i=1

|∆i|
√

det(Mi) Miyi,

where yi is the geometric center of ∆i, Mi is the metric tensor computed at
yi, and |∆i| is the area of ∆i.

4.3 An algorithm to construct the ACVT

The generalized Lloyd iteration method is used to produce the approximate
ACVT mesh.

Algorithm 2 Given a compact domain Ω ⊂ R2, a set of points {zi}ki=1 in Ω,
and a background metric tensor M(x), construct an initial ADT (T , {zi}k

′
i=1) =

SIM(Ω,M, {zi}ki=1).

1. Construct the approximate AVR’s {V̂i}k
′
i=1 associated with {zi}k

′
i=1.

2. Compute the centers of mass (centroids) of the approximate AVR’s found
in step 1.

3. Move the points {zi}k
′
i=1 to the centroid positions.

4. Construct an new ADT (T , {zi}k
′′
i=1) = SIM(Ω,M, {zi}k

′
i=1).

5. If the new points meet some convergence criterion, terminate; otherwise,
set k′ = k′′ and return to step 1.

14

5 Adaptive Algorithm

Putting the ingredients defined in Sections 2–4 together, we can define the
adaptive anisotropic mesh generation algorithm. We believe that the combi-
nation of a stable discretization scheme (the SUPG method) and well-adapted
anisotropic meshes (using the metric tensor from [21] and ACVT) can sig-
nificantly improve the numerical approximation of the convection-dominated
problems. Following is our proposed algorithm to determine approximate so-
lutions of (1).

Algorithm 3 Let Ω ⊂ <2 be a bounded polygonal domain. Given an initial
coarse mesh of Ω, do the following.

Initial step

Solve (1) by the SUPG method (3).
Use the approximate solution to compute the metric tensor (7).

For each level of the refinement, the following steps are done:

1. Given the computed metric tensor, the adaptivity is done by
a) using Simmetrix to create the initial ADT.
b) constructing the ACVT mesh using Algorithm 2.

2. Based on the optimized mesh from Step 1, solve the (1) by the SUPG
method (3).

3. Compute the metric tensor (7) from the approximate solution from Step 2.

Note that at the beginning of each level of refinement (step 1a), we use the
metric tensor (7) computed from the mesh of the previous level. Based on
the metric tensor and the generators of the previous mesh, Simmetrix will
automatically add more points to the mesh to satisfy the unitary volume
condition (8).

Algorithm 3 determines approximations of the solution of (1) on adaptive
anisotropic meshes. To compare this solution with the one on adaptive isotropic
meshes, one can replace the anisotropic metric tensor (7) with the isotropic
tensor (9).

Since we use piecewise linear finite element approximations, we should note
how an approximation to the Hessian matrix in the definition (7) of the met-
ric tensor is determined. Following [21, page 649], solution first derivatives are
approximated using a linear least-squares fit to the nodal values of the com-
puted solution and second-order derivatives are obtained in a similar manner,
but based on the nodal values of the computed first-order derivatives.

15

The linear system of algebraic equations resulting from the SUPG method
(3) with the stabilization parameter (5) is solved using the iterative method
mGMRes with incomplete LU preconditioner. Then, the computed solution is
given as an input to generate the metric tensors. The parameter N used in
the metric tensors (7) and (9) is prescribed as the number of triangles in the
mesh used to determine the approximate solution.

In the next two sections, we present computational examples to illustrate the
robustness and efficiency of our adaptive algorithm for solving convection-
diffusion problems, including convection-dominated problems. We choose β =
0.5 for all the examples, except for Example 3 of Section 6.3. There, we com-
pare solutions and meshes for β = 0.5 with those for β = 0.95. In order to
keep the presentation smooth, we collect the figures and plots in Appendix A.

6 Computational experiments with manufactured solutions

Denote by NT and NV the number of triangles and vertices in a mesh, respec-
tively, and let u and uh denote the exact and approximate solutions, respec-
tively. The convergence rate CR [27,28] with respect to a norm ‖ · ‖ at the
refinement level m is roughly computed by

CR =

2 log

(
‖ehm‖
‖ehm−1‖

)

log

(
NVm−1

NVm

) , (12)

where hm denotes the grid size, NVm denotes the number of vertices, and
ehm = u− uhm , all at the refinement level m.

6.1 Example 1: regular boundary layers

We consider an example taken from [37]. In (1), set Ω = (0, 1)2 and v(x, y) =
(1, 1)T and choose a from the set {10−1, 10−3, 10−6}. Choose the exact solution

u(x, y) = xy(1−e− 1−x
a)(1−e− 1−y

a) that is continuous but has regular boundary
layers at x = 1 and y = 1. The right-hand side and boundary conditions are
determined from the exact solution. As observed in Figure A.1, the solution
becomes much steeper as a → 0. When a = 10−6 and adaptive isotropic
meshes are used, the approximate solution contains non-physical oscillations
in the layer regions as seen in Figure A.2-left. However, the solution is much
smoother on the adaptive anisotropic meshes; see Figure A.2-right. This is due
to the fact that the amount of extra diffusion in the SUPG scheme depends

16

on the mesh size hT inside the layer region. Figure A.3 shows the isotropic
and anisotropic adaptive meshes. The anisotropic mesh leads to smaller errors
in the L∞- and H1- norms for a = 10−1 and a = 10−6. However, the L2

error is slightly bigger in the anisotropic case; see Figure A.4. This is due to
the averaging properties of the L2-norm of the errors over the whole domain.
So, local phenomena such as oscillations are not captured by this norm. As
mentioned in [15], the L2 error might give misleading information for singularly
perturbed problems. This argument is supported by comparing the plots of
errors on these two meshes. The convergence rates are optimal or near-optimal
for both types of meshes, except for the L∞ norm when a becomes small. This
is expected for the isotropic case since the non-physical oscillations appear in
the solution. For the anisotropic case, the H1-norm convergence rate is still
optimal.

6.2 Example 2: interior layer with constant convective field

Choose the exact solution u(x, y) = 1

1+e−200(
√

x2+y2−0.8)
that is continuous but

has an interior layer along the quarter circle x2 + y2 = 0.82. In (1), set Ω =
(0, 1)2, a = 10−8, and v(x, y) = (2, 3)T and determine the right-hand side and
boundary conditions from the exact solution. A similar example was presented
in [23], but the equation treated there was the Poisson equations, i.e., without
a convective field.

Figure A.5 illustrates the ability of our algorithm to clearly capture the interior
layer in this example with both isotropic and anisotropic meshes. Note that
the anisotropic mesh with a smaller number of vertices is able to produce
a solution with smaller errors than the isotropic mesh, as can be seen from
Figure A.7. For both mesh types, the average convergence rates are nearly
optimal.

6.3 Example 3: interior layer with variable convective field

This example is taken from [20]. Choose the exact solution u(x, y) = (1 +

e
x+y−0.85

2a)−1 that is continuous but has an interior layer along the line y =
−x + 0.85. Let Ω = (0, 1)2, a = 0.005, and v = (u(x, y), u(x, y))T , and let
the right-hand side and boundary conditions be determined from the exact
solution.

Figure A.8 shows the numerical solutions and meshes when β = 0.5 as specified
in the other examples. Note how the mesh elements are stretched along the
layers in the bottom of Figure A.9 as compared with the top of Figure A.9.

17

Similar to Example 2, the anisotropic mesh can achieve smaller errors with
fewer vertices compared with the isotropic mesh, as seen in Figure A.10. The
convergence rates are nearly optimal for both mesh types.

To compare the isotropic and anisotropic meshes when β is changed from 0.5
to 0.95, refer to Figures A.11 and A.12. Because β indicates roughly the per-
centage of mesh points concentrated in the layer regions, the larger value of β
results in the extremely long thin triangles and a higher point concentration
inside the layer. The errors in Figure A.10 when β = 0.95 are smaller than
the ones when β = 0.5. However, the convergence rate for the L2 norm shows
oscillation for the anisotropic mesh when β = 0.95. For the isotropic case,
it remains optimal. This may be due to an increase in interpolation or dis-
cretization errors because of the very thin elements in the anisotropic mesh.
To avoid this problem, we can relax the value of β as we observe when we
change β from 0.95 to 0.5. This is the reason why β = 0.5 is used for all the
examples although clearly further studies of the effect of the parameter β are
called for. Alternatively, it may be possible to place a constraint on the angles
of the thin anisotropic elements. Mesh modification such as edge swapping or
local smoothing can also be considered in the future.

7 Computational experiments with unknown solutions

In practice, we usually have to deal with more complicated problems which
do not have a known solution. Examples 4 to 6, taken from [15], have both
components of the convective field v being negative. This means that, on a
unit square domain, the locations of regular boundary layers can happen at
the outflow boundaries x = 0 and y = 0. A Shishkin type mesh is used in
[15] and requires this a priori information to construct the mesh. Example 7
is also taken from [15] and has the convective field v(x, y) = −(1, 0)T . This
means that, on a unit square domain, a regular boundary layer can occur at
the outflow boundary x = 0 while parabolic layers can occur at y = 0 and
y = 1. A corner boundary layer can also occur at a corner of the unit square.
The Shishkin mesh type [15] again requires this a priori information for the
mesh construction.

7.1 Example 4: regular boundary layers with smooth data

In (1), set Ω = (0, 1)2 and v(x, y) = −(2, 1)T and choose a = 10−1 or a = 10−6.
The right-hand side is given by f(x, y) = −x2(1 − x)2y2(1 − y)2 and the
boundary condition is u(x, y) = 0 on ∂Ω.

18

Figures A.13–A.16 show the numerical solutions and meshes for isotropic and
anisotropic meshes. Here, we observe similar behavior as in Example 1, where
the diffusion term a was also varied. For a = 10−1, the isotropic and anisotropic
solutions are not distinguishable to the eye. However, non-physical oscillations
appear in the isotropic solution when a = 10−6 but the solution is still smooth
for the anisotropic case. These results support the argument that the adaptive
anisotropic mesh is efficient in capturing the layers and avoiding non-physical
oscillations for convection-dominated problems. For the remaining examples,
we show only numerical solutions on anisotropic meshes.

7.2 Example 5: regular and corner boundary layers with non-smooth data

In (1), set Ω = (0, 1)2, v(x, y) = −(2 +x2y, 1 +xy)T , and a = 10−6. The right-
hand side is given by f(x, y) = −(x2 + y3 + cos(x + 2y)) and the boundary
condition is given by

u(x, 0) = 0, u(x, 1) =

 4x(1− x), x < 1
2

1, x ≥ 1
2
.

u(0, y) = 0, u(1, y) =

 8y(1− 2y), y < 1
4

1, y ≥ 1
4
.

The boundary data are not differentiable at the points (0.5, 1) and (1, 0.25).
Figures A.17 and A.18 show that the regular and corner boundary layers are
captured well by adaptive anisotropic mesh refinement.

7.3 Example 6: interior and regular boundary layers

This example is similar to Example 5, except that the boundary conditions are
different. Let Ω = (0, 1)2, v(x, y) = −(1, 4)T , and a = 10−6. The right-hand
side is f(x, y) = −(x2 − y2) and the boundary conditions are

u(x, 0) = 1, u(x, 1) = (1− x)
1
6 , u(0, y) = 1, u(1, y) =

√
1− y.

At the inflow corner (1, 1), the exact solution is not differentiable. This incom-
patibility in the inflow boundary data creates an interior layer in the domain
which is a line joining the points (1, 1) and (0.75, 0). The layer follows the
characteristic line of the convective field. In reference [15], a Shishkin mesh is
used with refinement along the outflow boundary only, and was not able to
capture the interior layer. The authors of that work observed smearing in the
layer area because of the lack of interior mesh refinement. Our method is able

19

to detect this layer automatically and, as a result, the mesh is appropriately
refined along the layer. Figures A.19 and A.20 show our results.

7.4 Example 7: parabolic and corner boundary layers

Let Ω = (0, 1)2, v(x, y) = −(1, 0)T , and a = 10−3. The right-hand side is
f(x, y) = 0 and the boundary condition is u(x, 0) = (6

√
3x(1 − x)(2x − 1))3

and u(x, y) = 0 if (x, y) ∈ ∂Ω\{(x, 0)}. At y = 0, the solution has a parabolic
boundary layer and positive values when x > 1

2
and negative values when

x < 1
2
. A corner boundary layer occurs at (0, 0). Figures A.21 and A.22 show

our results, which are similar to those in [15]. The boundary condition along
the line y = 0 implies that the solution will be positive for x > 0.5 and negative
for x < 0.5. However, some positive values of the solution can be seen in the
neighborhood of the midpoint (0.5, 0) for x < 0.5. This indicates the influence
of the convective flow along the (−1, 0) direction.

8 Concluding remarks

Our adaptive anisotropic mesh algorithm has substantially improved the nu-
merical approximation for steady-state convection-diffusion problems. It works
well on both diffusion-dominated and convection-dominated problems. The re-
sults converges at a quasi-optimal or optimal rate (depending on the charac-
teristics of the layers) and with low computational cost. Due to the efficiency
and robustness of our algorithm, non-physical oscillations in the numerical
solutions in the layers are not present. Since adaptive anisotropic meshes are
used in our algorithm, any local phenomena in the solutions (for example, lay-
ers, singularities, etc.) are captured automatically. This capability will allow
us to explore more practical and complicated problems in future.

We will continue optimizing our schemes and algorithms to obtain better nu-
merical approximation. Mesh modification techniques such as edge swapping
and local smoothing will be explored. These techniques are designed to pre-
vent the elements from getting too thin and causing an increase in matrix
conditioning and in interpolation or discretization errors. Comparing the ef-
fectiveness of the metric tensor (7) with those discussed in [4–6] is certainly
also called for.

Furthermore, implementing the adaptive algorithm in three dimensions is an-
other possibility due to two reasons. First, Simmetrix can generate three-
dimensional tetrahedral meshes. Second, the other ingredients (stabilization
scheme, metric tensor, and ACVT) can also be generalized to three dimen-

20

sions. Although the core of the three-dimensional algorithm will be similar
to the two-dimensional one, the implementation for three-dimensional mesh
generation will likely be quite challenging.

Our studies will also be extended to the time-dependent case. We believe that
our achievements in the stationary problem make this task very tractable. We
are also interested in constructing the adaptive algorithm for the incompress-
ible Navier-Stokes equation. Understanding its linearized simplified version,
i.e., the convection-diffusion equation, gives us more insights on how to apply
the SUPG formulation for the Navier-Stokes equations with respect to the
mesh adaptation.

9 Acknowledgment

The authors wish to thank Professor Weizhang Huang of the University of
Kansas for allowing us to use his code to determine the metric tensor and for
several helpful discussions.

References

[1] R. A. Adams; Sobolev Spaces, Academic Press, New York, 1975.

[2] L. Angermann; Balanced a posteriori error estimates for finite-volume type
discretizations of convection-dominated elliptic problems, Computing 55, 1995,
pp. 305–324.

[3] A. Brooks and T. Hughes; Streamline upwind/Petrov-Galerkin formulations
for convection dominated flows with particular emphasis on the incompressible
Navier-Stokes equations, Comput. Methods. Appl. Mech. Engrg. 32, 1982, pp.
199–259.

[4] W. Cao; On the error of linear interpolation and the orientation, aspect ratio,
and internal angles of a triangle, em SIAM J. Numer. Anal. 43, 2005, pp. 19–40.

[5] W. Cao; An interpolation error estimate on anisotropic meshes in Rn and
optimal metrics for mesh refinement, SIAM J. Numer. Anal. 45, 2007, pp.
2368–2391.

[6] L. Chen, P. Sun, and J. Xu; Optimal anisotropic meshes for minimizing
interpolation errors in Lp-norm, Math. Comp. 79 , 2007, pp. 179–204.

[7] I. Christie, D. Griffiths, A. Mitchell, and O. Zienkiewicz; Finite
element methods for second order differential equations with significant first
derivatives, Int. J. Numer. Meth. Engrg. 10, 1976, pp. 1389–1396.

21

[8] F. Courty, D. Leservoisier, P.-L. George, and A. Dervieux;
Continuous metrics and mesh optimization, Appl. Numer. Math. 56, 2006, pp.
17–145.

[9] Q. Du, V. Faber, and M. Gunzburger; Centroidal Voronoi tessellations:
applications and algorithms, SIAM Review 41, 1999, pp. 637–676.

[10] Q. Du and D. Wang; Boundary recovery for three dimensional conforming
Delaunay triangulation. Comput. Methods. Appl. Mech. Engrg. 193, 2004, pp.
2547-2563.

[11] Q. Du and D. Wang; Anisotropic centroidal Voronoi tessellations and their
applications, SIAM J. Sci. Comput. 26, 2005, pp. 737–761.

[12] Q. Du, Z. Huang, and D. Wang; Mesh and solver co-adaptation in finite
element methods for anisotropic problems, Numerical Methods for PDEs 21,
2005, pp. 859-874.

[13] H. Elman and A. Ramage; A characterisation of oscillations in the discrete
two-dimensional convection-diffusion equation, Math. Comp. 72, 2003, pp. 263–
288.

[14] H. Elman, D. Silvester, and A. Wathen; Finite Elements and Fast
Iterative Solvers, Oxford University Press, Oxford, UK, 2005.

[15] P. Farrell, A. Hegarty, J. Miller, E. O’Riordan, and G. Shishkin;
Robust computational techniques for boundary layers, Chapman & Hall/CRC
Press, 2000.

[16] L. Formaggia and S. Perotto; Anisotropic error estimates for elliptic
problems, Numer. Math. 94, 2003, pp. 67–92.

[17] F. Hecht; Bidimensional Anisotropic Mesh Generator Technical Report,
INRIA, Rocquencourt, 1997. Source code:
http://www-rocq1.inria.fr/gamma/cdrom/www/bamg/eng.htm.

[18] I. Heinrich, P. Huyakorn, O. Zienkiewicz, and A. Mitchell; An
“upwind” finite element scheme for two-dimensional convective transport
equation, Int. J. Numer. Meth. Engrg. 11, 1977, pp. 131–143.

[19] W. Huang; Measuring mesh qualities and application to variational mesh
adaptation, SIAM J. Sci. Comput. 26, 2005, pp. 1643–1666.

[20] W. Huang; Metric tensors for anisotropic mesh generation, J. Comput. Phys.
204, 2005, pp. 633–665.

[21] W. Huang; Mathematical principles of anisotropic mesh adaptation,
Communications in Comput. Phys. 1, 2006, pp. 276–310.

[22] T. Hughes, L. Franca, and G. Hulbert; A new finite element formulation
for computational fluid dynamics VIII. The Galerkin/least-squares method for
advective-diffusive equations, Comput. Methods. Appl. Mech. Engrg. 73, 1989,
pp. 173–189.

22

[23] V. John; A numerical study of a posteriori error estimators for convection-
diffusion equations, Comput. Methods. Appl. Mech. Engrg. 190, 2000, pp. 757–
781.

[24] V. John and P. Knobloch; A computational comparison of methods
diminishing spurious oscillations in finite element solutions of convection–
diffusion equations, Proc. Conference Programs and Algorithms of Numerical
Mathematics 13 Prague, May, 2006.

[25] V. John and P. Knobloch; A comparison of spurious oscillations at
layers diminishing (SOLD) methods for convection diffusion equations: Part
I, Comput. Methods. Appl. Mech. Engrg. 196, 2007, pp. 2197–2215.

[26] C. Johnson; Numerical Solution of Partial Differential Equations by the Finite
Element Method, Cambridge University Press, Cambridge, 1987.

[27] L. Ju, M. Gunzburger, and W.-D. Zhao; Adaptive finite element
methods for elliptic PDEs based on conforming centroidal Voronoi Delaunay
triangulations, SIAM J. Sci. Comput. 28, 2006, pp. 2023–2053.

[28] L. Ju, W. Wu, and W.-D. Zhao; Adaptive finite volume methods for
steady convection-diffusion equations with mesh optimization, Discrete and
Continuous Dynamical Systems B 11, 2009, pp. 669–690.

[29] P. Laug and H. Borouchaki; The BL2D Mesh Generator: Beginner’s Guide,
User’s and Programmer’s Manual, Technical Report, INRIA, Rocquencourt
1996. Source code:
http://www.iist.unu.edu/∼alumni/software/other/inria/www/bl2d/eng.htm.

[30] K. Morton; Numerical Solution of Convection-Diffusion Problems, Chapman
and Hall, London, 1996.

[31] J.-F. Remacle, X. Li, M. Shephard, and J. Flaherty; Anisotropic
adaptive simulation of transient flows, Inter. J. Numer. Meth. Engrg. 62, 2005,
pp. 899–923.

[32] H.-G. Roos, M. Stynes, and L.Tobiska; Numerical Methods for Singularly
Perturbed Differential Equations – Convection-Diffusion and Flow Problems,
Springer-Verlag, Berlin, 1996.

[33] I. Sazonov, D. Wang, O. Hassan, K. Morgan, and N. Weatherill; A
stitching method for the generation of unstructured meshes for use with co-
volume solution techniques, Comput. Methods Appl. Mech. Engrg. 195, 2006,
pp. 1826–1845.

[34] B. Semper; Numerical crosswind smear in the streamline diffusion method,
Comput. Methods Appl. Mech. Engrg. 113, 1994, pp. 99–108.

[35] Simmetrix software: http://www.simmetrix.com.

[36] M.Stynes; Steady-state convection-diffusion problems, Acta Numerica,
Cambridge University Press, Cambridge, 2005, pp. 445–508.

23

[37] Z. Zhang; Finite element superconvergence on Shishkin mesh for 2-d
convection-diffusion problems, Math. Comp. 72, 2003, pp. 1147–1177.

[38] O. Zienkiewicz and J. Zhu; A simple error estimator and adaptive procedure
for practical engineering analysis, Inter. J. Numer. Meth. Engrg. 24, 1987, pp.
337–357.

A Figures and Plots

A.1 Example 1

Fig. A.1. Example 1: plots of the exact solution (top) and its contours (bottom)
with a = 10−1, 10−3, and 10−6 (from left to right).

Fig. A.2. Example 1 (a = 10−6): approximate solutions on an isotropic mesh with
17, 958 vertices (left) and an anisotropic mesh with 15, 221 vertices (right).

24

Fig. A.3. Example 1 (a = 10−6): the isotropic mesh with 2, 273 vertices (top) and
the anisotropic mesh with 2, 492 vertices (bottom) with zoom ins of the upper-right
corner on the right.

25

10
3

10
4

10
5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Number of triangles N
T

L
in

f N
o
rm

 o
f

E
rr

o
r

Iso, a=10
-1

Aniso, a=10
-1

Iso, a=10
-3

Aniso, a=10
-3

Iso, a=10
-6

Aniso, a=10
-6

Theoretical Convergence

10
3

10
4

10
5

10
-4

10
-3

10
-2

10
-1

Number of triangles N
T

L
2
 N

o
rm

 o
f

E
rr

o
r

Iso, a=10
-1

Aniso, a=10
-1

Iso, a=10
-3

Aniso, a=10
-3

Iso, a=10
-6

Aniso, a=10
-6

Theoretical Convergence

10
3

10
4

10
5

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

Number of triangles N
T

H
1
 N

o
rm

 o
f

E
rr

o
r

Iso, a=10
-1

Aniso, a=10
-1

Iso, a=10
-3

Aniso, a=10
-3

Iso, a=10
-6

Aniso, a=10
-6

Theoretical Convergence

Fig. A.4. Example 1: The L∞, L2, and H1 norms (top to bottom) of the error vs.
the number of triangles NT .

26

A.2 Example 2

Fig. A.5. Example 2 (a = 10−8): plots of the approximate solution (top) and its con-
tours (bottom) on the isotropic mesh with 21, 920 vertices (left) and the anisotropic
mesh with 21, 840 vertices (right).

Fig. A.6. Example 2 (a = 10−8): the isotropic mesh with 17, 404 vertices (top) and
the anisotropic mesh with 15, 762 vertices (bottom) with zoom ins of the interior
layer on the right.

27

10
3

10
4

10
5

10
-4

10
-3

10
-2

10
-1

10
0

Number of triangles N
T

L
in

f N
o
rm

 o
f

E
rr

o
r

Iso, a=10
-8

Aniso, a=10
-8

Theoretical Convergence

10
3

10
4

10
5

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Number of triangles N
T

L
2
 N

o
rm

 o
f

E
rr

o
r

Iso, a=10
-8

Aniso, a=10
-8

Theoretical Convergence

10
3

10
4

10
5

10
-2

10
-1

10
0

10
1

Number of triangles N
T

H
1
 N

o
rm

 o
f

E
rr

o
r

Iso, a=10
-8

Aniso, a=10
-8

Theoretical Convergence

Fig. A.7. Example 2: The L∞, L2, and H1 norms (top to bottom) of the error vs.
the number of triangles NT .

28

A.3 Example 3

Fig. A.8. Example 3 (a = 0.005): plots of the approximate solution (top) and its con-
tours (bottom) on the isotropic mesh with 14, 901 vertices (left) and the anisotropic
mesh with 15, 315 vertices (right).

Fig. A.9. Example 3 (a = 0.005): the isotropic mesh with 1, 444 vertices (top) and
the anisotropic mesh 1, 143 vertices (bottom) with zoom ins of the interior layer on
the right.

29

10
3

10
4

10
5

10
-4

10
-3

10
-2

10
-1

10
0

Number of triangles N
T

L
in

f N
o
rm

 o
f

E
rr

o
r

Iso, beta=0.5
Aniso, beta=0.5
Iso, beta=0.95
Aniso, beta=0.95
Theoretical Convergence

10
3

10
4

10
5

10
-5

10
-4

10
-3

10
-2

10
-1

Number of triangles N
T

L
2
 N

o
rm

 o
f

E
rr

o
r

Iso, beta=0.5
Aniso, beta=0.5
Iso, beta=0.95
Aniso, beta=0.95
Theoretical Convergence

10
3

10
4

10
5

10
-2

10
-1

10
0

10
1

Number of triangles N
T

H
1
 N

o
rm

 o
f

E
rr

o
r

Iso, beta=0.5
Aniso, beta=0.5
Iso, beta=0.95
Aniso, beta=0.95
Theoretical Convergence

Fig. A.10. Example 3: The L∞, L2, and H1 norms (top to bottom) of the error vs.
the number of triangles NT .

30

Fig. A.11. Example 3 (a = 0.005): isotropic meshes with β = 0.5 (top, 1, 444
vertices) and β = 0.95 (bottom, 1, 536 vertices) with zoom ins of the interior layer
on the right.

Fig. A.12. Example 3 (a = 0.005): anisotropic meshes with β = 0.5 (top, 1, 143
vertices) and β = 0.95 (bottom, 1, 245 vertices) with zoom ins of the interior layer
on the right.

31

A.4 Example 4

Fig. A.13. Example 4 (a = 10−1): plots of the approximate solution (top) and its con-
tours (bottom) on the isotropic mesh with 2, 646 vertices (left) and the anisotropic
mesh with 4, 065 vertices (right).

Fig. A.14. Example 4 (a = 10−1): the isotropic mesh with 1, 414 vertices (top)
and the anisotropic mesh with 1, 867 vertices (bottom) with zoom ins of the lower
left-hand corner on the right.

32

Fig. A.15. Example 4 (a = 10−6): plots of the approximate solution (top) and
its contours (bottom) on the isotropic mesh with 16, 368 vertices (left) and the
anisotropic mesh with 16, 423 vertices (right).

Fig. A.16. Example 4 (a = 10−6): the isotropic mesh with 2, 064 vertices (top) and
the anisotropic mesh 2, 394 vertices (bottom) with zoom ins of the lower left-hand
corner on the right.

33

A.5 Example 5

Fig. A.17. Example 5 (a = 10−6): plots of the approximate solution (left) and its
contours (right) on the anisotropic mesh with 27, 635 vertices.

Fig. A.18. Example 5 (a = 10−6): the anisotropic mesh with 2, 307 vertices with a
zoom in of the lower left-hand corner on the right.

A.6 Example 6

Fig. A.19. Example 6 (a = 10−6): plots of the approximate solution (left) and its
contours (right) on the anisotropic mesh with 30, 350 vertices.

34

Fig. A.20. Example 6 (a = 10−6): the anisotropic mesh with 1, 765 vertices with a
zoom in of the layers on the right.

A.7 Example 7

Fig. A.21. Example 7 (a = 10−3): plots of the approximate solution and its contours
on the anisotropic mesh with 33, 006 vertices.

Fig. A.22. Example 7 (a = 10−3): the anisotropic mesh with 2, 539 vertices with a
zoom in of the layers on the right.

35

